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The experimental data on topological cross sections, single particle distributions and
correlations observed in proton-proton collisions at high energies are discussed in the frame-
work of multiperipheral and fragmentation pictures.
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A. INTRODUCTION

In these lectures on proton-proton-collisions at high energies the following subjects
will be treated:

Topological cross sections and multiplicities
Inclusive single particle distributions
Correlations

The emphasis will be on experimental results. However, in order to have a frame-
work for discussing these results, two phenomenological pictures, namely the multiperi-
pheral picture and the diffractive fragmentation picture, will be briefly introduced at the
beginning in a qualitative and descriptive way.

The paper is intended to be a general survey without getting too deeply involved into
more specific questions and into all refinements and complications. In this sense it is consid-
ered as an introduction into the field and a preparation for more specific topics discussed
in other papers of this issue.

If not stated otherwise, all experimental results presented in these lectures refer to
pp-collisions.

B. TWO PICTURES FOR HIGH ENERGY REACTIONS

Numerous models have been developed to describe elementary particle reactions at
high energies. Most models exist in several versions which have often emerged from the
attempt to adjust them to the available experimental results. This flexibility generally
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reduces the predictive power of such models and makes it difficult to distinguish between
them on the basis of the experimental data.

Because of these limitations and since these lectures are mainly concerned with ex-
perimental results and with the knowledge we have about high energy reactions directly
from experiment, we do not intend to give a detailed, quantitative and complete discussion
of the many models available. Instead we will describe only qualitatively two extreme
pictures in their simplest form in order to have a framework, in which the high energy
multiparticle data can be interpreted. These two pictures are:

the multiperipheral picture (MPP).
the diffractive fragmentation picture (DFP).

We will mention, at the appropriate places in the presentation of the experimental
results, the predictions which these pictures make, and confront them with the data. For
more details (quantitative treatments, various versions and modifications, other models)
we refer to the extensive literature, e. g. to the recent reviews [1-7].

1. Multiperipheral picture (MPP)

The multiperipheral model is a generalisation to many particles of the relatively
successful one-particle-exchange model for quasi-two-body-reactions a-+b — c-+d

g, s° (subenergy J/so)

by | 9 (subenergy Vsa)

with small subenergies \/s_‘c and ,/s; of the systems ¢ and d. The multiperipheral model
was originally introduced by Amati, Fubini and Stanghellini [8], was revived in the
framework of Regge theory by Chan and co-workers (multi-Regge-exchange model
of Chan, Loskiewicz and Allison [9]) and was formulated in several specific versions [2]
(e. g. Chew-Pignotti-maodel {10]; De Tar model [11], in which transverse momenta are
neglected).

The MPP starts from the following diagram for the reaction

at+b-oci+...+e¢,: (1)
a }z ¢
[f12 e Si2

i
i
Cn-t
b 4 cn
t

The secondary particles (or particle systems) come off a multiperipheral chain. In quanti-
tative formulations the chain is resolved into a sequence of two-body processes with one-
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particte exchange (factorisability) the exchanged particles usually being described by their
Regge-trajectories. Some models assume dominance of multi-pion-exchange
since the pion pole is close to the physical region, which leads to an enhancement of small
momentum transfers £;; ;.

Instead of assuming individual particles coming off the multiperipheral chain, various
models consider also clusters of particles (e. g. ntn~ pairs) coming off with small
subenergies of the clusters. In this way, one hopes to extend the validity of the model to
a larger part of the n-particle phase space.

In the MPP the cms longitudinal momenta of the secondary particles tend to be
continuously distributed. The two particles ¢; and ¢, at both ends of the chain have the
tendency to keep the direction and a larger fraction of the energy of the two primary
particles whereas particles towards the center of the chain populate predominantly the
central region of the total longitudinal momentum distribution. This central region is
often referred to as the pionisation region, where however several definitions for
‘‘pionisation” have been given in the literature.

2. Diffractive fragmentation picture (DFP)

In the fragmentation model the secondary particles are considered as fragments of
the two incident particles a (beam) and b (target) so that they can be subdivided into two
groups:

particles coming from the fragmentation of the beam particle a (a-fragments). They should
have the tendency to go forward in the cm system (forward fragments), the forward
tendency becoming stronger with increasing energy;

particles coming from the fragmentation of the target particle b (b-fragments). They
should have the tendency, increasing with larger energy, to go backward in the cms
(backward fragments).

Two hypotheses have been made concerning the behaviour of the fragments at high
cms energies 4/s:

factorisation: The fragmentation of a, /. e. the behaviour of the forward fragments,
should depend on particle @ and not on particle b, i. . not on the particle which causes
particle a to fragment; and vice rersa.

limiting fragmentation [12]: In the rest system of a (projectile system) the
momentum p of an a-fragment should remain finite and the various momentum distribu-
tions in the projectile system should approach limiting functions of p independent of s.
Analogously for a b-fragment: Its momentum should be finite and the momentum distribu-
tions should become independent of s in the rest system of b (lab system).

The hypothesis of limiting fragmentation (HLF) will be discussed in more detail in
connection with the single particle distributions in Chapter D4.

