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It is shown that there exists on the light cone an affine connection which is metric,
semisymmetric and totally integrable. The connection is used to displace parallelly polariza-
tion vectors of the photon; a new gauge for the electromagnetic ficld is thus introduced and
the commutator of two potentials in the new gauge is calculated. The commutator is in-
variant with respect to the four-parameter group which leaves invariant a fixed null direc-
tion.

1. Introduction

Polarization of a photon is determined by a unit vector e* orthogonal to the energy-
-momentum vector k”. We shall investigate the following question: is there any natural
way to fix polarization of all photons, if polarization of one, arbitrarily chosen photon,
has been fixed? Clearly, to answer this question we have to investigate a general problem
of displacement of polarization vectors. The polarization vectors are to be displaced within
the set of all energy-momentum vectois . e. within the light cone

Bk = (P — (K= (k) (7 = 0, K® >0, a-n

2. Affine connection within the light cone

Any four functions k*(u’), i =1, 2, 3, such that gunk'k” =0 and o(k', k%, k3)/
106G, u?, u®) > 0, determine a parametrization of the light cone. There are two well-known
invariants upon the cone: the metric

ok* ok> . .
— du'du” = gydu‘du”, 2.1)

ds’> = —g, dk"dk’ = —g,, ——
s Buv B ou' ou*
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and the volume
_ dk*dk*dk’® 1 (‘i(k1 k2 k%)

T sl )d wldutdu® = wdu'dudu®. 2.2

Since det (g;) = 0, the invariants (2.1) and (2.2) are independent. Usually one introduces
an affine connection as the solution of equations

Vigu = 0i8u—T'i8u—1T58m = 0 (2.3)

and
I‘;"—F;'k = 0. (2'4)

If, however, det (gz) = 0, equations (2.3) and (2.4) are in general incompatible [1];
for the light cone they are incompatible indeed. It is necessary to reject one of them.
Lemmer [2] and Dautcourt [3] reject (2.3); we prefer to reject (2.4) or, more precisely,
to replace (2.4) by a weaker condition. We cannot reject the condition (2.3) because the
condition means that a parallelly displaced vector preserves its length; it is clear that
displacement of polarization vectors should have this property. It turns out that the
strongest condition compatible with (2.3) may be formulated as follows: the affine connec-
tion should be semisymmetric /. e. there should exist a vector S; such that

Iy—Th = S8-S0 (2.4a)

There is a wide class of connections satisfying conditions (2.3) and (2.4a); we add therefore
two further conditions:

Vw=0w-T,w=0 2.5)
and
R:‘nnl = an[‘;l—amrﬁl'{_rﬁt Fk nl = 0. (2'6)

Strictly speaking, the condition (2.5) follows from (2.6) but it is convenient to introduce
(2.5) explicitly, because (2.5) is an algebraic condition while (2.6) a differential one. The
condition (2.6) implies that a vector displaced parallelly along a closed curve returns
back to its original direction; the condition (2.5) means that a volume determined by three
linearly independent vectors is preserved in the process of parallel displacement.

Since all the conditions (2.3), (2.4a), (2.5) and (2.6) are covariant, we may solve
them in a particular coordinate system. We shall use in this paper the stereographic para-
metrization of the light cone; denoting u' = w, u? = x, u* = y, we have

K = w, k' = wfx, k* = ofy, k? = o2f-1), 2.7

where

% 1G4y, 2.8)

In the stereographic coordinates ds? = w?f*(dx?+dy?) and dv = wf*dwdxdy.
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3. Fields of paraliel vectors upon the cone

To find the connection one has to solve Eq. (2.3), (2.4a), (2.5) and (2.6) with respect
to 27 unknown functions I't;. We omit details of calculations which are essentially trivial.
It turns out that the vector S, is a gradient: S; = &; G, where

G(w, x, y) = In(@f)+ Go(x, y) @3.n
and G, is an arbitrary harmonic function:
9°G, 0°G,
— + —5 =0. 3.2
ax? ay* (.2)

Since the connection is totally integrable, there exist three linearly independent fields
e; of parallel vectors; they have the form

¢, =S, e =of(0,cosF,sinF), ¢ = wf(0,—sinF, cos F), 3.3
1 2 3

where F is a harmonic function conjugate with Go: F, = ~G,,, F, = G, .. The connec-
tion I'y; may be obtained as the algebraic solution of equations Ve, = 0.

s

It follows from (3.3) that a vector displaced parallelly along a closed curve may
rotate; to avoid this we shall assume that

55dF =2am,n=0,+1, +£2, .., (3.4

for every closed curve. It should be remembered that this global integrability condition
holds for smooth curves only, because only for smooth curves the process of parallel
displacement is determined.

