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MANY-PARTICLE INCLUSIVE CROSS-SECTIONS AND
CORRELATIONS IN HADRONIC PRODUCTION PROCESSES AT
VERY HIGH ENERGY*

By Z. KoBa
The Niels Bohr Institute, University of Copenhagen**
( Received September 9, 1972)

Theoretjcal studies on many-particle inclusive cross-sections and correlations in hadronic
collision are reviewed. General properties of cross-sections and correlations, fluid analogy,
kinematical constraints (sum rules), coexistence of two mechanisms, and asymptotic predic-
tions of correlations in various models are discussed.

(These contents are summaries, paraphrases or illustrations of already known results,
except the statement 2 at the end of Section 8 and the simple derivation of sum rules in
Section 9, which are so far not found, to my knowledge, in the existing literature or circulated
preprints.)

Introduction

Even within the framework of hadronic multiparticle production processes, the
word “correlation” can be used in various ways. For instance, the well-known properties
of transverse momenta of secondary particles can be regarded as correlations between
the incident and secondary momenta.

In this report, however, we limit ourselves only to correlations in many particle in-
clusive cross-sections. Typical questions we are going to ask are thus the following: Sup-
pose we have detected a particle with momentum 1; What is, then, our expectation of
finding another particle with momentum p’ in the same event? How much is this expecta-
tion different from the case where we have not made the first detection? The first question

concerns essentially the two particle distribution, and the second essentially the two part-
icle correlation.

* This article was originally prepared as a material for the rapporteur’s talk at the Third International
Colloguium on Multiparticle Reactions, held on June 20-24, 1972, at Zakopane, Poland. This colloquium
was dedicated to the memory of our late colleagues Dr O. Czyzewski and Dr L. Michejda. So is the present
report.

** Address: The Niels Bohr Institute, University of Copenhagen, Copenhagen @, Blegdamsvej 17,
Denmark.
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In general, such a correlation presents an alternative description of many particle
distribution. The description in terms of correlations will be often — but not always —
suitable for extracting new features included in many-particle distributions and is expected
to reveal dynamical properties of the production process more clearly.

The subjects we plan to cover in this report are:

A. Cross-sections, correlations, and fluid analogy?!

1. * General view

Generating functional

Correlations

Generating function and multiplicity distribution
Associated multiplicity and semi-inclusive cross-sections
Fluid analogy

SAINAEE o

B. Kinematical constraints

7. Direct derivation

8. * Energy conservation for correlation functions
9. Derivation from generating functional

10. Leading particles and clustering

C. Coexistence of two (or more) mechanisms

11. * Joint correlation
12. * Some examples
13. Separation of diffraction and pionization

D. Specific predictions of various models

14. * Asymptotic behaviour of integrated correlation
15. * Longitudinal correlations

16. * Uncorrelated jet model

17. * Short range correlation models

18. * Diffractive excitation model

Appendices

Table I shows an incomplete list of recent reviews and articles of general character
which treat problems of correlations. The present report owes very much to the latest
three reviews by Caneschi?, by Peccei? and by Chan3.

* In the talk at the Zakopane meeting, contents of the sections with*, together with a summary of
contributed, theoretical works concerning analyses and interpretations of experimental data, were presented.
See the Proceedings of the colloquium to be published very soon.

21 am grateful to Dr L. Caneschi for showing me these articles.

31 am grateful to Dr H. Miettinen for showing me this article.



97

TABLE 1
K. Zalewski [1] (1970)
L. Van Hove [2] (1971) | presented at the colloquia of this series
E. L. Berger [3] (1971)
0. Czyzewski [4] (1971)
K. G. Wilson [5] (1970)
D. Horn [6] (1971)
L. Van Hove [7] (1971)
C. E. De Tar [8] (1971)

H. D. Abarbanel [9] (1971)

A. H. Mueller [10] (1971)

J. D. Bjorken [11] (1971)

A. P. Bassetto, M. Toller, L. Sertorio [12] (1971)

E. Predazzi, G. Yeneziano [13] (1971)

W. R. Frazer, L. Ingber, C. H. Mehta, C. H. Poon, D. Silverman, K. Stowe, P. D. Ting,
H. J. Yesian [14] (1972)

L. S. Brown [15] (1972)

R. C. Hwa [16] 1972)

H. T. Nieh, J. M. Wang [17] (1972)

A. Bialas, K. Fiatkowski, R. Wit, K. Zalewski [18] (1972)

L. Caneschi [19] (1972)
R. D. Peccei [20] (1972)
Chan H. M. [21] (1972)

A. CROSS-SECTIONS, CORRELATIONS, AND FLUID ANALOGY
1. General view

In order to describe multiparticle production processes appropriately, we need to
introduce a number of quantities, and various sets of notation are currently used by
various authors. To avoid confusion, let us first of all specify some of notations adopted
in this report. We take firstly the case of a single kind of neutral scalar particles. Extension
to more general cases will be made later when it becomes necessary.

Inclusive cross-sections, normalized and invariant form, are also called distribution
functions* f®

..., d¥e

iuel g -
o dsl-;l---dsi;k =f(k)(171’ vens Pi)s

k=1,2,.. .1
with
o = (p*+m?)t. (1.2)

The normalization factor ¢ represents the sum (and integral) of all the cross-sections
we are concerned with. (It can be taken equal to the cross-section, or the inelastic total

4 Som? people call this k-particle density or spectrum, reserving the word “distribution function”
for the exclusive k-particle cross-section.
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cross-section, or the sum of a special set of cross-sections, depending on the problem
we are interested in.) It is sometimes convenient to define also

O =1, (1.3)
Integral of the distribution function over the whole phase space is denoted by F®
(k) d°p (k)
T (P15 - ,pk) ——— = F". 1.4
-y

These integrals are, as is well known, related to the moments of multiplicity distribution
F® = (a(n=1D...(n—=k+1)D. (1.5

Correlations ¢® are defined [5], [10], [13] following the pattern of the cluster
expansion [22], [23], where the k-th equation defines ¢® in terms of o), ... g*— "
and f®.

fPp) = oM(py), (1.62)
F 31, p2) = 0P () +0 P b1, p2), (1.6b)
S Apys pas p3) = 0P V(e (p3) +
+ Y ep)e®(p2s p3)+0P(pys P2y P3)- (1.6¢)

perm

In general

SOy )= Y X 0P 0P() 00)-.eP()

{m} perm
my factors my factors
k)
...... oG, ..)
my factors
k=1,2,.. (1.6)

where m; is zero or positive integer and the set of integers {m,} satisfies

M»

lm, = k. (1‘7)

=1

il

Also we make the convention
0 .. Q. (1.8)

Integrals of the correlation functions cver the phase space we denote by R®

- . dp,.. .4
j f«e"‘-’m, npy Pt P g (1.9
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These can be expressed, through (1.6) and (1.5), in terms of the moments of multiplicity
distribution. For instance,

RM = FY = (n), (1.10a)
R® = (n(n—1))—<n)* =
= D*—(n), (1.10b)
R® = {n(n—1) (n—2)> =3 <n(n—1)) <ny+2<n)® =
= {(n—=<n))*>—3D*+2{n, (1.10¢)
with
D?* = {(n—<m))*)> = {n*)—<(n)>. (1.11)

So far with the notation. We shall now enumerate the quantities we have to do with
in multiparticle production. (Here we are limiting ourselves to the simplest, unrealistic
case of a single kind of neutral scalar particles.)

i) exclusive differential cross-sections
i} semi-inclusive cross-sections®
iif)} topological cross-sections®
iv) total cross-section
v) inclusive differential cross-sections
vi) partially integrated inclusive cross-sections, which are related to the moments
of associated multiplicities [19]7

vii) full integral of inclusive cross-sections, which are related to the moments of

multiplicity distribution

viii) correlation functions

ix) partially integrated correlation functions

x) full integrals of correlation functions

These quantities are of course connected with each other through certain relations,
some of which are fairly complicated. It is thus desirable to formulate a unifying scheme
which can summarize these kinematical relations into a compact form.

3 Originally this term was introduced in a realistic case of hydrogen bubble chamber experiment,
where both charged and neutral particles are present in the final state and the neutral one escape detec-
tion [24]. In the idealized simple case being discussed here, however, the semi-inclusive cross-section describes
the case, where a part of the final particles (for instance, j out of k final particles) are measured precisely
so that their momenta are specified, while the rest ((k—/j) out of k final particles) are only known to be
present, i.e., their number is definite, but their momenta are not specified. In other words, the semi-
-inclusive cross-sections here are partially integrated exclusive cross-sections.

¢ A similar argument as in the foregoing footnote applies here too. In our idealized case, the topolo-
gical cross-sections represent full integrals of exclusive cross-sections of a specified number of particles.
Some people call them partial cross-sections.

7 See Section 5 for more details.
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An important step towards this direction was taken by Mueller [10] when he intro-
duced the generating function, which combines the topological cross-sections, the moments
of multiplicity distribution and the full integrals of correlation functions into a single
expression®. Moreover, this generating function has a close formal resemblance to the
grand partition function of statistical mechanics® and leads to a more precise and explicit
form of the fluid analogy, which is often utilized in treating inclusive cross-sections and
correlations.