A specific and important kind of fragmentation occurs if the system of a-fragments
(b-fragments) has the same quantum numbers (apart from spin and parity) as a (b), i. e.
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if in the fragmentation process no quantum numbers are exchanged. In elastic scattering
such a process without exchange c¢f quantum numbers is deminat d at high energies
by diffraction scattering (Pomeron #-exchange) with energy independent cross section.
Its generalisation to few- and many-body processes then leads to the diffractive frag-
mentation picture (DFP) in which the fragmentation of ¢ andfor 5 comes about by
inelastic diffraction scattering (diffraction dissociation) with the diagrams

. L=
P a

double diffraction dissociation single diffraction dissociation

Both the MPP and the DFP are extreme pictures; none of them seems to be able
alone to describe all the data. As a more realistic picture several authors [13-20] have
therefere introduced various versions of a two-component-model, according to which
both mechanisms MPP and the DFP (or similar mechanisms) contribute to particle pro-
duction at high energy. The two-component picture will be discussed in more detail
in Chapter C5 below.

C. TOPOLOGICAL CROSS SECTIONS AND MULTIPLICITIES

1. Introduction

This Chapter is concerned with the cross section o(#, s) for the production of n particles
in pp-collisions as a function of the multiplicity » and the total cms energy ./s.
Various multiplicities may be of interest, e. g.:

n, = number of all secondaries (total multiplicity);
n = ng — number of charged secondaries (charged multiplicity, prong number);
n. — number of positive or negative secondaries, mainly pions (positive, negative
multiplicity);
1,0 == number of produced n%s, etc.

Relatively little is known at high energies about the n° multiplicity, the main results
being:

From data at NAL[217] and ISR [22] energies the average n° multiplicity n,0 seems
to grow roughly like logs, i. e. proportionally to the average charged multiplicity (see
below). This is seen in Fig. la. The straight line is

o = 1.51 log (0.512 /s). (2)
Notice however the large errors of the ISR points.

At 205 GeV/c [21] the rates of =° and =~ production for each prong number are
very similar (Fig. 1b). At ISR energies it was concluded [23] from the data of Ref. [22]
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that in the average, at least for particular parts of the phase space, nyo & 1, & n,. It was
found that the average n° multiplicity 7,0 increases, at fixed energy, proportionally to the
charged multiplicity » of an event, see Fig. 1¢ (NAL 205 GeV/c) and Fig. 2 (ISR). This
indicates strong positive correlations between neutral and charged pions (see Chapter E).
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Fig. 1. (a) Average n° multiplicity nz0 vs s. The curve corresponds to 7,0 = 1,51 log (0.512 +/5). (b) Cross
sections for 7° and 7~ production vs prong number # at 205 GeV/c. (¢) nzo vs prong number n at 205 GeV/c.
The dashed straight line is 750 = n_ (from Ref. [21])

At lower energies on the other hand 7, seems to be independent of n, see e. g. Fig. 3 of
the Bonn-Hamburg-Miinchen (BHM) collaboration at 12 and 24 GeV/e.

In the following we concentrate on the multiplicities for charged particles. The follow-
ing quantities are of interest:

a. topological cross sections 7(n, s) as functions of s for fixed prong number n.

b. Energy dependence of average multiplicity:

> na(n, s) i
n(s) = = Z na(n, s), 3)
o1(s)

Y a(n, s) -

n



695

CERN-ISR
pp Vs =53 GeV
T4
6k
<n°> -
-
L1
-
2- -
&
1

i 1 i 1 1 1

02 46 810 n-
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where o(s) = total or total inelastic pp cross section, depending on whether clastic pp
scattering is included or not (usually, elastic scattering is excluded).

¢. Multiplicity distributions: W(n,s) o o(n, s) as a function of n for fixed s.
Quantities to be deduced from a multiplicity distribution are:
average multiplicity n (see (3));
dispersion (width) D of the multiplicity distribution

D? = (n—n)* = n2—n?; (4)

correlation parameter f, (= integral of two particle correlation function over mo-
menta, see Chapter E)

fr = n(n—1)—n* = D*—n. (5)

For a Poisson distribution

P(n) = Ve (6)
n.

D? = n,f, =0 (7
i. e. the n particles or particle clusters are emitted uncorrelated;

higher multiplicity moments 7 and higher correlation parameters (integrals of
higher correlation functions).

Assume that between two multiplicities n, and n, the following relation exists:
iy = an; +f. (8)

Examples for pp collisions: n = ny = 2042 == 2043~ 2, ny == n_-=2,
It is then easy to show that the following relations hold for the average multiplicities,
the dispersions and the correlation parameters:

n, == al;lv‘f“/fa (9)
D,=aD, =D 2D, forx 2l (10)
Jaz = Bfyyal@a—= 1y ny =B = 22y (x—1) np—af. (1)

From (11) it follows: If n, follows a Poisson distribution { /5, == 0), n, does not follow
a Poisson distribution (f5, # 0). In fact, neglecting «f for large n,:

(12)

a2 (2= 1) 7 > 0 (broader than Poisson) if o > 1,
s ?] < 0 (narrower than Poisson) if x < 1.

