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NUCLEAR INERTIAL MASS PARAMETER FOR DIFFERENT
FORMS OF THE QUADRUPOLE FORCES

By W. STEPIEN-RUDZKA
Institute for Nuclear Research, Warsaw*
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The inertial mass parameter B for collective oscillations of the quadrupole types is
calculated. The quadrupole forces are taken in the form Q = F(r) Y34(£2), where F(r) assumes
three different functional forms. Numerical calculations are performed in the Rare-Earth
region.

The inertial mass parameter B plays an essential role in all microscopic calculations
concerning the collective motion of nuclei, such as vibrations and fission process. The energy
of the vibrational state is given by

Eyp =ho,, =1 \/E/@ (D

where C is the stiffness patameter (see, for example, Ref. [1]). When investigating the
stability of the nucleus against spontaneous fission one gets in the WKB approximation
the probability for the penetration of the fission barrier as:

€2

P=exp[—2j\/27}3(V(s)—E)ds], (2)

€1

where V(¢) is the deformation dependent potential energy of the fissioning nucleus (see
for example Ref. [2]).

1t is casily seen that the determination of the inertial mass parameter is essential in
finding the half-life for the spontaneous fission process; thus it plays an important role
in the estimates of lifetimes of the nuclei in the new regions of stability (¢f. Refs [2], [3]).

The microscopic calculations of the mass parameter B as the function of the deform-
ation ¢ and the pairing forces strength were made in Ref. [3] with the assumption of
the quadrupole forces in the form: 0 ~ r2Y,o() as responsible for the collective motion.

In this paper we shall investigate the dependence of the mass parameter on the radial
form of the quadrupole forces.
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The collective Hamiltonian with the quadrupole forces is:

H=Ho—5 0 0. ®
One can introduce the so called “generating” one-body Hamiltonian:
H = Hy—r<{0Q) " 0, @
where (Q) is the expectation value of the Q operator. One usually assumes:
0 = r’Y,(9). ()

When expressing the total energy of the nucleus in terms of the collective variable Q = (0,
one gets:

B C,
E(Q) ~——~2—Q~-Q2+—22~QZ, (6)

where By and C, are mass and stiffness parameters, respectively.
When adiabatic and harmonic approximations are applied to the problem, one
gets for the mass parameter By:

2%
B, = h* &2 7
Q ! (221)2 ()

B I<kIQI0 1
Zi - Z (Be—Eo) ®

k£0

where

E; and |i) are the eigenvalues and eigenstates of Eq. (4), E, and {0) are the lowest eigen-
value and corresponding eigenstate.

Instead of the assumption (5) as regards the quadrupole forces, we shall follow the
argumentation by Bohr and Mottelson (Ref. [5]) leading to the derivation of the radial
form factor for the quadrupole forces when the potential and its deformation dependence
are given.

Let us consider the Hamiltonian (4). We can write it in the form:

H = T+ V(). )]

Next we shall impose a quadrupole deformation on the system, i.e. we transform the sphere
r = Ry so as to get the surface described by:

r = R, (1 +BY,0— ;{~ﬁ2> (10)

where the last term follows from the volume conservation condition. If the interaction
is of a sufficiently short range, the equipotential surfaces of the deformed average potential
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V(r) can be related to those of the spherical field V,,,(r) that existed before the deforma-
tion was switched on:

_ 1 -1
V(l‘) = spb(RO) = Vsph (r : (1 +ﬁY20— Z ﬁz) ) . (11)
T
Denoting the radial factor of ¥V, (r) by f(r), we can write:
Vsph(r) = VO f(r) (123)
_ t \"?
Vi) =V, 'f(r (HﬂYzo— Eﬁz) ) (12)

For small deformations f we can expand (12) into Taylor series retaining only the terms
up to f2:

- of af
V(i) = Vo - f(nN+Vy-B- (Eg)p=o+%V0 - p* °(5ﬁ—2—)ﬂ=0+... (13)
Making use of the relation (10) we get:
- d
V()= Vo f(r)=Vo-B-r- f Y20+ =B

d? d 1
4 Y (150 )] ”

For the spherical harmonic function Y,, we have:
, 1
(Yz0)* = e +kiYy0+k,Yao (15)

In accordance with our previous assumption of small f, we treat the last term of (14)
1

in the approximative way, replacing YZ, by its average value: el This leads to the
n

simpler expression for the Hamiltonian (9):

df Vo
H(r) = T+V0 f(r) VO ﬁ re—-—— Y20+ -
dr 87

1 d( ,df
rt—1. 16
r? dr( dr (16)
The last term has no influence on the deformation dependence of the wave function, thus
in practice we look for the eigenstates of the Hamiltonian:

df(r)
dr

B

H(B) = Hsph_ VorB-r Y20 a7
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or
HB) = Hopn— Vo - B~ E(r), (18)
if we define
. if
o) = r- “—d(ri)- Yy0. (19)

In that way we derived the radial dependence of the quadrupole force for the average
field (12), namely instead of the standard form (5) we are left with (19). The usual form of
the quadrupole force (5) is easily seen to result from the harmonic oscillator potential:

Viodr) = Vo - 1?2 (20)

and is consistent with the Nilsson model potential which is basically a deformed oscillator
field with some additional terms like 7 - s and /2 (see Ref. [6]).