A further generalization, so as to include the more differential cross-sections and cor-
relations as well, has been achieved by constructing a generating functional [15], [27]-[29].
This includes, as a special case, the generating function of Mueller, and also can be utilized
in order to derive kinematical constraints in a quite general way!® [13], [15]. It should
be remarked that such a technique has been known to statistical physicists since a long
time ago: A generating functional was introduced by Bogolubov in 1945 and applied to
the molecular distribution function [30]. Thus the fluid analogy is effective on this level, too.

i)

GENER:\TING}

\FUNCTIONAL \

G Functien for : H ’
semi-inclusive : H

cross sections

~

Inclusive weee{ Correlations
cross sections ipartially
partially ]intepﬁated
integrated -
(Assoclated
multiplicity)

Exclusive
cross sections

Inclusive svreeen| Coppelations

cross sections

inclusive
sections

Topolioglcal
cross sections

Grand partition S
function

Fig. 1

Fig. 1 summarizes logical connections of the generating functional and all the other
quantities mentioned in this Section. In the following Sections 2-6 we shall discuss them
in more details.

8 Similar relations were discussed in somewhat less explicit forms by other authors too [25], [26].

® This was already referred to in Ref. [10], but with careful reservation. Later it has been pursued
further and has led to some interesting results. See Sections 6, 13.

10 See Section 9.
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2. Generating functional
2.1. Definition

In the case of a single kind of neutral scalar particles the generating functional (here-
after abridged as GF) can be defined by [27]

- a3p . .
Fls; h(p)] = <: exp { f——~ N(p)h(p)}: > .1

2]

where

s = CMS energy squared,
h(p) = variable function defined over 7,
N(i;) is the number density operator with the usual commutation relations, namely
NG) = d)ach)
[a(p), a*(p")] = w6 (p—p"),
[a(). a(@)] = [4'(p), a'(p)] = O 2.2)

and : denotes normal product.
The average symbol means

A = Ly AlyD[{wd vy (2.3)
with
lys > = (S— D |¥initiar)-

In the general case we introduce a discrete suffix §, which specifies different kinds of
particles, helicities, charges, erc., and generalize (2.1) by the following procedure

h(p) = hy(p), N(p) = N4(p),

3 3
JL&ZJQ, 2.4)
w w
B

Also the final state will be in general a statistical mixture; then (2.3) is to be replaced by

{4y = Tr(e,4)/Tr(e,)
with
g = Z |95, DWW 1. 2.5)
J

The definition (2.1) can be also expressed without the normal product symbol (see
Appendix A)

- dp . -
F[s; h(p)] = <eXp [ j - Np)n {1 +h(p)}]> , (2.6)
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which is, crudely speaking, (JI{l +h(§)}m’-’3) where IT stands for a continuously multiple
product, and reveals more explicitly its formal analogy to the grand partition function.
This form is also useful when deriving kinematical constraints (see Section 9).

2.2. Exclusive and inclusive cross-sections

The GF introduced above has the following property. (For proof see Appendix B.)

a) When expanded in the power series of {14A(p)}, the expansion coefficients give
normalized exclusive cross-sections.

b) When expanded in the power series of h(p), the expansion coefficients give nor-
malized inclusive cross-sections, i. e., distribution functions.

That is to say

d €XC
Flss W3] ——Z |- | ﬂ{1+h<p,>}d PEECY)
k
d3k lncl - g
)7 f j ﬂh(pj)dﬂaj, (2.8)
=1
5 3
1 L oo~ - . dp;
- zaj...Jf“"(pl, ..‘,pk)”h(p,- ;}’i (2.9)
% j=1

d3k .
a_zk'j jd v d*p,..d°p,. (2.10)

In (2.7) and (2.10) the definition of the exclusive cross-section includes a four-dimensional
delta-function of the energy-momentum conservation.

The expansion coefficients, i. e., the normalized cross-sections can be obtained by the
usual procedure,

with

1 d¥%e, F 511

o & d%  Shpy). () lucir - 211
and

1 d¥o,0q S'F

e = (2.12)

¢ d’py...d°p,  Sh(p,)...0h(p,) h(p)=0.

Thus the GF includes complete information on cross-sections, and also establishes mutual
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relations between inclusive and exclusive cross-sections. They are namely given by [27, 28]

e Z lj J S d’p, d’p 2.13
Fordn. - LT @ oo, gy, C P P (213)
=0
)
a* O'excl _ (_"_11J‘ j ds(k+l)o-incl FErs s
ap, Dy d Pk B I d351 daﬁkd3ﬁk+1 d35k+l Prvt o @ Pt
(2.14)

The equation (2.13) is the usual definition of inclusive cross-sections. The physical meaning
of the inverse relation (2.14) is as follows. Denoting the total 4-momentum by P,

d**o . a**6 0 k :
e = s if p; =P, (2.14a)
d®p,..d%, d&p,..d°p, ,-; ’
= ( I)IJ‘ j ds(k+l) et g d35k+1"'d35k+1
&py ... @pdPrsy - PP

if z p; # P. (2.14b)
ji=1

That is to say, the inclusive cross-section has in general an exclusive component in it and,
when the measured final particles saturate the energy-momentum conservation, only this
exclusive component (boundary value) survives, while in the case where measured 4-mo-
menta are not equal to the total, the alternating series of the r. h. s. sums up to zero!l.

When there are more than two kinds of particles, one can easily define a partially
inclusive and partially exclusive cross-sections by putting some of the A( p) equal to —1
and others equal to O after functional differentiation of GF.

3. Correlations

Correlations have been defined in (1.6). It is based on the fluid analogy, the correla-
tion functions having the same property as the cluster functions when correlations are of
short range. (See Refs [10], [22], [23].) Thus this definition may not always be the most
suitable one for describing actual situation; but we can at least take it as a working defini-
tion and explore its consequences.

It is convenient to construct a generating functional R such that its expansion coef-
ficients in power series of A(p) yield the correlation functions ¢®

k
- 1 - = TV - d%;
R[s; h(p)] = Z EJ [Q‘k’(pl, cees D) | I {h(pj) wp"} (3.1
v i=1 J

11 For more details on this point, see the note added in proof of Ref. [28].
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or
&R
Wy T T e
Sh(p,)...0h(py) |n)=o.

Then the whole set of relations (1.6), defining ¢® in terms of /¥ or vice versa, can be
summarized as a simple relation between the two functionals

F[s; (p)] = exp {R[s: h(P)]}. (3.3)
One can easily verify, by equating the expansion coefficients of both sides in powers
of h(p), that (1.6) is reproduced. The well-known fact that the choice of normalization
factor ¢ is very essential for evaluation of correlations is reflected in the non-linearity of
the above relation (3.3).
Further, one sees immediately from (3.3) that at a finite energy an infinite number o™
will be non-vanishing. This is because the distribution function f* vanishes for k > N,
where N = ./s/m represents the maximal number of final particles allowed by energy-
-momentum conservation, thus making F a “polynomial” in A(p), which requires that R
should be an “infinite series” in A(p) since the relation (3.3) is transcendental. (This will be
verified by a more precise argument in Section 8.)

0 Py, D) = 4. (3.2)

4. Generating function and multiplicity distribution

The GF in its full generality represents a complete information of cross-section and
correlations, but when we are interested in less detailed aspects of the many-body final
states, we can reduce the GF into a correspondingly simplified form. For example, we put
hg ( P) = 0 when we do not detect particles of the kind B, (this is often the case with neutral
particles), or we put h,,z(;) = hﬁg(};) when we not distinguish between particles of the kind
B, and those of B;.

The most global features of many-particle distributions and correlations are ob-
tained from the multiplicity distribution. For the purpose of studying them, we put

Kp)—h @.1)
in the GF, (2.7), and get the generating function of Mueller [10]

F[s; h(p)] = F(s; b) = Y. (1 +h)a,fo =

k
= E i F® =
k!
hk
= exp Z o R®. 4.2)

Here F and R™ are the integrals of distribution and correlation functions, respectively,
as have been defined by (1.4) and (1.9), while o, denotes the cross-section of producing &
particles *? (in our simple case it is the “topological cross-section).

2 Sometimes it is called *“‘partial cross-section”.
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It can be readily checked that (4.2) reproduces (1.5) and the integrals of (1.6), i. e.,
F® — R,
F® = R2 L g

F(3) o R(1)3 +3R(1)R(2)+R(3),
...... (4.3)

and consequently (1.10).

5. Associated multiplicity and semi-inclusive cross-sections

The multiplicity distribution has thus given us the total integrals of many-particle
distributions and correlations. Further, an insight into their structure can be obtained
from the distribution of the “associated multiplicity” which is related to their partial
integrals [17}, [31], [32], [18]- The associated multiplicity ns(p,) of particle B means
the number of particle B in an event where a particle 4 of momentum p, has been de-
tected. When 4 and B are the same kind of particles, we replace ng(p ) by (n—1) (p) since
in this case we have already counted one by the first detection.

By the definition of distribution functions, the average of associated multiplicity is
given by

~

1 B
npz. = fmjfﬁ)(h,h) C::B, (5.1)
or
1 -, dp
{n—1>; = m[/"’(p,p )—- (5.2)

If there is no correlation between particles 4 and B, then the two-particle distribution
function factorizes

[i8P 4 P = £(P.Of5(Ps) 53)
and one gets
{npyz, = {np), 5.4
or
{n—1p7 = <ny, (5.5)

that is to say, the average associated muitiplicity will be the same as the (unconditional)
average multiplicity.
In general, however, the relation (5.4) or (5.5) will not hold, and the difference of
I h.s. fromr. h. s. gives, when multiplied by £{( ), the partial integral of correlation o
1 - - dp
ngds, —<ngd = —v=— | 02AP s £, 5.6
< B>pA < B> f;l)(PA),(QAH(pA pB) P ( )

B
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One can go further and evaluate partial integrals of higher distribution and correla-
tion functions from the moments of associated multiplicity distribution. In order to derive
general formulas, we can utilize the GF for semi-inclusive cross-sections [28], [33], [34].