2. Predictions of MPP and DFP

Before we come to the experimental results, we summarize the predictions which the
two pictures MPP and DFP in their simplest forms make for o(n, s) and the related quan-
tities introduced above (see e. g. Table 4.1 of Ref. [2]).
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a. Predictions of MPP
multiplicity distribution (see e. g. Ref. [24])

If the secondary particles come off the multiperipheral chain in uncorrelated clusters,
i. e. in groups of particles with possible correlations within, but not amongst the clusters,
then one expects a Poisson distribution for the number of clusters. Flexibility exists in
that one can make va-ious assumptions as to the nature of the clusters, e. g.:

* Poisson distribution for the number of all produced particles (mainly pions,
Chew-Pignotti model). The multiplicity distribution W(n) for the charged particles,
i. e. the topological cross sections can then be derived only with assumptions for the ratio
of charged to neutral pions.’

* Poisson distribution for the number n of charged particles (independent emission
of charged particles):

N e ]

Wiln) = —-—. (13)

* Poisson distribution for the number n_ of n*tn~ pairs (independent emission of
pion pairs. This case one would get for multipion exchange, it would mean local charge
conservation):

O

W(n_) =

— foo =Di—n_ =0. (14)

With (8) to (11) one would then get for the charged multiplicity n = 2n~+2
[é(ﬁ_z)]%(n“ﬂe—%(;—ﬂ . _
W. = , D=2D_, = n—4, 15
() = fr=n (i5)

Thus, 7 is not distributed Poisson-like; for large n f, is positive, i. e. the distribution is
broader than a Poisson distribution.

* Further possibilities can be thought of. In general however it has to be emphasized
that in a realistic picture there is no sharp separation between correlated and uncorrelated
particles. Instead, short range correlations are expected to go down smoothly with increas-
ing distance of the particles in momentum space, e. g. exponentially with the difference
in rapidity. Thus, any Poisson distribution is expected to be only a rough approximation,
as will indeed be seen from the data below.

average multiplicity and topological cross sections as functions of s

A typical feature of the MPP, already pointed out in the original version of Amati,
Fubini and Stanghellini, is the prediction that at high energies n should increase as
log s:

n(s) == A+Blog s with B > 0. (16)

'E. g. alternating [ = 0 and [/ == 1 ¢xchange along the multiperipheral chain.
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Combining this with a Poisson distribution (13) assumed for n, one obtains for the topo-
logical cross section:

A+B 10 s ne—(.4+Blogs) Bn _
o(n, ) = o1 LR o (0g s >0, (1)
n :
i.e.o(n,s) ———0 for fixed n. (18)

o is the total (inelastic) pp cross section, which is roughly energy independent at high
energies (notice however the increase from ~ 39 to ~ 43 mb recently observed [25] for
the pp total cross section in the range of ISR energies). With a Poisson like distribution
and with 7 oc log s the MPP thus predicts that each topological cross section o(n, s) should

go asymptotically to zero such that o = Y. o(n, s) remains roughly constant. This rough
n

constancy of the sum is then due to the inset, with increasing energy, of new channels
with higher and higher multiplicities, i. e. the decrease of each o(n, 5) is roughly compensa-
ted by the increasing number of channels.

correlation parameter f, and dispersion D

Consider as an example the correlation parameter f,- for negative particles, experi-
mental data on which will be discussed below. Three cases may be thought of:

* If n_ satisfies a Poisson distribution, then f,— = 0 according to (7).

* If the number n of charged particles satisfies a Poisson distribution, the distribu-
tion for n_ = }(n—2) is narrower than Poisson according to (11) and (12) (« = %) and
fo= —3n_+%. With n_oc log s according to (16) one obtains for f,- the energy de-
pendence f,— oc — log s.

* On the other hand short range correlations between the negative particles lead to
an energy dependence f,— oc - log s. In a Poisson description this case would correspond
to a Poisson distribution for clusters containing several negative particles (@« > 1 in (11) and
(12)), so that the n_ distribution is broader than Poisson leading to positive f,_.

One thus sees, that the MPP predicts for f,- the energy dependence

fo(s)==k logs (19
with vanishing, negative or positive k. The prediction for the dispersion D is
D?(s) o« log s (20)

since D = f,_+n_ according to (5).

b. Predictions of DFP

topological cross sections, average multiplicity and multiplicity distribu-
tions

A main feature of DFP is the prediction that each topological cross section o(n, 5)
goes with increasing energy towards a finite, energy independent diffractive rest o,:

o(n, s) 52> On (21)
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No prediction is made in the DFP about the energy dependence of the average multiplicity.
Hwa [26] has pointed out that the logarithmic law (16) n(s) oc log s can be obtained with
(21) and a constant total cross section oy, if one assumes for the asymptotic topological
cross sections o,, the following n-dependence for large n:

[+
o= 3. (22)
Proof:
N(s)
(s) = ;I—Zno',,oc Jdn%oclogN(s)+b = A+Blogs, 23)
T

n

since the maximum number N(s) of particles which can be produced is proportional to
the total cms energy ./s.

dispersion D and correlation parameter f,
With (21) and (22) one obtains at high energies
N(s)
o2 1 2 2 1 ' -
n?=— n’e,oc | n* —dnoc N(s)+c o (/s+c.
Therefore
D? =n2—n? «c + /s for large s, 24)
fo=D?*—no +./s. 25)

So the DFP predicts a positive correlation parameter which varies with energy stronger
(oc 4/s) than in the MPP (cc log s). This means that in the DFP the multiplicity distribu-
tion is broader than Poisson.