4. Lorentz invariance of the affine connection

We have determined the connection up to an arbitrary harmonic function; our proce-
dure has been Lorentz invariant. Is it possible to impose further Lorentz invariant condi-
tions and to determine the connection uniquely? The answer is negative: each particular
choice of G, breaks the Lorentz invariance. In fact, the Lorentz transformation may be
written in the form

az’ +
z= Z, p , where z = x+iy and ad—-fy = 1. 4.1)
yz' 49

Since G(w, z) i1s a scalar, G(w’, ') = G(a(w', 2), z(z')) and therefore
In [0f()]+Go(z') = In [e(@', 2) f(2(2))]+ Go(2(2')). 4.2)

Hence

o', 2')f(«(2"))
w’f(z')

Gy(2') = Go(z(z' ) +1n = Go(z(z'))—In} . 4.3)

z
dz’
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The connection will be Lorentz invariant if for all homographic substitutions (4.1), Go(z') =
= Go(z'); this condition, however, can never be fulfilled and therefore the affine connection
invariant with respect to the Lorentz group does not exist. It is interesting to find how the
Lorentz symmetry is broken for the simplest choice of G,, namely for G, = 0. We see
from (4.3) that this particular choice of G, is invariant with respect to the group of substi-
tutions of the form

z = aqz' +b, la| = 1. 4.4)

It is well known that the subgroup (4.4) is the subgroup which preserves a null vector;
our parametrization is chosen in such a way that substitutions (4.4) preserve the vector
k" =(1,0,0, —1).

5. The polarization vectors

Having established an integrable connection within the light cone we can fix polariza-
tion of all photons from the following principle: polarization vectors should form a parailel
field upon the cone. This principle is neither covariant nor unique since it involves an
arbitrary choice of the function G,. Nevertheless, the original arbitrariness in the choice of
polarization vectors is substantially reduced. If no conditions are imposed, any vector
e*(k*) such that g, k"¢” = 0 and g,.e"e” = —1 may be chosen as a polarization vector;
hence e*(k%) is determined up to two functions of three variables; in our construction it
is determined up to one harmonic function of two variables. The parallel vectors (3.3)
are referred to an internal coordinate system upon the cone. In applications it is more
convenient to treat polarization vectors as vectors in the Minkowski space. We shall
therefore project the internal vectors (3.3) to the fourdimensional space. From the co-

t
variant triad (3.3) we construct the inverse triad e' as the solution of equations

t

e =08, st=1273, G.D

§
L
and project the parallel vectors e' to the fourdimensional space:
¢ ApH
; Ok

t
e =¢ -
ou

1 2 3
One casily finds that e = k*; " and e” are unit space-like vectors orthogonal to k" and to
each other; we shall use them as polarization vectors.

(5.2)

6. Rigging of the light cone

It is impossible to rig! the light cone in a Lorentz invariant way. If, however, polari-
zation vectors have been chosen, an invariant rigging becomes possible. We shall introduce
a rigging of the light cone by means of the future oriented null vector m" which satisfies

2

3
conditions: m,k* = 1, m,e* =0, m,e* = 0.

1 We use this word after J. A. Schouten [4].
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7. The commutator [A,(x), A(»)]

The above constructed affine connection has some remarkable applications in the
classical electrodynamics [5]; in this paper we shall apply the connection to find a new
gauge for the quantized electromagnetic field.

