INVESTIGATION OF THE ¹²⁶Ba → ¹²⁶Cs → ¹²⁶Xe DECAY By K. J. Blinowska, S. Chojnacki, Ch. Droste, T. Morek and J. Srebrny Institute of Experimental Physics, University of Warsaw* (Received September 19, 1972) The neutron deficient ¹²⁶Ba isotope was produced in the ¹¹⁸Sn(¹²C, 4n) ¹²⁶Ba reaction at carbon ions energy E = 72 MeV. The decays of ¹²⁶₅₆Ba \rightarrow ¹²⁶₅₅Cs \rightarrow ¹²⁶₅₅Xe and ¹²⁶Cs \rightarrow ¹²⁶Xe were investigated by means of Ge(Li) detectors. The ¹²⁶Ba \rightarrow ¹²⁶Cs decay scheme is presented. ### 1. Introduction In the last few years considerable rise of interest is observed in the $50 \le Z$, $N \le 82$ nuclei region, where the levels sequence changes from vibration-like to rotational-like. Several theoretical [1]-[3] and experimental [4]-[8], [15] works were performed to elucidate the nature of the excited states of these nuclei. The neutron deficient chain $^{126}\text{Ba} \to ^{126}\text{Cs} \to ^{126}\text{Xe}$ was investigated by Kalkstein et al. [9] and D'Auria [8], who established the basic features of the decays and proposed the level schemes for ^{126}Cs and ^{126}Xe . The excited levels in ^{126}Xe fed from the decay of ^{126}I were studied by Grabowski et al. [10]. The levels in ^{126}Xe were also populated in nuclear reactions and investigated by means of "on-beam" spectroscopic methods. Betigeri et al. [11] used the $^{126}\text{Te}(^3\text{He}, 3n)^{126}\text{Xe}$ reaction and Bergström et al. [5] the $^{124}\text{Te}(^4\text{He}, 2n)^{126}\text{Xe}$ one to investigate the gamma radiation from the decay of the excited levels in ^{126}Xe . The conversion electrons from the $^{127}\text{I}(p, 2n)^{126}\text{Xe}$ reaction were measured by Sakai et al. [12]. From these investigations the quasi-rotational band in ^{126}Xe is known. In the present work the study of the $^{126}\text{Ba} \rightarrow ^{126}\text{Cs} \rightarrow ^{126}\text{Xe}$ chain was undertaken to provide further experimental material concerning the decay of these isotopes. ## 2. Experimental The experiment was conducted on the external beam of the heavy ion U-300 cyclotron at the Joint Institute for Nuclear Research in Dubna. The 126 Ba isotope was obtained in the 118 Sn(12 C, 4 n) 126 Ba reaction, the energy of carbon ions being equal to 72 MeV. ^{*} Address: Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski, Hoża 69, 00-681 Warszawa, Poland. The optimal energy of carbon ions for the 118 Sn(12 C, ^{4}n) 126 Ba reaction was calculated from the empirical relation [13] $$\bar{\varepsilon} = (E_{\rm exc} - \sum_{i=1}^{x} B_{ni})/x$$ where: x is number of neutrons evaporated in reaction (HI, xn), $E_{\rm exc}$ is the excitation energy of the compound nucleus corresponding to the maximum of the excitation