TABLE 1
Summary of predictions of MPP and DFP
Quantity MPP DFP
n(s) A+Blog s no prediction
s-dependence of o(n, s) —>0 ——> 0, = const
8-+ 00 S0
. . 1, _
n-dependence of o(n, s) Poisson like const. — if n oc log s assumed
n
D3(s) oc log s o Vs
f2(8) oc log s o V5
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3. Experimental results

a. Topological cross section o(n, s) as functions of s for fixed »

Fig. 4 (see also Fig. 14) shows a recent compilation {7] of topological pp cross sections
up to large multiplicities (# == 26) as functions of energy. The points at the highest energies
are from three NAL bubble chamber experiments [28, 29, 30] at p, = 102, 205 and
303 GeV/c respectively. Values at ISR energies do not yet exist, but will become available
soon.

For each #u, o(n, 5) rises from threshold, reaches a maximum and then seems to drop
off with increasing energy. The energy of the maximum increases with increasing n, so that
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Fig. 4. Topological cross sections 6(in, ) vs prap for #n = 4 to 26 (from Rel. [7])

in the energy range explored so far only for ¢(2) and a(4) a clear drop off can be noticed:
o(2) decreases by a factor of ~6 and ¢(4) by a factor of ~3 between 13 and 300 GeV/c
[16] and both cross sections seem to continue to decrease. From these experimental re-
sults it thus can be concluded that below 300 GeV/c ¢(2) and o(4) have not yet reached
diffractive constant limits ard that a purely diffractive model for low multiplicities does
not yet work at NAL energies. The question, if the topological cross sections go to zero
(MPP) or to finite constant values (DFM) cannot yet be answered and a decision be-
tween MPP and DFM on the basis of the energy dependence of o(n, 5) is not yet possible.

A further discussion of o(n, 5) will be given below in connection with the two-compo-
nent model (Section C5).
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b. Average charged multiplicity n(s) as a function of energy

Since the last year new results for the average charged multiplicity have been obtained at
Serpukhov [31] (50 and 69 GeV/c), at NAL [28, 29, 30] (102, 205, 303 GeV/c) and at
the ISR [7, 23, 32, 33]. Two recent compilations are shown in Figs 5 and 6. Fig. 6 contains
also the average multiplicities for various kinds of produced particles. The new results have
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shown that earlier results, obtained in a cosmic ray experiment at Echo Lake [34] between
100 and 1000 GeV/c, are too low (see Fig. 5).

Many authors have fitted a variety of energy dependent expressions to the experi-
mental values for n(s). The most recent one is given in Ref. [32] (see curve in Fig. 6)

#(s) = (—3.840.4)+(1.88+0.07) log s+(6.4+0.7) s~ (s in Ge'V?) (26)

and is shown by the curve in Fig. 6. The fit reflects the observation, that up to NAL ener-
gies n(s) rises steeper than o log s, i. e. has a positive curvature. 1t seems that at lower
energy n(s) increases with a power of s, whereas at higher energies the logarithmic s-de-

whereas the log s term contributes 15).

As will be discussed in Section DS, a central plateau has been observed at ISR energies
in the rapidity distribution do/dy (integrated over transverse momenta) for pions in inclusive
pp-reactions, so that the cms rapidity distribution has roughly the following shape:

/ 1 AN

0 Ypeam y(in cms)

Yta rget

From the relation (see equation (114) below)

~ 1 {do
n=—|{—dy
ar J dy
one then obtains the following relation between the average n~-multiplicity and the height
doldyl,_o of the n~ plateau:

- 1 (do 1 do
n_{s) = — J —dy ~ — (s) range of y.
or ) dy op dy |,-0
Since the range of y=x log s/mf, (see (80)),
. . 1 do
n(s)y=A_+B_-logs with B_ = — — . (27)
1y dy y=0

A more rigorous derivation of the relation between average multiplicity and the differen-
tial cross section at y =0 can be found e. g. in Ref. [3].

Ferbel [35] has studied the energy dependence of do/dy!,_, for pions in various
inclusive reactions. He finds, within the relatively large errors, a good description by the
expression

1 do d
B(s) = — —(s) =c+ -, (28)
or dy |0 pL
where p, is the lab momentum in GeV/c (oc s at large energy), see Fig. 7. d depends on the

particular reaction {(np, yp, pp, Kp) whereas the scaling limit ¢ could be independent of the
initial particles as expected from factorisation in the double Regge limit of Mueller. Scaling
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(see Section D4) would imply energy independence of da/dy, but is perhaps not yet ful-
filled rigorously at present energies for all parts of the phase space.
For =~ in pp-collisions Ferbel finds

1.24
B_(s) = 0.75 (1- F)' (29)

Inserting this into (27) and remembering that n = 2n_+-2, he then obtains for the average

charged multiplicity n(s) the energy dependence (log s = log p, - const):

_ 1.24
n(s) = a+p (1—— —p*_) log p;, (30)