The semi-inclusive cross-sections are defined!®, for instance, as follows:

d’a,

n e for a+b — C(p)+C+— +C+(anything not C). (5.7)
P

n

That is to say, we measure a particle C with momentum p and, besides, we count the
number n of the particle C.
After once functionally differentiating, we put in GF

h(p) > h
and get
oF | ! E (A +hy o, (5.8)
W 37 = — n—= .
Oh(p) [wp=n © — d*plw

from the exclusive expansion (1.7), and also

Bt .. d%,..d%,
= (—n_—f)‘j Jf( Py D - )_w_z_;_ 5.9
ha 2.~- n

from the inclusive expansion (1.9).
Comparing the expansion coefficients of (5.8) and (5.9) in powers of A, we get firstly

1 - d3 (=

n=1

which shows that the inclusive cross-section is subdivided into semi-inclusive cross-

13 The notation used in Refs [24, [28] is related to the one in (5.7), which is used in Ref. [32], in the
following way

d30,,

g ™(P)w = n - e

dp d3cy
j\g(n)(p) = n,f d3: d*p = oy,
p

The normalization is given by

respectively.



107

-sections according to the numbers of the particle C. Secondly, we see from the linear term
inh

N =t 5 = = )3 P) =
c " nd3§/a) B VI Ap) =
n=2
- . dp
=Jf(2)(P,P2) Pz (5.11)
w3

which reproduces (5.2). Further comparison yields the general formula

0

PN (k) (ke D)= 1y -0
— n-— n— —1)n 55— =
¢ " &’plw
n=k+1
= {(n—K)...(n— 1> V(p) =
- - - _d%p,..d%p
= j _[f(kﬂ)(P,Pz, Py ) ozl Pert (5.12)
Wj...Wryq

Generalization to cases where two or more kinds of particles are present [32] is
straightforward. For instance, we can consider a slightly different type of semi-inclusive
cross-section

3ong

d -
n, oy for a+b — A(p,)+B+...+B-+(anything not B). (5.13)
ng

Correspondingly, we construct the following generating function

SF[s; h (), ha(p)]
Sho(P.a)

Equating its exclusive expansions, we get

naipp=0 = Fs3 15 00). (5.14)

4
hp(p)=h

A

F(s: h: .0 (1 +hy A0
shipa) = 1" T =
’ Pa 71,4 d?’PA/wA

ng=0
h* - . - _d%,.d%,
= g = j ...ffﬁ’;f..‘;(p,,,pz,...,le) —t (5.15)
s k! _7‘_, Wy Wp iy

From (5.15) we obtain firstly, putting A = 0,

K

3
Z ny —f»i— = fOP.), (5.16)
— d PA/(UA
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and further, putting & = 0 after differentiation, the relation (5.1) and its generalization,

{(ng—k+1)..(ng—Dng;, ;l){;,a) ==

o - - d%p,..d%
- j f GG B oo P ) S22 Pl (5.07)

—_— Wa.. Wyt q
k

It is also not difficult to extend the semi-inclusive cross-sections (5.7), (5.13) to cases
where momenta of two or more particles are measured. Then a problem concerning such
many-particle semi-inclusive cross-sections arises: how to define “correlations” among
these particles consistently with the definition of correlations in inclusive cross-sections.
This is not trivial because of non-linearity of the definition of correlation. A proposal has
been made to answer this question [35]. (See Appendix C.)

6. Fluid analogy

Feynman’s fluid analogy has been the essential background of introducing correla-
tions in inclusive many-particle cross-sections [5]. On the basis of Mueller’s generating
function and its cluster-function-like expansion [10], Bjorken [11] has made a further
step of taking the “thermodynamical limit” and in this way he has given a more explicit
formulation of the fluid analogy, which can incorporate specific features of a given model
as an ‘“‘equation of state”. Below we sketch this argument.

Here it is more convenient to regard the generating function (4.2) as a function of

z=1+h 6.1)
am?y
Y = 2sinh ™ (Sf"i'fl) ~n—, (6.2)
m m

instead of A and s. Thus one writes

F(Y;z) = Z z* (:‘((;:)) . (6.3)

The formal analogy to a system in statistical mechanics is:
Y <» volume,
z«> fugacity (i. e. exp (—p/kT), with u being the chemical potential),
F(Y, z) &> grand partition function.
Now the assumption of short range correlation requires that all the correlation func-
tions, when they are averaged over transverse momenta and are expressed as a function
of longitudinal rapidities,

W;+ Py , 6.4
@;=Pjp

should have the following property

Q(k)(yls LERY ] yk) =~ 0
if |y;—y;l>Aforany 1 <i<j<k, (6.5)
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A being a constant (usually taken to be ~2). This implies

Y Y
lim R(k) = ].imj vea j‘ Q(k)(yl, veey yk)dyl“'dykz
Y- ] /]

= a®Y +b®, (6.6)

where a®, b are constants. The relation (6.6) can be understood if one changes inte-
gration variables to the CM coordinate and (k—1) relative coordinates in the rapidity space,
since only the integration over the CM coordinate will yield a value proportional to ¥,
all others giving some finite (i. e., Y-independent) values.
As a consequence of (6.6), one getsl?
lim R(Y; z) = p(2)Y +w(z2). 6.7)

Y- o
Here the analogy is
R(Y, z) = In F(Y, z) <> free energy,
p(2) <> pressure,

w(z2) <> surface tension,

and the relation (6.7) expresses existence of the “thermodynamical limit”.
One can also derive the “density” p defined by'?

o1
= lim z — — R(Y, z) =
o(2) Yg?ozazy (v,z)

(6.8)

and eliminating the “fugacity” z, obtain a relation between “pressure” and “density”,
i. e., an “equation of state”.

Thus the conclusion is that when a multiplicity distribution is specified as a function
of energy in such a way as to satisfy (6.7), for which the short range correlation is a suf-
ficient condition, there is a corresponding “fluid”” characterized by a ‘“‘pressure-fugacity”
relation or by a “pressure-density” relation (“equation of state”).

As a simple example [11] let us take the Poisson distribution with the average multi-
plicity proportional to In s = ¥ (e. g. Chew-Pignotti model),

9 _ i (8Y) 6.9
S . (6.9)

This gives
F(Y;2) =expgY(z—1), R(Y, z) = g¥(z—-1), (6.10)

14 The letter p is used to emphasize the analogy to *“‘pressure”. I hope there will be no confusion with
momentum.

15 The letter g is used to emphasize the analogy to ““density”, hoping that there will be no confusion
with the correlation functions.
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and consequently, from (6.7), (6.8),
p(z) = g(z—1), (6.11)
o(2) = gz. 6.12)
Thus the “equation of state® is
p =08
At the actual value z=1, one gets p =0, g = g.

Another example will be discussed in Section 13. For further applications and examples,
see Refs [117], [36], [33], [34].

B. KINEMATICAL CONSTRAINTS
7. Direct derivation [37], [38]

When discussing properties of many particle distribution and correlation function,
it is very important to separate, as far as possible, “kinematical effects” due to conserva-
tion laws from genuine dynamical features.

In this section simple direct derivation of such kinematical constraints (“sum rules™)
is described. Here we are concerned with additively conserved quantities (e. g., any com-
ponent of fourmomentum, electric charge, baryon number, hypercharge, efc.) (A more
general derivation with the help of GF, which will hopefully allow an extension to more
complicated cases of isospin, is given in Section 9.) Usually the particles of final state are
described as eigenstates of such an additive quantity g. Then an obvious constraint on the
cxclusive cross-section in that the latter should vanish unless the sum of g; (eigenvalue
of g for the particle j) is equal to its initial value Q,

Q=>4 (7.1)

Its implication for inclusive cross-sections is less straightforward, but can be also under-
stood in a fairly simple way.

Take, for example, the case of charge conservation and for simplicity assume that the
final particles carry only *1 or O charge. Then for each single collision we have

Q =N, —n_, (7‘2)

where n. and n- are the number of positive and negative charge particles, respectively.
After averaging over the whole set of events,

0 =<(n,>~<n.y =
L d%p .. dp

- f O =L - Jf‘-”(p)—ﬁ ; (7.3)
w w

;”(13) denotes the distribution function of positive and negative particles, respectively.
This is the first constraint.
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Next consider the case where we have detected a positively charged particle with
momentum p;. Then we count the remaining plus and minus charge. Evidently

Q-1=n,~D)~n_. (7.4)

We collect all those events where a positive particle has momentum p. and take the aver-
age over this subset of events.

-1 =<Ln,—1);, —<n_>z, (1.5)

where {(n.—1>3 and {n-);, are the average associated multiplicities discussed in Sec-
tion 5, i e.,
&7,

<n+—'1>;+ fu;( +)j ~(+-23— *+’ +) + s
d p_
n_)3, = (1) jfi”(!’{-sp ) (7.6)
( +)
Thus we get the second constraint relation
Q@-0f"@,) =
a’p’, - - dp_
f RN ffifl(ph D (7.7)
+ -

The same argument can be repeated to derive similar charge conservation constraint
connecting f* to a single integral of f*1

(Q z QJ) ;:‘;z qn(ph :A;n) =

E n - ingiig d3§n
Qn+lj ( +lq)"qn+1(p1a -~-=pmpn+1) +I' (78)
Dy +1

n+1= %

We can express (7.3), (7.7), (7.8) also in terms of correlation functions. Simply by
inserting the definition of o®, we get

.. dp .. d%
Q= f oM (p) — - J oM (p) —, (7.9)
o0 @
.. dp d’p’
-0 Ap) = Je‘ﬂ(p,p’)% J 0P (p.P) af , (7.10)

in general,

-

k
(= X 49eq alPis P =
e

. %
= E Je;’i*;lq(pl, ,pk,p)?;. (7.11)

9=+
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In this set of relations for correlation functions, the initial value Q appears in the first
relation (7.9) but not in the second and further relations. This is in sharp distinction'®
from the case of constraints on f™.