function, B_{ni} is the binding energy of the *i*-th neutron. The value of $\bar{\epsilon}$ was assumed to be equal to 6 MeV, as suggested by Neubert [13] for nuclei of the region $A \approx 120$. The B_{ni} values were taken from the calculation of Zeldes et al. [14]. The energy of the carbon ions outgoing from the cyclotron was degradated to the proper energy by means of an aluminium foil set. The self-supporting targets of 4 mg/cm² thickness were prepared by rolling of enriched ($\approx 98\%$) ¹¹⁸Sn foils. During the irradiation, an aluminium foil about 10 µm thick was placed behind the target in order to catch the recoil nuclei. After irradiation barium was separated Fig. 1. Gamma ray spectrum of the ¹²⁶Ba → ¹²⁶Cs → ¹²⁶Xe chain chemically from the catcher, and the gamma spectrum accompanying the $^{126}\text{Ba} \rightarrow ^{126}\text{Cs} \rightarrow$ \rightarrow ^{126}Xe decay was investigated. The measurements were performed by means of Ge(Li) detectors 30 cm³ coaxial and 12.5 cm³ planar types with resolutions: 6.5 keV and 3 keV, respectively (for gamma energy of 1 MeV). In order to find which lines correspond to the $^{126}\text{Ba} \rightarrow ^{126}\text{Cs}$ decay and which to the $^{126}\text{Cs} \rightarrow ^{126}\text{Xe}$ one, the following procedure was applied. Caesium was repeatedly separated (10–15 times) from the catcher containing the ^{126}Ba isotope. The chemical separation of caesium together with its transport to Ge(Li) detector took about 1 min, i.e. a time comparable with the half-life of 126 Cs. This permitted the investigation of the gamma spectrum of the 126 Cs \rightarrow 126 Xe decay. Comparison of the $^{126}\text{Ba} \to ^{126}\text{Cs} \to ^{126}\text{Xe}$ decay spectrum with that of the $^{126}\text{Cs} \to ^{126}\text{Xe}$ decay allowed us to assign the gamma lines to the particular stages of the A=126 decay chain. Gamma ray spectra of the $^{126}\text{Ba} \to ^{126}\text{Cs} \to ^{126}\text{Xe}$ decay are presented in Fig. 1. The identification of the A=126 chain was based on the agreement between the half-life of the observed gamma lines and the value $T_{1/2}=96.5$ min. given for the ^{126}Ba decay in Ref. [9]. The identification of isotopes was also confirmed by the observation of the 389 keV and 491 keV gamma lines belonging (according to Bergström *et al.* [5] and Grabowski *et al.