L

where f should be 2:0.75 = 1.5. Fig. 8 shows the experimental n values together with
expression (30) (solid curve) with o == 2.2 and f = 1.5. One sees that the extra energy
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Fig. 7. Normalised invariant single particle inclusive cross section at x = 0 ¢s prap’ (from Ref, [351

dependence (29) of B(s), as deduced from the height of the central plateau, describes the
deviation of the experimental points from a simple 4--Blog s fit with constant B (dashed
curve) rather well. On the other hand, the errors in Fig. 7 are large. Furthermore, more
recent ISR data seem to. indicate a p; * rather than a py *-dependence of doldy(s)i,_o.
Finally, the latest data show that the do/dy distribution in the central region is not completely
‘independent of y (see Section DS5). The analysis of Ferbel should therefore be considered

with caution.
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Fig. 9. Charged multiplicity distribution at 303 GeV/e. The curve is a Poisson distribution for n. (NAL-
-UCLA collaboration, from Ref. [6])

c. Multiplicity distributions. It was pointed out already in 1970 by Wréblewski
[24] at the Kiev Conference that the experimental multiplicity distributions are not descr-
ibed well by any of the various Poisson distributions (see e. g. (13), (15)). This result
has been substantiated by the new NAL data [28, 29, 30, 36], as can be seen e. g. from
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Fig. 9 at 303 GeV/c, where the curve is a Poisson distribution for n~. At the various energies
the result is as follows [36]:

below Serpukhov energies (~ 70 GeV/c) the n.. distribution is narrower than Poisson
(D% < n.);
at Serpukhov energies the n_ distribution is well described by Poisson (D? = n~);
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at NAL energies the #_ distribution is broader than Poisson; there is an excess of events
with large n_ (D% > n.).

According to (5) this result is reflected in the energy variation of the correlation
parameter f,.. for negative particles, shown in Fig. 10: f,_ is negative below ~ 70 GeV/c,
vanishes at ~ 70 GeV/c, and becomes positive above with rising tendency, indicating
strong positive correlations between the negative particles at high energies. This rise

1000

50GeV/e
69 GeV/c
100 GeV/e
200 GeVv/e
300 GeV/c

Lo b LA,

D+ 0o xe

1001

A 1 1 N E— A )
12 4 16 20 24 28
(n/10)

Fig. 12. n?o, vs »* for five momenta between 50 and 300 GeV/c. The lines are given by formula (35) in the
text (from Ref. [37])

is faster than log s predicted by MPP. Similar evidence against MPP was reached by

Berger [36] from a comparison of the energy dependence of n(n—1) and n? for charged
particles.

The 1/n* law of DFP falls off for large n less steeply than a Poisson distribution and
has therefore the right tendency at large energies. However a quantitative comparison
with the data shows that 1/n?* falls off too slowly, see e. g. dashed curve in Fig. 11 at
102 GeV/c (where a Poisson for n_ (full curve) fits still rather well, £, = 0.3940.10, i. e.
still rather small).

In order to remove this discrepancy, Abarbanel and Kane [37] have modified the
1/n* dependence using the following argument: With a 1/n? law of DFP, ¢,#* vs n should
be constant. As just mentioned this is not the case, as can also be seen from Fig. 12 where
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n?e, is plotted rs #* for various energies. Large » values are suppressed. In a fireball model
for the diffractive process large n originate from large masses M of the fireballs. For large
M however the minimum momentum transfer 7}, between incident proton and fireball is
not zero, but larger than zero (boundary of Chew-Low plot tivs M?). Thus the momentum
transfer distribution

— oc et (31)

starts at |£j.,s the small-7 part of the distribution is not allowed kinematically, which leads
to a suppression of large M, i. e. of large n values. Therefore, integrating (31) from
timn > 0, #2g, should not be constant, but proportional to exp (—bt!,;.):

n’g, o e Pllmin 32)
where at large energies s
i @ M*m}/s? for one fireball (single diffraction dissociation DD), (33)
loin > M2M'*/s for two fireballs (double diffraction dissociation DD).
M, M’ are the masses of the fireballs, m, is the proton mass. Notice the different s-depen-

dence. With M and M’ocn and inserting (33) into (32) one obtains the result:

n4

n’e, o exp (—x »2-\) for single DD,
N

4
%, o exp (-/3 3-) for double DD. (34)
S

The lines in Fig. 12 show curves of the form
n4
n’c, = 700 exp (—0.007 — GeV2> mb. (35)
s

They describe the experimental points not too badly in the whole energy region from 50
to 300 GeV/c, which means that in the exponent s~ (i. e. double DD) and not 52 (single
DD) should be taken. This however is in contradiction with other results, according to
which the contribution of double DD is small. Furthermore, it has been pointed out [38]
that a r-cut leads to a depopulation in the rapidity distribution around y* ~ 0 in the cms,
which is not observed experimentally. Thus one has to conclude, that the attempt to save
the 1/n* law does not seem to be very satisfactory.

4. Summary of comparison of MPP and DFP with the data

Comparing the predictions of Table I with the experimental results just discussed,
one can summarize the following weaknesses of MPP and DFP at present energies:

Weaknesses of MPP: At high energies the multiplicity distributions are broader
than a Poisson distribution.
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The correlation parameter f,_ rises with energy faster than log s. The average multi-
plicity rises somewhat faster than log s (although the log s behaviour is predicted only for
very high energies).