Suppose, for a moment, that the correlation ¢, and ¢?) are short range'?, i.e.,
they are non-vanishing only within a limited region

P e 7.12)

Then equation (7.10) tells us that when we detect a positive charge with momentum p,
the two functions

0?L(p. ") (7.13)

o= 0G5

-, + + s ) -

o(p) 0V(p)

which are the analogues to integrands of associated multiplicity (5.2), (5.1), are distributed

in this small region is such a way that when integrated over p’, the total charge just cancels
the positive charge at p. (See Fig. 2.)

So far we have discussed the case of charge conservation. The argument has been

very simple owing to the fact that the value of charge is independent of momentum, as

Fig. 2

is the case also with other “internal” additive quantum numbers. In the case of energy-
-momentum conservation, however, we need a slight generalization of the foregoing argu-
ments. For instance, we have, in the case of a single kind of particles, for each event

Pl =3 p" (7.14)
and the average over all the events yields the first constraint,
.. dp
Pl = fp“f“’(p)——e (7.15)
J w

and so on.

16 When Q = 0, of course, the constraints on f® and ¢ are formally identical.
17 For a realistic definition of short range correlations, see Section 17.
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For one conserved quantity, there exists one set of kinematical constraints for distri-
bution functions, of the general form [38-42]

- .. d°p
0= E | f 4B =
B

{o- _;1 q/}j(;j)}flg:‘.)..ﬁn(;h s ;n) =

ity - . dp
= Z Jqﬁ(p)fﬁ(x.jﬁln)ﬁ(.pl9 --'»Pn’P) "; s
B
=1 (1.16)

or equivalently one set for correlation functions,

-

. d?
Q= E fqﬁ(p)eé"(p)——p,
J w
B

{— 'Zl 481'(_5})}9;;?...3" _.19 ‘-'aﬁn) =
j=

\ . . Vo d3:5
= Z fqp(p)efgﬁf.}’nﬁ(pl, ros P P) = (7.17)
B

8. Energy conservation for correlation functions

A particularly interesting role is played by the set of energy-conservation constraints
on correlation functions. For simplicity we take again the case of a single kind of particles.
Then the constraints (sum rules) are the following (see (7.17))

Vs = [ oM (pHdp, (8.1)
—we™(p) = | o¥p, p)dp', (8.2)
k
(= Y 0" @ 2 = [ “ by, s oo PP (8.3)

i=1

An important point, which distinguishes this set of constraints from all others, is that
the coefficient on the Lh.s. of (8.2), (8.3) never vanishes, so that we can always “solve”
it and get

k
0 p1s b)) = (= X @) [ 0“ Vs, o P PP (8.4)

i=1
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This should be compared with the corresponding case of distribution function (inclusive
cross-section)

k

f(k)(;b -nyik) = (\/:Y - '21 a:’j)-1 ,‘.f(k+’)(;1s -'~95k)5,)d3;,+

j=
k

+E8( /s — ZI ;). (8.5)
j=
Here the coefficient & (which is essentially the normalized exclusive cross-section of &
particle production) us not determined by f**,
The key relation (8.4) leads immediately to the following statements.
1) Correlation functions of any order n can never identically vanish [40-42].
For, if o = 0 all over the phase space, then (8.4) yields successively

0= 0"V =l = = o= g1 (8.6)

which contradicts with (8.1)!8. To be more explicit, it is easy to derive from (8.1),(8.2),(8.3),

k+ 1) - P1 3" d’p’' X
(pIQPZ’- spksp)_"”--- — T —(—‘I)k!. (8.7)
2) Denoting by N the maximum number of final particles allowed by energy-momen-
tum conservation

N = /s|m, (8.8)

the correlation function o™ together with the normalization factor ¢ give in a simple
way complete information of cross-sections and correlations.!® From Q(N ) one can namely
derive, with the help of (8.4), the whole set of ¥, o™=2 9@ »M which in turn
determine %, £, ... f™. Since it is known that f‘"*” —f‘”*z’ = 0, we have
obtained all the f™ and consequently all the o™. This circumstance is not trivial since the
same argument does not work if we take f(N) and o instead of Q(N) and o, as is seen
from (8.5).

9. Derivation from generating functional

The general form of kinematical constraints (7.17), (7.18) have been discussed by many
authors [38, 39], [13], [40-42]. In particular, Brown [15] has obtained a compact expres-
sion by application of the GF technique?°®

18 Putting higher order correlations equal to zero (a simple example being the case of Poisson distribu-
tion) is thus an approximation which will be allowed when the number of particles is large and addition or
removal of one particle does not affect the state to any appreciable extent.

' This is an outcome of discussion with H. B. Nielsen and P. Olesen.

20 See further Refs [43, [44].
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Here we give a simple derivation of these constraints utilizing the GF formalism. This
method appears to have a potentiality of being generalized to isospin conservation con-
straints, such as recently discussed by Di Giacomo [45].

We start from the second expression (2.6) of GF. To be more explicit, it is given by

F [S; hﬂ(;)] =

3=
= {plexp [Z f%gNﬁ(E) In {1 +hp(1'5)}] lps / {yilyo O.n
]
with
9 = (S—D|¥igitiar)- .2)
Consider the opertor @ for a certain additively conserved quantity
3=
Q= Z F—f a}(p)455(P)ag(p) .3
BB’

where q(fv) is the corresponding one-particle operator. Since we have assumed that the
final state particles are eigenstates of ¢, we can put

qﬂﬁ’(;) = qp(;)app' 94
so that
dp . .
g= Z j“‘g)‘ N p(P)%(P)- 9.5)
8
The conservation law requires
Oy = (S— 1O Wik = Qlys, 9.6)

where Q is the initial value (¢c-number) of the conserved quantity. Thus we get from (9.1),
(9.5) and (9.6),

QF[s; hy(p)] =
&p . . - &y . -
= <exp [Z J—wﬁ Ng(p)In {1 +hp(p)}] : z f—f Nﬂ'(P’)‘Ip’(P')> =
[] %
d35, Ing; > ’ 5F
= Z P qs(p) {1 +hg(p)}ow m . 0.7

This is the same expression as obtained by Brown, and by equating the coefficients of
power series expansion of both sides in hﬂ@), one derives the set of constraints (7.16).

2! This reference has been added after the Colloquium in Zakopane.
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From (9.7) we have also

Q= Zj——qﬁ(p){th(p)}F Sy

which reproduces, when expanded in power series of f15( ), the whole set (7.17) of constraints
on the correlation functions.

(2" {1 +hy(P)}e 9.8

OoR
Shg(p")

10. Leading particles and clustering

So far we have not made any distinction among the produced particles, but it is
empirically known that in many cases the so-called leading particles carry away a large
fraction of the available energy. When combined with the energy-momentum conservation,
this can lead to non-trivial effects of clustering of the other particles. In this section we
briefly outline arguments of Berger, Krzywicki and Petersson on this point [46-48].

Let the scaling variable

= _Pu
Vs/2
of the forward- and backward-going leading particles *? be denoted by x, and x,, respec-

tively (x, is close to +1, and x, is close to —1). Then the CMS energy and longitudinal
momentum of the rest of the particles are

(10.1)

E~ ‘—é-s- {(1=x)+(1+x)}, Py~ \—/25 {1-x) - +x3)}, (10.2)

so that the invariant mass and the average CMS rapidity of these particles are given by

M = (E*=P¥* x {s(1—x,) (1 +x,)}%, (10.3)
_ E+P 1-x,

1ln ~ 11 . 4

yEEmEZ -P, ¥ '“1+x2 (104)

Two cases can be now considered.

1) The multiplicity depends strongly on the values of x;, x,, so that for small M the
multiplicity is also small.

2) The multiplicity depends only weakly on x; and x,, so that for small M a large
multiplicity can also take place.

The multiperipheral model corresponds to the first case, leading to no appreciable
clustering of the remaining particles. If one makes a specific assumption (“bootstrap

22 They are final state nucleons in the case of nucleon-nucleon collision.
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condition”) on the single particle distribution of the other-than-leading particles, one can
set up an integral equation®® for the overall single particle distribution f[1].

In the second case, for small M and larger multiplicity, the produced particles other
than the leading ones will be confined in a small region of rapidity, thus forming a cluster.
The position of the cluster in the rapidity space fluctuates from event to event so that
the single particle distribution will be flat in the central region, but the clustering leads to
certain correlations, which could sometimes simulate other dynamical mechanisms.

C. COEXISTENCE OF TWO (OR MORE) MECHANISMS
11. Joint correlation

Let us now discuss the following problem. Suppose there are two mechanisms of
particle production with different dynamical characters, for instance, pionization and
diffraction dissociation. Denote them by 4 and B, respectively. For each mechanism,
taken by itself, we can construct GF and correlation functional F,, Fy and R,, Rg,
which of course satisfy

F,=expR,, Fp=c¢expR; (11.1)

The “total” cross-section for each mechanism will be denoted by ¢, and ¢5. What happens,
then, if the two mechanisms coexist?