* [10]) to the $^{12+} \to 0^+$ and $^{22+} \to ^{12+}$ transitions in ^{126}Xe , respectively. ### 3. Results and discussion The gamma lines observed in the $^{126}\text{Ba} \rightarrow ^{126}\text{Cs} \rightarrow ^{126}\text{Xe}$ decay are listed in Table I. The least squares programmes for the GIER computer were used to determine the energies, intensities and half-lives of the gamma transitions. The assignment of the lines to the 126 Ba or 126 Cs decays was based on the comparison of the relative intensities of the lines of the 126 Ba \rightarrow 126 Cs \rightarrow 126 Xe and 126 Cs \rightarrow 126 Xe spectra. Namely, the lines belonging to 126 Cs decay ought to have the same intensity ratio in both spectra as the 389 keV transition (which is known [9], [5] to depopulate the first excited level in 126 Xe). The lines with a proper life time observed in the barium chain spectrum but not observed, within the limit of experimental error, in the 126 Cs \rightarrow 126 Xe decay were assigned to the 126 Ba \rightarrow 126 Cs decay. Unfortunately, the intensity of the chemically separated caesium sources was insufficiently high, and some of the observed lines could not be assigned unambiguously to either of the investigated isotopes. We can only say that they belong to the 126 Ba \rightarrow 126 Cs \rightarrow 126 Xe chain because of their half-life. The gamma transitions of energies higher than 1.5 MeV are likely to belong to the 126 Cs decay because of the low β +-transition energy for 126 Ba. According to the calculations of Zeldes et al. [14] the energy released in electron capture is $Q_{EC} = 1.5$ MeV for 126 Ba \rightarrow 126 Cs. In the decay of ¹²⁶Cs, except the 389 keV and 491 keV lines mentioned before, we have observed also a cross-over transition of energy 880 keV from the ²2⁺ level to the ground state. This transition was also seen in the decay of ¹²⁶I (Refs [10], [15]). The 880 keV line was also observed by Bergström et al. [5] in the 124 Te(4 He, 2 n) 126 Xe reaction, and assigned to the transition between the $^{10+}$ and $^{8+}$ levels. It seems that it is the same line, which was observed by us, and in the 126 I decay [10], [15]. Under this assumption the 880 keV line cannot be assigned to the $^{10+} \rightarrow ^{8+}$ transition, because the high spin states are not fed in the $^{6+}$ -decay of 126 Cs and 126 I (the spins of the ground states are $^{1+}$ and $^{2-}$, respectively). Other lines could have been assigned to the $^{126}\text{Cs} \rightarrow ^{126}\text{Xe}$ decay (see Table I), but it was not possible to build up a consistent decay scheme on the basis of the energy and intensity balances. The decay scheme of 126Ba is presented in Fig. 2. The gamma transitions which $\label{eq:TABLE I}$ Energies, intensities, half-lives and identifications of transitions in the $^{126}\text{Ba} \rightarrow ^{126}\text{Cs} \rightarrow ^{126}\text{Xe}$ chain | Energy | Intensity of gamma | Half-life | Identification | |-----------------|------------------------|---------------|--| | keV | rays (arbitrary units) | min | | | 94.1 ± 0.3 | 0.6±0.2 | 80 ± 30 | ¹²⁶ Ba → ¹²⁶ C | | 103.8 ± 0.3 | 0.7 ± 0.2 | 80 ± 20 | A = 126 | | 107.3 ± 0.3 | 1.5 ± 0.2 | 100 ± 20 | $^{126}\text{Cs} \rightarrow ^{126}\text{X}$ | | 127.0 ± 0.3 | 1.3 ± 0.3 | 84 ± 10 | A = 126 | | 130.0 ± 0.3 | 2.4 ± 0.3 | 102 ± 9 | A = 126 | | 171.7 ± 0.3 | <1 | 70 ± 20 | A = 126 | | 180.7 ± 0.4 | <1 | 90 ± 30 | A = 126 | | 201.3 ± 0.3 | 1.3 ± 0.5 | 100 ± 30 | A = 126 | | 218.2 ± 0.3 | 10.0 ± 1.4 | 102 ± 8 | ¹²⁶ Ba → ¹²⁶ Cs | | 233.6 ± 0.3 | 50±5 | 98±3 | ¹²⁶ Ba → ¹²⁶ Cs | | 241.0 ± 0.3 | 14.5 ± 1.8 | 104 ± 6 | ¹²⁶ Ba → ¹²⁶ C | | 257.5 ± 0.3 | 17.9 ± 1.2 | 88 ± 4 | ¹²⁶ Ba → ¹²⁶ C | | 281.2 ± 0.3 | 7.2 ± 0.6 | 97 ± 8 | ¹²⁶ Ba → ¹²⁶ Cs | | 285.1 ± 0.3 | 1.0 ± 0.3 | 70 ± 20 | A = 126 | | 290.9 ± 0.3 | 1.4 ± 0.3 | 80 ± 20 | A = 126 | | 309.0 ± 0.6 | 0.7 ± 0.4 | 88 ± 17 | A = 126 | | 328.3 ± 0.3 | 6.1 ± 0.7 | 101 ± 14 | ¹²⁶ Ba → ¹²⁶ Ce | | 365.1 ± 0.6 | 1.1 ± 0.5 | 85 ± 17 | A = 126 | | 382.4 ± 0.7 | 1.6 ± 0.6 | 89 ± 14 | A = 126 | | 385.7 ± 0.3 | 5.1 ± 0.9 | 81 ± 12 | A = 126 | | 388.7 ± 0.3 | 100 | 99 ± 2 | $^{126}\text{Cs} \to ^{126}\text{X}$ | | 400.5 ± 0.3 | 2.4 ± 0.5 | 90 ± 20 | A = 126 | | 415.1 ± 0.3 | 1.6 ± 0.5 | 130 ± 30 | A = 126 | | 434.1 ± 0.3 | 2.6 ± 0.5 | 100 ± 20 | A = 126 | | 441.8 ± 0.4 | 1.1 ± 0.3 | 150 ± 60 | A = 126 | | 457.3 ± 0.3 | 2.1 ± 0.5 | 100 ± 30 | A = 126 | | 490.8 ± 0.3 | 12±2 | 100 ± 10 | $^{126}\text{Cs} \rightarrow ^{126}\text{X}$ | | 511.1 ± 0.3 | 350 ± 18 | 102 ± 3 | annihilation li | | 539.0 ± 0.3 | 4.4 ± 0.8 | 83 ± 14 | $^{126}\text{Cs} \rightarrow ^{126}\text{X}$ | | 542.9 ± 0.5 | 1.8 ± 0.6 | 90 ± 30 | A = 126 | | 561.2 ± 0.5 | 1.0 ± 0.4 | 70 ± 30 | $^{126}\text{Ba} \rightarrow ^{126}\text{C}$ | | 583.9 ± 0.9 | 0.9 ± 0.5 | 100 ± 19 | A = 126 | | 610.3 ± 0.5 | 1.8 ± 0.6 | 93 ± 12 | ¹²⁶ Ba → ¹²⁶ C | | 641.4 ± 0.4 | 2.5 ± 0.6 | 82 ± 18 | ¹²⁶ Ba → ¹²⁶ C | | 682.1 ± 0.3 | 10.7 ± 1.0 | 96±8 | ¹²⁶ Ba → ¹²⁶ C | | 692.3 ± 0.5 | 1.7 ± 0.4 | 80 ± 20 | ¹²⁶ Ba → ¹²⁶ C | | 710.4 ± 0.3 | 3.6 ± 0.6 | 90 ± 20 | $^{126}\text{Cs} \rightarrow ^{126}\text{X}$ | | 782.8 ± 0.5 | 1.7 ± 0.6 | 87 ± 16 | ¹²⁶ Ba → ¹²⁶ C | | 841.9 ± 0.5 | 3.8 ± 0.8 | 100 ± 20 | ¹²⁶ Ba → ¹²⁶ C | | 864.3 ± 0.4 | 3.1 ± 0.5 | 90 ± 20 | $^{126}\text{Ba} \rightarrow ^{126}\text{C}$ | | 880.4 ± 0.5 | 3.5 ± 0.6 | 90 ± 19 | $^{126}\text{Cs} \rightarrow ^{126}\text{X}$ | | 926.0 ± 0.6 | 12.8 ± 1.5 | 85 <u>+</u> 9 | ¹²⁶ Cs → ¹²⁶ Xe | | 977.5 ± 0.5 | 5.2 ± 0.7 | 104 ± 15 | ¹²⁶ Ba → ¹²⁶ Cs | | 984.4 ± 0.5 | 2.1 ± 0.4 | 120 ± 30 | A = 126 | TABLE I (continued) | Energy
keV | Intensity of gamma rays (arbitrary units) | Half-life