Weaknesses of DFM: The 1/n? law of DFM has too large a tail towards high »
when compared with the experimental multiplicity distribution. The model of Abarbanel
and Kane, which suppresses high n-values, is not in agreement with other experimental
results.

At NAL energies the topological cross sections continue to fall with energy and have
not yet reached a diffractive limit predicted by DFM.

5. The two component picture (TCP)

These failures of each of the two extreme pictures MPP and DFP have led several
authors [13-20] to propose a two component picture (TCP), according to which
both mechanisms MPP and DFP (or similar mechanisms) contribute to particle produc-
tion at high energy. In this picture the contributions of the two mechanisms depend on the
multiplicity » and on the energy s.

“The quantitative formulation of the two component model goes as follows: Each to-
pological cross section o,(s) consists of a diffractive (fragmentation) and a nondiffractive
(multiperipheral) part, o5(s) and ¢5'(s):

0(s) = 0,(s)+05(s). (36)

(The energy dependence (s) will not be written explicitly in the following). The total
(inelastic) cross section o can then be written as:

o1 = Y. 6, = Fop+ Moy with

F
1
F=E=~— of,]
" {F+M = 1. (37)
M
oy 1 m
M=—=— on
oy Oy

For the lowest multiplicity moments n and »2, the dispersion D and the correlation para-
meter f, one then obtains:

n = Frn'+ Mn™, (38)
n? = Fn2" 4+ Mn2™, (39)
f m
with DL A YL
For Moy
2 _f 2 _m
— n“e, — n“o,
n2f — Z n n2m Z 0 )

b

Foy Moy
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D? = n®>—n? = FD? + MD2+ FM(# — ™) (40)
with D} = n¥—(d")?, Di =n*"—(">
fo = D*—n = Ffye+ Mfyp+ FM(n' —n™)? (41)
with fae = DE—1f = n(n—1)— (@),

frm = D=1 = n(n—D"—(n")".

These relations have been applied by Van Hove [19] with the following general
assumptions (independent of any particular mechanism):

F and therefore M are energy independent;

the widths Dy and D,, are small compared to n; and np;

the average multiplicity for one mechanism is large compared to the average multiplicity
for the other mechanism, e. g. n; < ny,.

Expanding equation (40) according to these assumptions one then obtains:

_ . F
D ~ an—b with a =\/v—,
M

. MD:4+FD?

b= an, (42)

2an
As will be discussed below, a linear relation of the form (42) has been observed by Wro-
blewski [39] with constant ¢ and b, the empirical values being @ = b = 0.585. Using
this value for a one obtains [19] F = 0.255, M = 0.745 and from (37) ¢t~ 7.7 mb,
oM = 22.5 mb.

Analyses with more specific assumptions and therefore more detailed predictions
have been carried out by several authors [15-18]. As an example we discuss the analysis
of Harari and Rabinovici [16] in more detail. Since only the production of charged
particles is considered (topological cross sections), » indicates in the following the number
of negative particles (n = n_ = §(n.,,—2)). Thus oy, 04, ... are the cross sections of
inelastic two prongs, four prongs efc.

In order to fit the TCP to the experimental results, the following assumptions for
the diffractive and nondiffractive parts are made:

a. The diffractive cross sections o' are energy independent, as predicted by DFM,
and only o}, ¢% and ¢% are different from zero:

af,, afl , ag == constant parameters,
of =0 for n >3 (i. e. for > 8 prongs).

This assumption is supported by a fit, in which o5 was left free and turned out to be com-
patible with zero. It means that DFP contributes only to the lower multiplicities and that
the DFP part of the multiplicity distribution does not follow the 1/n? law as in a pure
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diffractive model with 1 o¢ log 5. The assumption may however be questioned, since with
increasing energy also higher n are expected to contribute to diffractive scattering.
One obtains:

ok = oh+ o' +0f = const,

F

F=1-M=-"1is energy independent, assuming energy independent o, (43)
Gy
£ r
. o, +20 —, a4y +40)
ao= A 2 2 TL T o D2 S, from (40) and (41).
Foy Fo,

b. As for the nondiffractive part, »™ and f;,, are assumed to increase like log s, as
predicted by MPP (see Table I):

H(s) = ¢y log . fafs) = ¢ log - . (44)
: ‘

Sy 32

Assuming furthermore that all higher multiplicity moments #*™ with a 2 3 vanish, all
o2(s) are then determined by »™ and f,,,. Indeed it is easy to show that

1 d"0(z, s
i = T (43)
n! is=0
where the generating function Q{(z,s) = 3 Z'c,(s) is determined by »™ and fyn:
n=0
Q(z, 5) = Moy exp {n"(s) (z— D+ § fou(s) (z—1)*}. (46)

With the seven free parameters o, a', arg,cl,s‘,cz,s2 and taking oy from experi-
ment, all topological cross sections (36) and all quantities (37) to (41) deduced from them
are then given, e.g.:

o(s) = a(s)+ (a5 + 0 +a)), (47)
where o}(s) is determined by ¢,, s;, ¢». 5, tia (44), (45), (46).