Let A,(x) denote components of the electromagnetic vector potential. If only trans-
verse degrees of freedom are taken into account, the commutator [4,(x), 4,(y)] =
= iD,(x—y) may be written in the form

1 A A
D, (x) = W ~J'dv (- ; eqe,) sin (k;x*); (7.1)

A
here dv is the invariant volume (2.2), e, are polarization vectors, k® = J (KY2+(k2)2 + (k%)
Usually one chooses the polarization vectors in this way: in a fixed inertial frame of

A
reference one puts ¢, = 0. This condition determines the sum over polarization vectors
uniquely and the commutator takes on the form [6]:

Doo(x) =0, Doix) =0, Dy(x)= (gik+ %aiak) D(x), (7.2)

k=123,

where 4 is the Laplace operator and D is the Pauli-Jordan function. Let us see what happens
if polarization vectors are chosen as parallel fieids upon the light cone; we shall investigate
only the simplest case Gy, = 0. Taking into account the algebraic identity

A A
- ;euev = g,,—km,—k,m,, 1.3
where m, is the rigging vector, we may write

D,[(x) = guD(x)+0,4,(x) +08,4,(x), (7.4

where

D(x) = 6?1'5—)3 Jdv sin (k,x*) (1.5)

is the Pauli-Jordan function and

) 1
A x) = G Jdumu cos (kx%). (7.6)

For G, =0, my = my = 1/2wf, my = m, = 0; consequently A; = A, = 0 and

Ag = Ay = '25117)3 J dw J J dxdyf cos o[ x° —(xx! + yx*)f—(2f - 1)x*], .7
o
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where 1jf = 1+4(x*+y?). Unfortunately, the integral (7.7) is logarithmically divergent

for Vx*+ y? = o0; the divergence is not connected with the fundamental divergencies
of quantum electrodynamics, which occur for w — co. In (7.7) the angular part of the
integral diverges in the result of our choice of polarization vectors. We shall calculate the
angular part of (7.7) as follows:

dxd
f_[l ‘HT(ZCC iyz) cos co[x? —(xx! +yx2)f_ Qf- 1)x3] —

H 1 +§idi 3, {cos @[x”—(ex' +y2)f — (@f ~ D] —cos o(x” +x)} +

+cos o(x® +x%) ‘”1 +:(J;d':_y2) (7.8)

The first integral is convergent; the second is an infnite constant. Integrating over w
we get

1 (6(—x,x"
Ay = 4—{&%";3 —8(x° +x%) In (— @3x,x*) +const. inf. 5(x°+x3)} i (1.9

here

1 for x>0;
G(x)n{o for x<O0: (7.10)

w, is an arbitrarily chosen frequency introduced for dimensional reasons and const. inf.
is the infinite constant. It is clear from (7.9) that the infinite constant may be interpreted
as an arbitrary additive constant in the logarithmic potential.

8. Properties of the commutator

The procedure applied in the previous Section is certainly objectionable. If, however,
the infinite constant in (7.9) is replaced by a finite one, the expression (7.9) has a definite
meaning and we can forget that it has been defined by a divergent integral. The finite
constant may be absorbed into @, and the vector A, takes on the form

1 {9( —x,x")

Ag = A3 = — pgT —-5(x° +x%) ln(—ng”x“)} ,

Al = Az = 0. (8.1)

The vector A, has the following properties: (a) (A4, = 0; (b) 04, = —D where D
is the Pauli-Jordan function; (c) the vector A, is invariant with respect to the four-para—
meter subgroup of the Lorentz group, which preserves the null direction k*/k°® = k?/k° =
k3k® = —1. It is seen from (7.4) that these properties imply the following propertles
of the commutator D, (x): (a) [1D,(x) = 0; (b) ¢"D,, (x) =0, 0'D,(x) = 0; (c) the
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tensor D, (x) is invariant with respect to the Lorentz transformations which preserve
the null direction k'/k°® = k2/k® = 0, k3/k® = —1. It is clear that the particular gauge
introduced above is similar to the Coulomb gauge: the role of the rotation group is taken
over by the subgroup preserving a null direction. (The affine connection with G, = 0
is invariant with respect to the three-parameter subgroup which preserves a null vector;
the commutator contains only the sum over polarization vectors and this gives rise to an
additional symmetry.)

The author is greatly indebted to Professor Iwo Biatynicki-Birula for a discussion
on the subject of this paper.
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