min | Identification | |------------------|---|------------------|---| | 993.8 ± 0.5 | 5.4±0.7 | 95±14 | ¹²⁶ Ba → ¹²⁶ Cs | | 1033.7 ± 0.8 | 0.9 ± 0.6 | 80 ± 20 | A = 126 | | 1035.9 ± 0.5 | 3.5 ± 0.7 | 100 ± 20 | ¹²⁶ Ba → ¹²⁶ Cs | | 1052.6 ± 0.6 | 2.8 ± 0.6 | 100 ± 20 | ¹²⁶ Ba → ¹²⁶ Cs | | 1059.4 ± 0.9 | < 1 | 100 ± 40 | A = 126 | | 1098.6 ± 0.5 | 1.8±0.5 | 98 ± 8 | A = 126 | | 1211.0 ± 0.6 | 3.9 ± 0.8 | 90 ± 20 | ¹²⁶ Ba → ¹²⁶ Cs | | 1234.7 ± 0.6 | 4.7 ± 0.7 | 110 ± 20 | ¹²⁶ Ba → ¹²⁶ Cs | | 1242.9 ± 0.6 | 2.7 ± 0.5 | 97 ± 19 | ¹²⁶ Ba → ¹²⁶ Cs | | 1293.3 ± 0.7 | 9.6 ± 1.5 | 92 ± 8 | 126Ba → 126Cs | | 1678.2 ± 0.5 | 1.8 ± 0.6 | 84 ± 6 | A = 126 | | 1734.7 ± 1.0 | 1.4 ± 0.6 | 90 ± 17 | $^{126}\text{Cs} \rightarrow ^{126}\text{Xe}$ | | 2064.6 ± 1.6 | 0.8 ± 0.4 | 120 ± 20 | $^{126}\text{Cs} \rightarrow ^{126}\text{Xe}$ | cannot be unambiguously assigned to the $^{126}\text{Ba} \rightarrow ^{126}\text{Cs}$ decay but which have the half-life of the investigated chain and fit well into the decay scheme, are represented by the dashed arrows. The levels whose existence is not well established are marked by dashed lines. Fig. 2. Proposed level scheme of 126Cs We should like to express our gratitude to Professor G. N. Flerov for his help and kind interest in our work. Our thanks are also due to Mrs E. Gostyńska, Mr T. Kempisty and Mr J. Ossowski for their help in the course of the experiment and data analysis. #### REFERENCES - [1] L. S. Kisslinger, R. A. Sorensen, Rev. Mod. Phys., 35, 853 (1963). - [2] K. Kumar, M. Baranger, Phys. Rev. Letters, 12, 73 (1964). - [3] D. A. Arseniev, A. Sobiczewski, V. G. Soloviev, Nuclear Phys., A126, 15 (1969). - [4] J. E. Clarkson, R. M. Diamond, F. S. Stephens, I. Perlman, Nuclear Phys., A93, 272 (1967); D. Ward, R. M. Diamond, F. S. Stephens, Nuclear Phys., A117, 309 (1968). - [5] I. Bergström, C. J. Herrlander, A. Kerek, A. Luukko, Nuclear Phys., A123, 99 (1969). - [6] G. Albouy, J. M. Lagrange, M. Pautrat, N. Poffe, H. Sergolle, J. Teillac, I. Vanhorenbeeck, Proceedings of the International Conference on Nuclear Reactions Induced by Heavy Ions, Heidelberg, July 1969. - [7] K. F. Alexander, W. Neubert, H. Rotter, S. Chojnacki, Ch. Droste, T. Morek, Nuclear Phys., A133, 77 (1969); Ch. Droste, W. Neubert, S. Chojnacki, T. Morek, K. F. Aleksander, Z. Wilhelmi, Nuclear Phys., A192, 595 (1972). - [8] J. M. D'Auria, Ph.D. Thesis, Yale University 1967. - [9] M. J. Kalkstein, J. M. Hollander, Phys. Rev., 96, 730 (1954). - [10] Z. W. Grabowski, K. S. Krane, R. M. Steffen, Phys. Rev., C3, 1649 (1971). - [11] M. G. Betigeri, H. Morinaga, Nuclear Phys., A95, 176 (1967). - [12] M. Sakai, T. Yamazaki, H. Ejiri, Nuclear Phys., 74, 81 (1965). - [13] W. Neubert, Nuclear Instrum. Methods, 93, 473 (1971). - [14] N. Zeldes, A. Grill, A. Simievic, K. Danske Vidensk. Selsk. Mat.-Fys. Skr., 3, No 5 (1967). - [15] J. M. Lagrange, G. Albouy, L. Marcus, M. Pautrat, H. Sergolle, O. Rahmouni, Ann. Phys., 2, 141 (1967).