For simplicity we shall assume that the two mechanisms are effective in different
regions of the phase space, so that the interference can be neglected. Then the resultant
distribution functions are given by the weighted mean of those for the two mechanisms,

Gy Op .
j = s g 112
4T 0p A4TO0g

Consequently the same relation holds for GF

g g
.F= 4 FA+ 2
g,+0p g,+0pg

Fp. (11.3)

Thus the joint distribution is simply expressed in terms of the constituent
distributions.

On the other hand, the joint correlation takes a complicated (though elementary)
form when expressed in terms of the constituent correlations,

Gp

04
R=In exp R4+ -

exp Rgr . 114
o4+0p g4+0p P B} (14

23 See also Ref. [49)]. (This reference has been added after the Colloquium.)
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From this one gets, for example?4,

DAy (l) (‘)
o (p) = (p)+ $Xp), 11.5
4+0g 0,4 +0g ( )
- - - - g - -
0 P(p1,p,) = 01, P+ ——— 0Py, p2)+
AT0pg G4T0p
0 40
+ ﬁ_z {080(B1) — 05(51)} {08(P2) - 05 (5,)}- (11.6)
A

The third term on the r.h.s. of (11.6) is non-negative when p, = p, and also when
integrated over the whole phase space. The latter case gives

o o
R = 1 RP+ - R+ (GA )2 (Kna>—<mgy)* (SR
That is to say, the integral of joint 2-particle correlation is larger than or equal to the
weighted mean of the integrals of constituent 2-particle correlations, the equality holding
only when the average number of two mechanisms taken separately are equal to each
other.

Bialas, Fiatkowski, Wit and Zalewski [18], [32], [51] give a physical interpretation
to this apparent increase of correlation in the following way: If a slow pion is detected,
it indicates that the event is non-diffractive and this increases the probability of finding
another slow pion.

Another interpretation for (11.7) is obtained by recalling the relation (1.10b) and
noting

"= art g, o (11.8)
0410p o+
Then (11.7) can be rewritten in the form
%4 O o.0p
D? = D2 D2+ —<n 2, Lo
L) +0'3 04 +o"8 B (GA+O'§)2 {<n.4> < 8>} ( )

A

Joint distribution

<ng> <Mg>
Fig. 3

24 The relation (11.6) has been pointed out in Ref. [S1]. Its special case is found already in Ref. [S].
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showing that the squared dispersion of the joint distribution is larger than the weighted
mean of those of constituent distributions unless the average numbers of constituent
distributions coincide. This is easily understandable. See Fig. 3.

12. Some examples

The relation (11.9) appears, explicitly or implicitly, in many cases.

As an example we refer to the work of Giovannini [48] who superposes, with a weight
e~ ™, a continuously infinite number of Poisson distributions with the average value m{n),
where {n) is a constant and m is a positive parameter varying between 0 and co. That is,

o P, = | dme™"p{™ (12.1)
with
P = ¢™™™ (migr:})" , k=0,1,2, ... (12.2)
This leads to a Furry distribution (geometric series distribution)
o ! (1— ! )k (12.3)
O n)+1 {ny+1
which has the following properties,
Y kP, = <(n) (12.49)
{the notation {n) has been used in (12.2) and (12.3) in anticipation of this result), and
D? = Y kK*P,— (Y kP)? = (n)* +(n). (12.5)

This large dispersion should be contrasted to the small one which each constituent Poisson
distribution possesses.
Another example can be found in a simple case of LeBellac’s relation®® [53], [21].

25 LeBellac’s work [53] is of more general validity. He has shown that if
1 dkaincl 1 djo'incl 1 a*J Gincl
— = —= — (O]
o dyg...dy o dy,..dyj o dyjyy ...dyy

[Yi—ygl m 0, 1< i<j, j+1<g<k, (i)

when

then the ratio o,/c of n-particle production cross-section o, to ¢ = Za,, decreases faster than any power
of (Ins). Here y is the rapidity variable

1 o+ p
y=—1In ———“) i)
2 w — p”
and d*oiaa/dy, ... dyx tepresents the inclusive cross-section integrated over transverse momenta. The
condition (¢), (5i) leads to the short range correlation result,
R2) ~ Ins. (iv)

In the text we illustrate that if there is an energy-independent part in any oy then R(2) must behave as ~
(In 5)? and not as ~ (In s).
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One takes a mechanism A of short range correlation (for instance, multiperipheral model)
which yields

{nyy ~Ins, Di~Ins (12.6)
on one hand, and an energy-independent component B with
{ngy = const, Dj = const (12.7)

on the other. Then (11.9) indicates that for the joint distribution,

D? ~ (In s5)?, (12.8)
ie. R® ~ (In 5)2. (12.9)
Fig. 4 illustrates the situation.
6n/6
inS

N

<nNg> <My> n
Fig. 4

i -
|

13. Separation of diffraction and pionization

From the foregoing arguments it is obvious that, if the hadronic production process
consists of diffraction and pionization, one has to separate the former from the latter or
somehow eliminate effects of the former before one can study the short range correlation
character of the latter mechanism.

One of the emphasized points in Wilson’s program [5] concerns this problem. He
proposes as the first experiment to measure the multiplicity distribution of charged
particles at a sufficiently high energy. As is seen from the exaggerated Figure 4 of the
preceding section, one can then expect a dip to appear between the energy-independent
low-multiplicity part due to diffraction and the pionization part which moves with increasing
energy towards the higher multiplicity.

Applying the fluid analogy described in Section 6, Bander [36] has proposed a method
of evaluating this possibility in more detail. Denoting as before the pionization and diffrac-
tion by A and B, respectively, and for simplicity?® taking the Poisson distribution (6.9)
for A4,

FA(Y:2) = exp (g(z— DY} (13.1)

26 In Ref. [36] a more general expression of the muliiperipheral model is used.
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and a set of energy-independent topological cross-sections for B,

1 : :
FY;z) = — Z"0pn = Fy(2) (13.2)
Og
one gets a “grand partition function” for the joint distribution
O‘A Op
F(Y;z) = exp {gz—1DY}+ Fy(z), (13.3)
AT0p O4T0pB

where o, and oy are assumed to be independent of energy.
Consequently, the “‘pressure-fugacity” relation turns out to be

{g(z—l) for z =1

134
0 for z <1 134

i .

p(z) = lim —In F(Y;z) =
Yo Y

reminiscent of a ““phase transition” at the actual value z = 1. (See Fig. 5.)

. . 1 1
The analysis proposed is thus to plot 7ln {Y Z",j0,} vs Y and, for various

values of z, make an extrapolation to 1/Y = 0. This yields the function p(z), and one will

p(z)A

Ny

z=1

Fig. 5

see firstly whether the expected behaviour (13.4) really takes place, and, if so, one will
be able to determine the unknown parameters involved in F(Y, z). In this way one will
predict the multiplicity distribution at any energy, and, in particular, shape of the dip
at a sufficiently high energy, value of the energy where one can separate (at least partially)
the two mechanisms, efc. (The experimental data available at present do not seem to allow
a definite extrapolation. Two possible extrapolations and conclusions therefrom are
given in Ref. [36].)

For other possibilities and further discussions on the problem of separating the two
mechanisms see Refs [5], [36], [51].

D. SPECIFIC PREDICTIONS OF VARIOUS MODELS

So far we have been mostly?? discussing rather general, model-independent aspects
of many-particle distributions and correlations. Now we turn to predictions of various
models of particle production. In fact one of the main motivations of studying many-
-particle distributions and correlations lies in the expectation that here clear-cut distinc-

27 Except Sections 6, 10, 13 and part of Section 12,
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tions will be made between a number of models, all of which yield almost the same results
as far as the total cross-section and the single particle distributions are concerned. We
shall be thus mainly concerned with qualitative features which characterize various models
at asymptotic energies.

14. Asymptotic behaviour of integrated correlations

Different models predict indeed quite different behaviour of two particle correlation.
This can be readily seen by considering its full integral over the phase space, which is given
by the average and width of the multiplicity distribution [12], [55], [56], R® = D*>~(n),
as has been already shown in (1.10b).

Let us inquire the energy dependence of R’ when?®

s— o, (ny~lIns. (14.1)

The answers of various models are enumerated in Table II. Notice that R‘® is bounded
from below??,

R® = D*—(n) = —<{n). (14.2)
TABLE 11
UJM (uncorrelated jet model) [12], [57)-[59]
with transverse momentum cut off } R~ const. < 0
UJM in general [60]
Short range correlation models {10}, {14} R~ glns
MPM (multiperipheral model) [5], (8], {10}-[12], [6!], {62] a>0
DRM (dual resonance model) [63}-[69] {a <0
MPM with absorption [70]
Diffraction and pionization [50], {5], [32], [S11, [18]), {531, [54] R ~ K 1ns)*
(Unitary isospin model [71])
(Non-equilibrium model [72], [52]) b>0
DEM (diffractive excitation model) [16], {731, [74], [77] R?) ~ g5l
or LFH (limiting fragmentation hypothesis) [75], [76] } c >0

From (14.1) and (14.2), R*® can be either positive or negative when it behaves like ~ In s
(or weaker than this), but it can be only positive when it behaves as ~ (In s)® or s'h,
The distinction is quite obvious. It becomes less effective if one considers the integral
F® of two-particle distribution function, instead of correlation. All the models except

the last group (DEM) lead to
F® ~ (Ins)? (14.3)

while the DEM yields

FP ~ s, (14.4)

28 Empirically the relation (7> ~ Ins is not yet really established. But since nearly all the current
theoretical models yield this behaviour, we shall here assume its asymptotic validity.

