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The problem of obtaining the maximal analytic extension of the solution of Einstein
field equations is investigated. We propose a method of finding the maximal analytic extensions
by imbedding the corresponding manifolds into a pseudoeuclidean spaces. The method is
demonstrated for the Schwarzschild-like, Reissner-Nordstrém and Kerr solutions. All
extensions which we obtain are maximal. We believe that the simplicity of the method will
make it useful in physical applications.

1. Introduction

Exact solutions of the field equations are, in general, singular. Some of the singulari-
ties represent real singularities of the metric and have reasonable physical meaning. The
existence of singularities of such a kind does not depend on the choice of parametrization
and, in general, leads to an infinitely high curvature. Other singularities of the metric are
nonphysical and occur because of poor parametrization. Most familiar examples of such
singularities can be found in the static spherically symmetric solution (Schwarzschild
solution) and in the Kerr solution.

The problem of completeness is closely related with singularities. The Riemannian
manifold is g-complete if every geodesic has infinite length in both directions. If every
geodesic has infinite length in both directions, or terminates on a real singularity, the
manifold is called maximal. Solutions of Einstein equations are given in a fixed local
map covering a rather accidental submanifold which is nonmaximal or not g-complete
and is not suitable, if we try to study geometrical and physical features of the manifold.
It is, therefore, necessary to look for the maximal analytic extension of the solution. The
general method of finding such an extension consist in the analytical continuation of
every geodesic.
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2. An extension of the spherically and axially symmetric fields

The maximal analytic extension of the Schwarzschild solution has been given by
Kruskal [6]. It is summarized by transformation of the original parameters r, 6, ¢, f to
the new ones u, r, B, @ given by the following equations

% r+t\ - _
expl— ;s 0=0; ¢ = ¢.
4m

In the u, v, 8, @ parametrization the Schwarzschild metric is regular everywhere outside of
the really singular point r=0. In a similar way, the maximal extension for the Reissner-
-Nordstrdm metric was given by Graves and Brill [5]. This metric in the case m®>—a2? > 0
has two pseudosingularities for r, = m+(m? —a®"? and a true singularity for r = 0. There
exist two Kruskal-like transformations. The first eliminates the 7. singularity, the second —
the r- singularity. By extension of the metric, first across the ry then across r— and suitable
identification of isometrical patches, Graves and Brill have constructed the maximal space for
the Reissner-Nordstrom case. In the same manner Boyer and Lindquist [ 1] have constructed
such an extension of the Kerr metric, describing the gravity field outside the rotating body.
They have shown that maximal space can be obtained in another way, too. Instead of
topological identification they construct an infinite sequence of Einstein-Rosen bridges.
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3. The imbedding method

In this paper we investigate a different method of finding the maximal analytic exten-
sion for the solution of field equations. It is well known, that, accordingly to the Friedmann
theorem [4], any Riemannian manifold ¥, (p, q) with analytic metric can be analytically
and isometrically immersed in a pseudoeuclidean space E.(r,s) where m = }/;n(n+1)
and r, s are any prescribed integers satisfying conditions r = p;s > ¢. Investigation
of the imbedded curved space gives us a very simple and intuitive form of description of
its geometry and topology. Many examples of physically important spaces immersed into
flat space were given by Rosen [7]. If global imbedding exists, then its properties do not
depend on the local map. We know that the wrong parametrization is the origin of diffi-
culties connected with pseudosingularities. We expect theiefore that imbedding, which
consists in fact in the elimination of original parameters, may indicate how to remove
pseudosingularities of the original parametrization. In this paper we construct the analytic
extensions for the Schwarzschild-like, Reissner-Nordstrom and Kerr fields. All extensions
obtained are equivalent up to a diffeomorphism with the extensions constructed by previous
authors, and are maximal.

4. Schwarzschild solution
We shall start with the case of the Schwarzschild metric. In original parametrization
it has the form
ds? = (1 =b/r)dt®>—(1 —b/r)y-1dr? — r*(d6* + sin? 8dg?)
b=2m M
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where

te(—o0, +0); r e(b, +0); 0 [0, n); ¢el0,2n); 2
the metric is singular for r = b and r = 0. We shall construct an imbedding of the Schwarz-
schild space. Let us take a 7-dimensional flat space with the signature (4, —, +,

—, —, —, —) referred to a Cartesian coordinate system Z4; 4 = 1, ..., 7. The imbedding
is given by a set of functions Z* = Z*(t, r, 6, ¢) satisfying the conditions:

02* 90z°  A,B=1,..,1

B “Masgm 550 Ly =0,..,3 " (3)
Let us take
Z' = 2b{1 —b|r|'* sinh 1/2b
Z2 = 2b|1 —b|r|"? cosh 1/2b
Z3 = bln |r/b|
i d l_tfﬂ
(b/r*
Z% =rsinfcos ¢ @

Z% = rsin @sin ¢
Z7 =rcos 0.