We shall investigate the quadrupole forces resulting from two other potentials, namely
the square-well potential:

o={ p s

or
V() = = Vo - 0(Ro—1) 22)

with

i for x>0
B(X):{O for x <0

and the Woods-Saxon potential:

1
Vws(r) = =V, [Texp (r—Roja)” (23)
We shall derive the radial form factor F(r) for the quadrupole forces (19) in those cases
and compute the mass parameter B as follows from the formulae (7) and (8).

For the single-particle energies and wave functions we shall take those resulting
from the Nilsson model potential with the pairing forces included in the BCS approxi-
mation. The fully consistent treatment would require the use of the single-particle energies
and wave functions derived from the square-well and Woods-Saxon potentials, respectively.
However we shall use the energies and functions appropriate in the case (20) in all three
cases: (20), (22) and (23) because of the computational facilities offered by the Nilsson
model.

The quadrupole forces related to the potentials (20), (22) and (23) are respectively:

Foo(r) = r*Ys0 24
Fy(r) = r - d(r—Rp)Y2o (25)
1 rexp((r—Rp)ja)

Fys(r) = a (1texp (r—Ro)/a))’?

LTS (26)
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We shall compare the mass parameter B resulting in those three cases changing in each
case By to B, according to the formula:

dF\?
Ba = BF N S (27)
de
where
F =Y 20%,, (28)
fuw = OIFip> (29)

and »? is an occupation factor for the level |v) resulting from the BCS approximation.
When the pairing forces are included By is given by (7) with

y _ N\ Vel wp, +up,) (8a)
A © (Eu+Ev)i

JTRY
where E, = \/(;v—l)2+A2.

The basic wave functions in the Nilsson model are of the form:

INIA(@)Y ~ o'~ e™ %% - &1 12 (07)Y,4(R,) (30)
where
n=(N-02
0’ = M:’" [+ Lo P +yH)+(1— %e)z%] (31)

and ¢ is a deformation parameter.

In order to evaluate the matrix elements of the operators (25) and (26) between the
states of the type (30) we express the Nilsson wave function in terms of the spherical
oscillator wave functions:

INIA(0)) = Z ¢ x [nlimy(r), Z |‘3i|2 =1 (32)

and making use of the spherical radial matrix elements of (25) and (26):
(N'Tir - 8(r—Rg)INIy = N¥! - e™ R0 (qRp)' T3

' XX ay(@R)T, (33)

-N1§‘§ . u
= Ny iy dij (34
a ‘_J
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with
- pirene |3 RI@YNFI+DIN +I +1)!
NNI — _1n+n21+l n~n \/__
m = (=D T (n+Din +1)! (35)
. i+DIG+1)!
ay; = (=" —— (. ).U ) — (36)
i (n=DI(n" = PDIi+21+ D25 +2I + 1!
(r——Ro>
«© €xp
a 22 , .
Iij — R 5 e % (ocr)“" +3+2(:+1)dr (37)
r—
0 [1+exp( 0):'
a
and
= y
o = Man” (38)

In case of Eq. (24) this procedure is not necessary because the matrix elements of
- Mw ~
2 Ya0(r) = = 20" Vao(@ +/3 - ¢°) (39)

can be evaluated directly with the functions of the type (30).

The main difference between the matrix elements of (24) and those of (25) and (26)
lies in the selection rules for the oscillator quantum number N. Namely in the case of the
operator proportional to r? only the states with AN = 0 and AN = +2 lead to non-zero
matrix elements. For both (35) and (34) the only limitation is AN = +2p, p =0, 1,2, ...
entier (Ny../2).

Numerical calculations were performed for a few nuclei in the Rare-Earth region, namely
A=164(Z = 66,68), A =168 (Z = 68,70) and 4 = 174 (Z = 70, 72). The Nilsson
mode! parameters were taken as usually in this region, i.e.