29 This simple fact must have been known to many people, but I owe this remark to K. Zalewski,
who, in turn, has been notified by I. Bialynicki-Birula.
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15. Longitudinal correlations

Transverse correlations (and spin correlations) are reviewed in a very illuminating
way in the reviews of Caneschi [19] and Abarbanel [78]. So 1 shall not enter this topic
here, but go over directly to the problem of longitudinal correlations. Hereafter 1 shall
use the same symbols £, o® to denote distribution and correlation functions integrated
over the transverse momenta and thus depending only on longitudinal variables.

For the longitudinal variable, one can use either the scaling variable

2
x =P 2P (15.1)
(pﬂ)max S
sometimes together with
2 2\4
~ m-+
X = (x2+ ——-—pi) - ixi, (15.2)
s/4 s

in order to specify more explicitly how the limit is approached, or the rapidity variable
(15.3)

In the following we shall be mainly concerned with the two-particle correlation o'
(or distribution f*’ in some cases). They can be represented either in x; —x,-plot or
in y, —y,-plot. (We shall also use a modified x; —x,-plot in Section 18.) The advantage
and disadvantage of x and y variables are well known : The x; — x,-plot is suitable for describ-
ing the asymptotic behaviour (s — o0) but the central region is compressed into a single
point {(x; = x, & 0). The y,—y,-plot can be made only for a finite energy?®, but explicitly
shows how much contribution comes from various parts of the phase space to the full
integral of the correlation function,

dx.d
R® = f f 0P(xy, x2) = s H Oy, y,)dy,dy,. (15.4)

-1 -1

Ali these are natural extension of the case of single particle distribution. There is,
however, one more point which favours the x, — x,-plot of ¢'®). The energy conservation
sum rule takes namely the following form

“}19(1)(3‘1) = j 9(2)("1’ xz)dx, (15.5)

()
not ——
X2

whose r.h.s. can be directly read on the x, — x,-plot.

3% For an infinite energy one can use a normalized rapidity variable y/In 5, but this is not suitable
for our purpose, because the finite correlation lengths that characterize the short range correlation models
(Section 17) are not distinguished.
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In the x, —x,-plot (—1 < x4, x, < 1) the kinematical boundary for 2-particle distri-
bution is given by

I—Ixyl—=Ix1 =0 for x;x, >0,
(A=1|x, DA =[x) =0 for x;x, <O (15.6)

See Fig. 6. Consequently f*)(x,, x,) vanishes outside this boundary (shaded regions in
Fig. 6) but the product of £ (x,)f"(x,) survives, in general, and gives rise to negative

X2
I ///;:,
A x:
N
A
Fig. 6

values of correlation in these regions. This is, so to speak, trivial negative correlation of
an obvious origin, but often plays an important role in saturating the sum rule. See
examples in the following scctions.

16. UJM (with transverse momentum cut off)

The UJM is the simplest model®*! which incorporates the energy momentum conser-
vation. Following Caneschi [19] we assume that the total cross-section is constant when
s -» o0, and take only the leading terms in the results of UIM?3?, and get

Sy = oP(x) = 201 1x), (16.1)
0 if X1X2 >O, [x1+x2} > l,
f(z)(xu X2) =1 4(1—|x¢]—|x20) if  xx; >0, x+x| <1,
4(0—(x DA~|x)) f  xx, <0 (16.2)
Consequently
=41 =ix DI =lx ) if xyxy >0, xp+x0 > 1,
0Pxy, x3) =1 —4 x| x| if  xx, >0, xi+x,l <1,

0 if  xx; <0. (16.3)

Fig. 7 illustrates the function ¢'®(x,, x,). In this approximation, the correlation
vanishes when two particles go in the opposite directions in CMS (the second and the
fourth quadrants) and is everywhere negative when two particles go into the same hemi-
sphere in CMS (the first and the third quadrants.)

31 P-factorizable model in Bassetto-Toller-Sertorio’s classification [12].
32 For instance Eq. {3.9) or Eq. (4.11) of Ref. {57}, where 2 = 2 in order that the total cross-section
is asymptotically constant.
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The distribution of negative correlation in the region 0 < x, x, < 1 is, in this case,
symmetric with respect to the kinematical boundary of f®, ie, 1—x,—x, = 0. The
least favoured point for simultaneous compared to individual existence is x; = x, = ,
as may have been anticipated, where ¢® = —1.

The energy conservation constraint requires that for any fixed x;, the line integral
over —1 < x, < 1 should yield a value just to cancel |x,| g“)(xl), the curve of which
is also drawn in Fig. 7 at the bottom.

% o ixy)

-1 0 +1 %

Fig. 7. The upper figure shows o(?) (x,, x,) of UIM at s — 0. The chain contour lines (———) represent

the value 0, while the broken contour lines (— — — — — ) represent negative values. In the regions x;x; > 0

the value of @(2) is negative and its minimum is indicated by A, the value being —1. The contour lines

surrounding the minimum stand, in the order from inside to outside, for o(2) = —0.75, —0.5, —0.25,

—0.1. The solid line in these regions are the kinematical boundaries of f(2)(x,, x,). In the region x;x, < 0,

0< |xy], |x5) < 1 the value of ¢'®) vanishes everywhere. The lower figure represents the Lh.s. of the fol-
lowing sum role

%1 0M0x) = — [ 6@ (x1, x,) dx,
From this figure it looks as if the effect of anticorrelation due to the energy-momentum

conservation, which is, apart from the transverse momentum cut-off, the only ingredient
of the model, were quite overwhelming. This is of course not true; this impression simply



126

UM oy )

UM oty ) %

Figs 8, 9. The function 0®)(y,, ¥,) of UIM for s = 54 GeV?(prap = 28 GeV/c) (Fig. 8) and for s = 2820 GeV?

(P1ab = 1500 GeVjc) (Fig. 9). The asymptotic expression for o(?) is used here without any finite energy

corrections. The values represented by the symbol A and the contour lines are the same as in Fig. 7 except
that the outer part of the contour ¢?) = —0.1 is not drawn due to lack of space
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reflects the property of x-variable which overemphasizes the fragmentation regions. In
order to see relative contributions to the full integral R‘®, we should go over to the y, — y,-
-plot. See Figs 8, 9. With increasing energy the regions of appreciable negative correlation
are farther pushed to the corner33, leaving a vast, ever-growing central region of practically
no correlation.

Although the UJM itself produces no positive correlation (at least in this approxi-
mation), it shows that at higher energy there is an ample space in the central region for
occurrence of positive correlation of dynamical origin without violating the energy sum
rule.

17. Short range correlation models

For MPM or DRM, in their simplest forms®* at least, the characteristic prediction
is the short range correlation in the rapidity space. That is to say, the correlation in the
central region is appreciable only when

Pi~y2l S 4 7.1

and dies away for large |y;—y.| as
2), 1 ;
0 (Y1, y2) ~ exp — 7 Vi yalp (17.2)
Both y, and y, are assumed to be much different from the boundary values, i.e.,
s s
—3ln— +4, <ypy,<iln— -4, (17.3)
m m

The correlation length A (and 4,) is usually estimated to be ~ 2.

Thus the most appropriate way to represent ¢'*) in these models is to use y, —y,-plot
[12]. See Figs 10, 11. Here the regions where correlations are significant are indicated.
In the central region, o'® will depend only on [y, —y,| because of the homogeneity, so
that the contours are parallel to y; = y,. Presumably its value is positive®® [61] near
¥y1 ~ y, and change sign somewhere outside [54].

When we express the same regions in x,; —x,-plot we get Fig. 12 [74]. The straight
lines

V2 =y 12 (17.4)

33 Since we are using the asymptotic expression (3) for o(2), it is not really consistent to plot it for
a finite energy. Corrections are, however, small, particularly at higher energy, and in any case it suffices
for our purpose of qualitative description.

34 MPM without any unitarity or absorption corrections, DRM without loop corrections.

35 Private communication from C. I. Tan and from M. Toller.
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Mt oy s I
r i

Fig. 10
MPM Q(Z’(,Vf J2) ¥
T D
y
Fig. 11
Figs 10, 11. The function ¢‘3)(yy, ¥2) of short range correlation model. The dotted lines (......... ) show

the region where corielations can be appreciable. Fig. 10 is for s = 54 GeV? and Fig. 11 for s = 2820 GeV2.
The regions which are within influence of boundaries are also indicated
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are mapped into straight lines

X2
— =exp(12) (17.5)
X1
when s — 0. If s is finite we get a hyperbola with these lines as asymptotes.

Again the effect of boundaries (fragmentation regions) becomes conspicuous, indicating
that these regions are essential in saturating the energy sum rules®, although they contribute
little to the full integral R®.

mMPM % kg x2)

A1

Fig. 12. The function 9(2) (x;, x2) of short range correlation model at s — 00. As in Figs 10, 11, the region
of short range correlations and the regions influenced by the boundaries are indicated by dotted lines

18. DEM

This group of models can be regarded as a natural consequence of the original limiting
fragmentation hypothesis (without pionization) [75].

As a simple example we take here the mathematical model of Quigg, Wang and
Yang [76], which illustrates characteristic features of DEM (including more realistic
versions [73], [74], [77]) and suffices for our purpose. The details of this model
are described in Appendix D.