O’g-}‘a'; +62

F=20T01T% 0y CF, 48)
Oy
. s of, +205 -
a(s) = Mc, log — ~, e n(s) = A+ Blogs, (49)
51 Oy
7, = MFt log> > +0(logs), ie. f, = C+D log s+ E(log 5)* (50)
S

21

The experimental data between 50 and 300 GeV/c and the results of the fit (curves) are
shown in Figs 13, 14, 15,
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One sees that the model fits the data very well. The parameters came out to be:
of, = 2.0 mb, ¢’ = 2.2 mb, ¢%, = 0.9 mb,
¢; = 1.0, s, = 15 GeV2, ¢, = 0.35, 5, = 200 GeV?,

leading to the following results:
F
F=016, M =084, — =0.19,
M

n- = 0.84 log s — 2.14,
Jfa— = 0.14 log? s— 0.65 log s +0.06.

Discussion:

The nondiffractive part M gives the main contribution (84 %) whereas the fragmen-
tation contributes only 16% to oy, i. e. 6% ~5 mb and oy ~26 mb (61 ~31 mb). Frag-
mentation contributes to the low multiplicities, whereas the high multiplicities come

17T 7T 1T 7T 177177 T T T 1T 1T 17 1 177 17 71777
10 (0) Pgp=50GeV/c {c) Piop=205GeV/e -
$:96Gev? $:387 Gev? 1

i\ N
% 0 .\0_. \.\"‘ i
< (b} Pygy=103GeV/e (&) 5:960GeV?
b $195GeVv? : GeV —

x 5:3700Gev?

I
[

LI

{
o} 2 4 6 8 0 2 4 6 8 10 12 14

Fig. 15. Charged multiplicity distributions at prap = 50 (a), 103 (b), 205 (¢) GeV/ec. The curves show the
results of a fit described in the text. (d) Predictions of the fit at 5 = 960 and 3700 GeV?2 (from Ref. {16])

from the nondiffractive mechanism. For the topological cross sections the model makes
predictions at higher energies (see Fig. 14) and it will be interesting to see how they agree
with forthcoming ISR results. A very interesting prediction is made for the multiplicity
distribution at the highest ISR energies (see Fig. 15d for s = 3700 GeV?2). At these energies
the diffractive and nondiffractive contributions begin to separate leading to a two bump
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structure in the multiplicity distribution. It will be exciting to see, if such a structure will
occur in future ISR data.

Analyses similar to the one of Ref. [16] have been performed by other authors, e. g.
Ref. [15], [17] and [18]. They will not be discussed here in detail. Fiatkowski and Miet-
tinen [17, 18] find ~ 229 diffractive (6% ~7 mb) and ~78 % nondiffractive (o3 ~25 mb)
production (in good agreement with Ref. [19]); also here the diffraction contributes
mainly to the low multiplicities. Also from this analysis a separation of the two mechanisms
in the multiplicity distribution at very high energies is predicted.

6. Further studies of multiplicities

Several authors have observed various regularities of multiplicity distributions, some
of which will be described in the following.

Czyzewski and Rybicki [40, 24] observed several years ago that the charged multipli-
city distribution o,(s)/oy for mp and pp collisions at high energies obeys the following

scaling law:
as) n— n(s)
D(s) — w( () ) (51)

where D is the dispersion and {(x) is a universal function depending only on x = (n—n)/D
and not explicitly on the energy s nor on the kind of incident particles. For $(x) the authors
gave the expression

2(dx+d?)

[(xd+d*+1)°

Wx) = 2de™ " (52)
where d is a free parameter and I'(z) the I'-function. With d = 1.8 formulae (51) and (52)
describe the experimental values rather well for np and pp reactions and at all energies,
as is seen from the curves in Fig. 16.
The same authors [40, 41] also found that
(s)
—~— & const. (= 2) (53)
D(s)
above ~ 50 GeV/c as can be seen e. g. from Fig. 17 which shows n/D vs p;. Notice that
for a Poisson distribution one would expect n/D? = 1 (see (7)). It has been pointed out
that with (53) and n(s) oc log s one gets for the correlation parameter

f, = D*—n oc n*—an o (log s)* for large s (54

i. e. an energy dependence in agreement with the two-component picture, see (50). If one
inserts the empirical result (53) into the empirical formula (51) one obtains:

2 £ n
n(s) o w(:n(—s)) (55)
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without explicit energy dependence. A derivation of this scaling formula has been given
by Koba, Nielsen and Olesen [42] using the assumption that the semiinclusive invariant
n-particle distribution (see Section D1) shows Feynman scaling for high energies (semi-
inclusive scaling).

The Koba-Nielsen-Olesen formula (55) has been tested by Slattery [43] with pp
data between 50 and 300 GeV/e, see Fig. 18. 1t is seen that in this energy range n ¢, /o4

2.0 4——— -L L ! ! l t
pp —™n charged particles
o 50 Gev/c
7 . ° 69 Gev/c r
e 102 Ce'/c
v 205 Cev/c
s 303 GeV/c
1.5 — 20 e e e e e
H i r
18 GeVic |
o Rl
<nN> n i
Tinel T
|
1.0 — -
0.5 L
0]

T 4 . . _—
Fig. 18 7 - — us — for charged particles at various lob momenta between 50 and 303 GeVie. The curve
o1 h

is given by formula (56) in the text. Insert: The same at prap = 19 GeV/e (frem Ref. {43])

indeed follows a universal curve when plotted against n/n. Notice that in this plot a point
for fixed # moves to the left with increasing energy, i.e. increasing n. The curve in Fig. 18
is the function (determined from a fit):

n

—. (56)

1
I

(z) = (3.7924+33.727 —6.642% +0.332z7) exp (—3.04z)  with
i
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The insert in Fig. 18 shows that the scaling function (56) does not describe the data at
lower energies (19 GeV/c).