One can check by substitution, that conditions (3) are fulfilled. Because of the
simplicity of the imbedding functions in 7-dimensional flat space we can give explicitly
the formulas for Schwarzschild hypersurface.

(Z2[2b)* —(Z*[2b)* = 1—exp (—Z3/b)
Z% = 4b sinh(Z?/4b)
(Z5Y*+(Z5)* +(Z7)* = b* exp 2Z°/b). )

It is easy to see that the original Schwarzschild parametrization covers only a part of (5)
for which Z3 > 0.

We shall discuss now the mapping of the Kruskal manifold onto our hypersurface.
Kruskal space can be illustrated by the following diagramme:

The region 1 (Fig. 1) corresponds to u?—~v* >0, © >0
the region 1* corresponds to w?—1* >0, u <0

the region 0 corresponds to w?—v?2 <0, v >0

the region 0* corresponds to u?—v? < 0, v < 0.
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The patch 1 U 1* covers the standard Schwarzschild space and is joined with the region
0 U 0* along the line #? —v? = 0 which corresponds to throat of the Einstein-Rosen bridge.
By a simple change of parameters in (4) we see that

region 1 is mapped on the region Z* > 0, Z? > 0 in (§)

region 1* is mapped on the region Z*® >0, Z> < 0 in (5)

region 0 is mapped on the region Z3 <0, Z' > 0 in (5)

region 0* is mapped on the region Z3 < 0, Z' < 0 in (5).

Fig. 1. The Kruskal manifold in u, v axes

This proves that the manifold (5) is indeed maximal.
Our results for other spherically symmetric spaces are presented in the Table I.

5. The Reissner-Nordstrom and Kerr metric

The pseudosingularities of the Reissner-Nordstréom and Kerr metrics are very similar.
We shall consider the case m?—a? > 0 in which there exist two pseudosingularities
r, = mi(mz—az)"’. The difference with the Schwarzschild case is that there does not
exist a single global map for the maximal space. By a similar procedure we have obtained
results presented in Table IIL

We shall discuss in detail the maximal extension for Reissner-Nordstrém and Kerr
solutions. On Fig. 2 results obtained by Graves and Brill and by Boyer and Lindquist
are illustrated.

The parameters are chosen as follows

r=r \tfr=r_\"t -l rtt
uiv = exp
) 2m 2m 20'+
" (r—-t) . (r_-r>(r+-—r)_“/" (l—r)
u+v =expl—»);: u-—-v = CSXpy{—1J5
(n) (m 20_ ) (m) 2m 2m 20 _

o, = mri(mz—az)'%
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The patch K, represents the domain covered by u, v Kruskal-like parametrization. It
(n) (n)
is an extension across the r. pseudosingularity. The K, represents the domain covered

by the ', v’ parametrization and forms an extension across the r_ pseudosingularity.
) (n)

The K, U K, formed the fundamental patch. It is a base for the construction of the
maxi mal extension. In case (a) topological identification of the (n—1) with the (n+3)

Kn
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(\(n+4) /\\ n+4 /) Kn,j

~ d N Ve
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N/ g N/

a b

Fig. 2. Maximal extensions of Reissner-Nordstrém and Kerr fields, a) with topological identification,
b) with an infinite sequence of Einstein-Rosen bridges

is possible because these two domain are isometric. The isomorphism between the related
parts of the K,, K, has the form

o)y (—u'—v)" =1; (—~u+0)*('—0v) =1
m m m M @

It is easy to see that there exists a one-to-one mapping such that

R—N field Kerr field
Patch ..., (n+0), ... is mapped on Z7 > ri,Z5 >0 or Z">r,Z*>0
Patch ..., (n+0)*, ... is mapped on Z7 > r, Z5 < 0 or Z">r, 2% <0
Patch ..., (n+2),... is mapped on Z7 <r_,Z%>> 0 or Z7<r,Z2* >0
Patch ..., (n+2)*,... is mapped on Z7 <r_,Z5 < 0 or Z7<r,Z*<0
Patch ..., (n+1),... ismappedonr-<Z’<r.,Z*>0o0r r-<Z'<ry,Z' >0

Patch ...,(n—1),... ismapped on r-<Z’ <r.,Z*<0orr-<Z'<r,Z' <0
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(the domain r < 0 is not connected whith the domain r > 0 and gives an unphysical case
m < 0).

The maximal extensions defined by the infinite sequence of basic patches present
no essential complication. The difficulty which arises from the fact that different patches
are mapped on the same domain of our hypersurfaces can be resolved. We have to construct
a sort of Riemann hypersurface with an infinity regular branches. Upon such a surface
different patches are mapped on the different regular branches.

6. Remarks

All geometrical and physical properties of the obtained extensions are given in [1].
This work only presentes the imbedding method which gives a systematic and very
simple way for the finding of analytic extensions of solutions of Einstein field equations.

The author is greatly obliged to Dr A. Staruszkiewicz for helpful discussions during
the course of the present work.
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