In order to present salient features of DEM, we first plot the normalized non-
-invariant two-body inclusive cross-sections

1 d%6;0g @) S
— ——— = " (xy, x)[(x,x,). (18.1)
O dXx1dx,

36 The single particle distribution of MPM in the x-variable is qualitatively similar to that of UJM.
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See Fig. 13. For contrast we have also plotted the same quantity for the asymptotic UIM
(cf. (16.2)), which will presumably resemble MPM outside the two lines, x,/x;, = exp (2),
mentioned before, (17.5). See Fig. 14,

A conspicuous difference is found in the first and the third quadrants (x;x, > 0)
in the region close to the axes x; = 0, x, = 0. At a fixed value x; > O let x, - 0,. Then

DEM  F P00 JE K

>

|

|

|

\"*1\'

T

|
““‘"“"‘&H«i
i

Tty g g
Ve

f (2) ) (%1 %2) d” Ojnc
Fig. 13. T ncti 2) (x1, X X3X;) = — ——n
e he function J2 (1, Fali(xats Oiot dxy, dxz
and Yang [76]. The contour lines I represent positive values while the chain line 2 represents zero. The A at
the origin represents a singularity growing like ~ s>/, The values of the drawn contour lines in the regions
x1x2 > 0 are, in the order from outside to inside, oo (delta function along |x;| + |x:| = 1), 4, 10, 20, 40, 100,

200, 2000, and those in the regions x;x; < 0 are, fiom outside to inside, 2, 4, 12, 40

- of the mathematical model of Quigg, Wang

the function f(z)/)_cla'c'z of UJM blows up (because of the denominator), giving rise to ~ In s
dependence when integrated over x,. The function fP%,%, of DEM, on the other hand,
remains finite3?.
This property leads to the prediction [76] that the associated multiplicity of right-
-going particles in DEM
1

1 i dzoincl d 18 2
— ¢ dx .
J dx dx, 2 (18.2)

(R)
nt—1>. =
< > ! dGincl

dx,

remains constant and does not grow with s if the specified value of x; is positive®®, This
is evidently in sharp contrast to the case of UIM or MPM, where this associated multi-

37 This property is shared by Hwa’s (more realistic) model [74). In fact this will be common to all of

DEM, as can be guessed from the physical argument given below.
38 This can be directly verified by inserting (D.10), (D.11) into (18.2).
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plicity blows up like ~ Ins. (If x; is negative, {n‘R)>x, will behave like ~ In s in both
DEM?38 and UIM or MPM. This can be also read from Figs 13, 14.)

These authors give a clear physical argument for this remarkable behaviour of the
associated multiplicity: when a particle with a large CMS momentum (corresponding

(2 -
SV E g a0/ (X X0

—— dz Gincl
Fig. 14. The function f(®)(x,, x;)/(%1x2) = e g———':% of UIM at s » 0. The contour lines +++++t+++
X1, dX2
represent positive values. The & at the origin represents a singularity growing like ~ s. In the regions
x1x, > 0 the values of the drawn contours are, in the order from outside to inside, 0, 4, 10, 20, 40, 100, 400,

1600. In the regions x,x, < O they are, in the same order, 0, 1, 2, 4, 8, 15, 25, 45, 100, 400, 1600

to a finite x, > 0) has been detected, the cross-section ¢{® for producing » right-going
particles is reduced by a factor x(n, x;)

oy = aP(xy) = y(n; xp)o5" (18.3)

because the available energy is now reduced to (1 —x;). The reduction factor in this specific
model can be evaluated to be®®

2(n; x;) = n(n—1) (1=x,)" "% (18.4)

Thus the cross-sections for large multiplicities will be strongly suppressed as far as x;
is finite. Since the divergence of average multiplicity {(#) ~ Ins in the DEM originates
from slow decrease of o, with increasing n (i.e. 6, ~ 1/n?), this suppression of o, for

3% From (D. 3)

(R)
(Ry’ 1 d” Oexct —2
= e b T dx, ...dx, = K(1—x;)""*,
o () (n—‘l)!‘[ deldxz...dx,, 2 e iy = Kl =x)
(RY
xn; xy) = © = an—1) (1 ~x)" 2,

n
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large n can essentially change the behaviour of {n). Indeed one finds a convergent value,

™y = > 1o, (x1) _X n(1—x)""*  14x;
. ZU'(;R) (xy) Z(l“‘xx)"—z Xy
Another decisive difference is the much stronger singularity at the origin. When

approaching the origin along the direction with a finite fixed angle to both axes (i.e., not
along the x,- or x,-axis), the function f @)(x,x,) of DEM increases as ~r—3 while that

(18.5)

DEM 0"¥0x x5) X3

5 |

i I |
| , !

% oix)

{10

1058
P 1
~1 4] +! Ky
S T
——————— _.2
—————— 3

Fig. 15. The function 0()(x,, x2) of Quigg-Wang-Yang’s mathematical model [76]. The three kinds of con-
tour lines I, 2, 3 represent positive, zero and negetive values, respectively. In the 1egions x;x; > 0,
|x1]+4|x2) > 1, this model gives ¢{®) = —1 everywhere, and along the line |x,|+|x.| = 1 there is a delta-
-function-like singularity of positive sign. The A at the origin stands for a positive singularity ~s'2, The
values of the drawn contour lines are, in the order from inside to outside, 2, 1, 0, —0.5, —0.75. The lower
figure shows the function x;0{1)(x,) = X, which is the Lh.s. of the sum rule (¢f. the caption of Fig. 7)

of UIM increases as ~ r—2, where r denotes the distance from the origin. This distinction
can be more clearly seen in the plot of f® or o'».

Fig. 15 shows o¥(x,, x,) of this mathematical model of DEM#*°. No correlation is
present in the regions x,x, < 0, since independent fragmentation of two hadrons is assumed.

40 We take here o(?) for the purpose of comparing with the other models.
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Outside the kinematical boundary of 2-particle distribution, correlation is of course
negative (everywhere —1 in this particular model). At these boundaries themselves, there
exist d-function type positive correlations, which represent exclusive 2-particle cross-
-section remaining in ¢'®. Directly inside these boundaries the correlations are again

DEM 9{2)(y,,y;) ‘yz (only qualitative )

DEM le)(}':' Vo) t{{ {only qualitative)
— _—

0

bbb+ e v 4 ¢ e+

et ot e g A

Figs 16, 17. The function 0(3)(y,, y;) of the mathematical model [76). These have only very crude, qualitative

meaning, since finite energy corrections are ambiguous. Three kinds of contour lines are used as in Fig. 15,

but the dotted parts (......... ) are more uncertain. A tentative estimation gives the value of maximum at

the origin 1.7 and those of drawn contours, in the order from inside to outside, 1, 0, —0.5, —0.75 for

s = 54 GeV? (Fig. 16), and the maximum 23 and the contours, in the same order, 20, 10, 5,2, 1, 0, —0.5,
—0.75, for 5 = 2820 GeV? (Fig. 17)
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negative but near the origin there is a region of positive correlation, with a singularity ~ st
at the origin.

We can also verify that the energy sum rule is exactly satisfied (c¢f. the curve xo*(x)
at the bottom of Fig. 15).

Finally we try to illustrate the situation in y;—y,-plot. (Figs 16, 17.) These figures
can have only very qualitative validity because this mathematical model is defined for
asymptotic energy and how to make finite-energy corrections is ambiguous. These figures
are just meant to indicate characteristic features such as i) rapid increase of the region
of positive correlation, ii) rapid increase of the height of maximum at the origin®!,
iii) dependence of the positive correlation on y;+y,. The last point is to be compared
with the case of MPM, where the positive correlation in the central region will be a function
of |y; —y.| only. This difference is of course to be expected: in the DEM, where the correla-
tion is long-range, the value of correlation will depend not only on the relative distance
of two particles in the rapidity space but also on the location of the centre of the pair.

APPENDIX A
Equivalence of (2.1) and (2.6)

We shall prove equivalence of the two operators in the case of a single degree of
freedom, i.e.,

:exp (Nh): = exp {NIn (1 +h)} (A.D

where
N = ata, (A.2)
[a,a'] =1, (A.3)

and A is an arbitrary c-number. Generalization to the case of a number (a continuously
infinite number in our case) of degrees of freedom is straightforward.

For this purpose we introduce an orthonormal complete set of eigenfunctions of the
number operator N,

iny = ! (ah"o) (A.4)
(nh?* ’ )
for which
an) = Vnn—1>, n>=1, (A.5)
al0> =0, (A.6)

41 The origin is proportional to s*/2 and the effective region is proportional to s~*, so that the integral
. 1
gives ~ s 12,
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and thus
Nin) = n|n> (A7)
{miny = O, (A.8)

Then for arbitrary m and n

a

I .
{m|:exp (Nh): |n) = 2 T {m| (a*Y(a)|n) =

j=0

m

hJ‘
= Z —J—'— {m—j {m(m-1)...(m—j+1)}*{n(n—1)...(n~j+1)}*!n—j> =

i=0

= 6mn Z ll"j' l'_ =
jt (m=j)!
j=0
= Oma(l +h)" =
= {m| (1+h)"n), qed. (A.9)

APPENDIX B
Proof of (2.7), (2.8) or (2.11), (2.12)

We shall prove (2.11) and (2.12) which are equivalent to (2.7) and (2.8), respectively.
Firstly we notice that the projection operator onto the vacuum state is given by

10> <0] = : exp {—- J N() f't)—p} :. (B.1)
This is seen, for the case of a single degree of freedom, from the result of Appendix A.
Putting A = —1 in (A.9) we get namely
{mliexp(=N):lnp> =0 if m#0, or n#0, (B.2)
while for m = n = 0, one obtains directly from the definition
{0}:exp (—N): [0> = (0{110> = 1. (B.3)
Thus

coxp(~N):= 3 Y Imd {my: exp (= N): [y (n|=

m=0 n=0
= 10> <0|. (B.4)