K, = 0.0637 1, = 0.60 (40)
K, = 0.0637 sy = 0.42

and the oscillator shells were taken up to N, = 6 for protons and N,,, = 7 for
neutrons.
The BCS equations for the energy gap 4 and the Fermi energy A

.
G Ve, — )+ 47

n= 202 = 1—- ———i.%_—‘ (41)
’ V(e,— )2 +47]
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where n = number of the particles (i.e. Z or N), were solved with the number of levels
included in the summation (41) equal to the number of particles (Z or N) and the pairing
forces strength was assumed as

G, = 20.8 MeV/A G, = 15.6 MeV/A (42)

for protons and neutrons respectively.
In (34) we assumed the nuclear radius R, to be

Ry = 1.2 A3 (fm) (43)
and in (34) the diffuseness parameter a was taken as
a = 0.67 fm. 44

The numerical results for B, for ¢ = 0.1 and & = 0.2 are presented in Table 1. One
can see that for the given set of the parameters involved in the calculation, B, for the usual
quadrupole forces lies in between the B, values for the square-well and those for the

TABLE 1
Inertial mass parameter B, for different quadrupole operators
B, [#2/MeV]
£ A V4 — — —

Fw Q = Fho. Fys
164 66 143.05 166.69 171.63
164 68 135.20 152.92 161.90
168 68 148.62 165.87 178.92
0.1 168 70 142.49 163.21 171.08
174 70 149.17 174.69 180.17
174 72 156.51 170.14 i 177.90
164 66 109.94 129.83 130.71
164 68 111.48 128.71 144.15
168 68 109.97 135.39 144.43
0.2 168 70 125.65 | 148.25 160.07

174 70 115.54 156.43 —

174 72 J 126.04 155.28 —

Woods-Saxon potentials. One can look at the square-well potential as the @ — 0 limit
of the Woods-Saxon potential. In order to investigate the sensitivity of this calculation
to the changes of the diffuseness parameter ¢, B, was calculated for the forces (26) with
a = 0.60 and 0.50 fm (i.e. decreased by 109 and 259 with respect to the initial value
a = 0.67 fm) and the results are presented in Table II together with the relative change
in the B, value.

The comparison between the matrix elements of the usual quadrupole force and those
of the force resulting from the Woods-Saxon potential, where the radial derivative was
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TABLE II
The dependence of Bws on the diffuseness parameter a
L 1 J | i
: _ i Bws I Bws ( ’ Bws i
4 l Z | @=06) | (a=060) ABL%] 1 (4 =050 AB[%]
j ! i |
; \ ‘ | } |
164 | 66 171.63 168.07 -2l ‘ 144.47 ] —158
164 | 68 16190 158.55 1 —2.1 13607 | —159

taken from the full potential including s and Coulomb terms, was made by Kumar
and Sorensen in Ref. [7]. They found that if the matrix elements were calculated consist-
ently on the corresponding wave functions (h.o. for the forces (5) and Woods-Saxon in
the other case), the results were very similar. They did not find as good an agreement
in the “mixed” cases, i.e., the matrix elements of the Q-force on the Woods-Saxon
states and vice versa, were sometimes found to differ considerably. When investigating
the mass parameter it is not sufficient to get similar values of ¢,, in order to reproduce
the B-values because of the dependence of B on the single-particle energies e,. The
differences in the single-particle spectra, especially in the region close to the Fermi level 4,
may affect the results for B. The additional non-zero matrix elements for [AN| >| 2 are
not so important because the energy denominators in (8a) are much bigger. The effects
of the couplings between the levels with AN = +4, +6 can be deduced from Table III,
where the 2%, and 2X; values are listed for the nucleus 4 = 164 (Z = 66) and ¢ = 0.10.

TABLE III
The influence of different AN couplings on B, values
ﬁW j\:WS
AN —
2%, 2, 23, l 2%,
| |
0 18.523 ! 95.496 8.562 , 45.877

+2 12.987 | 3.787 6.077 | 1.887
+4 0.419 0.023 0.069 0.004
+6 0.002 410-3 0.002 5-10-5
Total 31.510 98.993 14.709 47.768

The first column specifies the AN value, the second and third columns give the values of
2%, and 2%, for the interaction (25), the fourth and fifth give 2%, and 2X, for the inter-
action (26).

We investigated the inertial mass parameter B, for three different kinds of the radial
shape of the quadrupole forces. The one usually used is characterized by the quadratic
increase with r. The other two are centered at the surface of the nucleus r = R,; one
in a delta-like fashion, the other acts in a broader region around r = R, with the para-
meter a describing its range.

When comparing the numerical results obtained with the reasonable values of all
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entering parameters (diffuseness parameter a, nuclear radius Rq, Nilsson model parameters
k, 1) we get the discrepancies in the B, values not bigger than 20%.

The B-values for F~ r - 8(r—R,) are smaller than those for Q ~ r? by less than
15%. The B-values for F derived from the Woods-Saxon potential with a = 0.67 fm
are bigger than those for O by at most 5%. The mass parameter B for this kind of forces
depends on the value of the diffuseness parameter a: when decreasing it one gets decreasing
values for B. One can expect to reprcduce any value of B, from the range between B
(square-well) and B (W-S, g = 0.67) by changing «. In particular ¢ = 0.60 fm gives the
values of B (W-S) nearly the same as those derived from the ordinary quadrupole forces.

The author would like to express her gratitude to Professor Z. Szymanski for
suggesting the problem and valuable comments.
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