Generalizing (B.4) to the case of a continuously infinite degrees of freedom, we get (B.1).
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Now, using the notation given in (2.2), (2.3), we can write

oy..p A0, _ Lyl al(p)...a’(p,) 10> <Ola(py)...a(py) lv> _
o dp,.d%p {psdpsy
= < xcl(pl, . '95k)> (B.S)
with
Eo(Prs - P = 18%(P)---a1(p,) 10> C0ia(p,)...a(py)!. (B.6)
Here we apply (B.1) and get
Eol(Pys - P = : N(PYN(P,).. N(p*)expl jN(p) -—} (B.7)
Consequently
(B> s ) [ A < { f NG 2 } >]
s vany =W.. | =2 ( ‘€x —_
excl\ Py Pi k 5h(p1)5h(pk) P pynp @ h(l_;)=—l
(B.8)

(B.5) and (B.8) yield (2.11).
For the inclusive cross-sections, we have similarly

3k
Wy...0, d70;

- ;" ) ;1351...613; = <Einc!(p1, reey pk)> (B'g)
with
EieP1s - P = ; la*(By)--.a'(py) 1XD <Xla(py)...a(p)| =
= |a¥(py)...a"(p)a(py)...a(p))| =
= : N(py)...N(Dy): . (B.10)
Consequently

<Eincl(51a ) 51:» =

5 - d°p
P B — ar ‘ B.11
@ “’k[ah<p;)...oh<pk>< “"H N@H) } >],,<;,=o (B-11)

(B.9) and (B.11) yield (2.12).

APPENDIX C

Correlations in semi-inclusive cross-sections

In a general semi-inclusive experiment one counts the number n of the partlcles o
in the final state and for k out of them (I < k < n) one measures the momenta p,, p,, ..., Pk.

n

a+b - C(p)+...+C(p)+C+... +C +(anything not C). (C.1)
k




Let us denote this semi-inclusive cross-section (invariant form) by

n d3k0' - -
n (n,k),
Wy... W 573" = Pis -y .
(k) 1 k l3 L. !3 : n& ( 1 pk)

The normalization condition
1 d* - -
— " g3 37
T’J st;,l...da,;kd Pi-d'pi = 0

d3p .dp, n!
(m,k) 71 k —
J j PP e " R

implies
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(C2)

(C.3)

(C.4)

Differentiating GF (2.7-9) k times functionally and then putting h(p) = k, and
multiplying by (k! @, ... @), we get from exclusive and inclusive expansions, respec-

tively [28742,

5h(P1)'-~bh(Pk)

5kF n—k%n (), Iy
Klo,.op ———=-= (1+h) . g Py o P=
n=k

©
Bk . I pk "
= J‘ ff( )(pl’ R pka pk+ls M 9pn) u

- (n—Kk)! Dggg--

From (C.5) and (C.6), equating the coefficients of expansion in A,

o<

g, - . - -
: l, é' g("’k)(Pu s PR = f(k)(Pu N AR

n=k

In (mky? S Yy—
(n—k) (n—-k-])...(n—k—l+1); 2" (pis s P)=

n=k+1

a’ Pk d35k t
j J‘f(k“)(lhs- apk’ Pk+1 Pk+1) AL =,

Wppqe-Wpyg

1=1,2, ...

din

(C.5)

(C.6)

(C.7)

(C.8)

n
*2 In Ref. [28] we have used the same symbol without the factor (k) to represent (C.2). To

_ %o,
d3p;y ... d3 py

_ wy . d O'excl dp d;
o D1 % : _
(n— k)' APy o P dBryy ... A%, PO

be more precise, w; ... wy -

in Ref. [28] " d*a (€2 =
in Ref. =\, w,...wkd WA in
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As is explicitly shown in (C.7), the inclusive cross-section on r.h.s. is subdivided
into semi-inclusive cross-sections on Lh.s., each of which is labelled by the number n of
particles C. Assuming that a single dynamical mechanism dominates and the correlations
defined in terms of inclusive cross-sections have physical significance, it is proposed [35]
to define “semi-inclusive correlation function 7X(p;, ..., p,)” in such a way that the
following conditions are satisfied.

1) By adding ‘‘semi-inclusive correlation” with appropriate weight factors, one
reproduces ““inclusive correlation”.

2) If all the correlation functions o except o' vanish, then all the semi-inclusive
correlations 7% except n¢" vanish*3.

Such semi-inclusive correlations 7’ can be introduced by

g™(py) = 1 (py), (C.9)

. - -1 - - - -
£ (s, by) = <:§: _—1% SPGB+ o). (C.10)

- - -1 -2 - - -
g“WmepQ=<2:_38_5>Um@dﬂWme@9+
+ Y f Y@ (Bs, b} +7B1s P2y D), (C.1)
perm
in general
- - —D...(n—j+1 - - . -
g™y, .., b)) = <:§:—1z...§:—;+1;> @15 s P = PPy s DI+

+nflj)(51, MRS ] 5_]) (C.12)

It follows from (C.7), (C.12) that the condition (C.1) is fulfilled,

: : Gp (i~ - - -
; chlj)(Pla “res p;) = Q(J)(pla LD} p_]) (C13)

Notice that in the definition (C.12), the factor {f’—o”} can be expressed in terms
of o1, 0P, ..., oY=V, Consequently the set of definitions (C.9), (C.10), (C.11) ... can
be used with the help of (C.13) to define 7', n%¥, 7z, ... in succession.

The condition 2 is also satisfied. This can be seen fiom the fact that

g p) = n—1)...(n=j+1)
g Pis -+e» p, <n(n_1)(n—.]+1)>

[y, s D) (C.14)

if ¥ =0 for all j > 2.

43 The inverse of this statement follows trivially from the condition 1.
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The conditions 1 and 2, however, do not determine the semi-inclusive correlations
uniquely. If we define, for instance,

Gy ENRT e >y nn—1)...(n—j+1)
Tn (pla ERRE] PJ) Ty (pl’ ey PJ) <n(n__1)(n_1+1)>

0Py, ..., P)), (C.15)

which in general do not vanish, one can show immediately that

Y. 0.5 (P15 -5 P)) = O, (C.16)
Thus for a given n{”, another set
7 +ar)

also meets the two conditions.

APPENDIX D
Mathematical model of Quigg, Wang and Yang

In the high energy limit one can consider right-going particles (x > 0) and left-going
particles (x < 0) separately, because in the LFH they come from fragmentation of the
projectile and the target hadrons, respectively, and are expected not to affect each other.
The requirement of overall energy-momentum conservation is also expressed in a factorized
form

- Y x)d(1+ ¥ xo. (D.1)

x;>0 X< 0

For the right-going particles, for example, this model assumes the following form
of exclusive differential cross-sections*4

do'%)
—= 0, D.2
. (D.2)
d"a.(R) n
— ~ K(n—-Din-2)16(1— Y x), (D.3)
dxl...dx,, j=1 J
for n 2= 2,

where Kis a constant, 0 < x; < 1.

44 The suffix (R) is to remind that the quantity concerns only the right-going particles.



140

This leads to

~ n__(R)
(R} d aexcl _ K
oy’ = — | ... {dxy..dx, = ,
n! dx,...dx, n(n-—-1)
o o
N(R)

with

N(R) — \/E

3
2m
N(R) N(R)

n®y =% ne®/Y o, ~Ins,
n=2 n=2

N(R) N(R)
. 2 l/‘
Ry = T 0’| Y o, ~ 5"
n=2 n=2

The asymptotic behaviour (D.5), (D.7), (D.8) is known to characterize the DEM.
From (D.2), (D.3) one can easily calculate the inclusive cross-sections

a0

daincl 1 ' dl * laexcl
—_— = — . ——dx,...d =
dx, E T j jdxldxz...dx,ﬂ 2@
KZ
= K? E A=ix,) "' —.
[X4]
=1

dzdincl 1 ¥ dl+205xcl
—tel 2 dx,.dx =
dx.dx, n dx,dx,...dx;,,

= K?8(1 = |x;| =[x, ) +K? :—Zl I +1) (A= xg = x,)' ' =

= K20(1—|x, = 1x,) 42K/ 1x, +x,0°  if  xx; >0, |x;+x,| <1

2 2
d Oincl _ K

dx,dx, E2%.2Y

if  x;x, <O

(D.4)

(D.5)

(D.6)

(D.7)

(D.8)

(D.9)

(D.10)

(D.11)



141

In our definition of distribution and correlation functions (normalization being
taken as o, = K?), these give
fOx) = oPx) ~ 1,
0 if xyx; >0, [x;+x,0 > 1,
(D.12)
SPxq, x3) =

if x3x;3 >0, |x,4+x,| <1,

1if x;x, <0,
and consequently

—1if x;x; > 0, |x,4+x,] > 1,

X1 X,0(1 — (x| —|x,] e | D.1
9(2)(361, X,) = ! X0 bl =l + fxy +x2{3 ( 3

]f xle > 0, le +x2i < 1’

0 if x,x, < 0.

In preparing this report I have profited very much from conversation (or correspond-
ence) with Drs A. Bialas, L. Caneschi, Chan H. M., H. E. de Groot, H. B. Nielsen, C. L. Tan,
M. Toller, L. Van Hove and K. Zalewski. In particular I owe many helpful remarks to
Dr K. Zalewski who has played the role of discussion leader in the correlation session of
the Zakopane Colloquium. It has been also his suggestion to make this written, more
detailed version of the report. But these people are not at all responsible, of course, for
any errors or misunderstandings I may have made in this report.
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