Two recent developments should be mentioned in connection with the Koba-Nielsen-
-Olesen (KNO) scaling. Instead of (53) Wroblewski [39] has observed the following regular-
ity between n(s) and D(s) in pp-collisions:

D(s) = 0.585 (n(s)—1). (57)

This relation is in good agreement with the data between 4 to 300 GeV/c, see Fig. 19.
It thus includes in particular also the energies below 50 GeV/c and therefore covers a larger

pp INTERACTIONS

DISPERSION D = [<nd> - ¢n,»2]"2

2 3 4 5 6 7 8 9
AVERAGE CHARGED MULTIPLICTY <Nen>

Fig. 19. Dispersion D vs n for charged particles. The straight line is D = 0.585 - (n—1) (from Ref. [39])

energy range than (53). Furthermore, instead of the KNO formula (55), Wréblewski
proposes the following scaling relation, which is directly obtained by inserting (57) into (51):

-1 7 = w( n-l ) (58)

or n(s)—1

i.e. n and 7 in (55) should be replaced by n—1 and n—1 according to the replacement
of (53) by (57). All the data, including also the ones below 50 GeV/c, follow the Wroblewski
“scaling-formula better than the original KNO scaling-formula, as is seen from Fig. 20.

Recently, Fiatkowski and Miettinen [44] have casted doubts on the validity of the
conclusion that KNO scaling is reached already at present energies. They investigate



717

the KNO formula for two models, namely a Poisson distribution for »_and a two-compon-
ent model.
Their result is the following:

Within the limited range of present energies the predictions of the two models are in good
agreement with the ‘‘universal” curve of Slattery shown in Fig. 18.

For much higher energies the predictions are however completely different. In fact they
approach S-functions for s — co.
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Fig. 20. (n—1) ~U—" vs = | for charged particles (from Ref. [39])
T n-

The authors thus conclude, that the asymptotic KNO limit is approached extremely slowly
so that within the limited energy interval explored so far and with present experimental
errors early KNO scaling may be only simulated.

More recent and more refined studies of multiplicities are discussed by Wréblewski
in his paper. Thus they will not be included here.

D. INCLUSIVE SINGLE PARTICLE DISTRIBUTIONS IN pp-COLLISIONS

1. Introduction

The notion of inclusive and exclusive reactions was introduced by Feynman [45].
Consider the reaction

a+b - ¢+ .. Fep, (59)
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where ¢; are the outgoing particles with momenta p; and energies E; = N p+mt. If one
studies a particular reaction of this type (i.e. with definite particles ¢;) and measures all
outgoing particles, one calls this an exclusive experiment for this m-body reaction (ex-
clusive m-body reaction). The cross section for (59) in the cm system is given by

m m

— 1 2 d3p1 dspm
oL ) @
1

Consider now the following experiment:

one does not measure all m particles, but only n particles out of m, i.e. one integrates over
the variables of the remaining ones. Furthermore:

one is not interested in what else besides the n particles comes out of the reaction, i.e. one
sums over all possible reactions, in which the n» measured particles occur.

This is called an inclusive n-body experiment (inclusive n-body reaction) written as

a+b - ¢+ ... +c,+anything. (61)
The cross section for such a reaction is given by (see e.g. [3])
&’p,  d’p
do = g(pis s P S) e — 62
8Py P 5) E, E, (62)

where g,(Py, ..., Pu» §) is the Lorentz invariant n-particle distribution given by
(compare with (60)):
gn(pla AR Pm S) =

m

o Y (S e

For simplicity the sum is started with m = n+2 and not with n-+1, because then the mo-
menta p,, ..., p, are independent, i.e. no constraint due to energy and momentum conser-
vation exists between them.

The simplest case is n = 1, a single particle inclusive reaction

a+b N c-+anything {64)

in which one studies the momentum distribution of a single particle ¢ (inclusive single
particle distribution). In our case of pp collisions this means inclusive reactions of
the type ,
p+p — c¢c+anything (short: pp — ¢), (65)
where ¢ = 7, K, N, A, X, N etc. with definite charges. According to (62) the cross section
for (65) is given by
3

d’p do 1 do

do = f(p, s) T = dTp = Ef(pa 5), fp,s) = E;is_p , (66)
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where p, E, do/d®p, f(p, s)? are momentum, energy, momentum distribution, invariant
distribution (invariant differential cross section) of particle c.

Before we come to the experimental results on single particle distributions in pp-colli-
sions, we will summarize the variables, hypotheses and some predictions for inclusive
reactions. Although these topics can be found in many places in the literature (see e.g.
Ref. [2-7],[46-52]), it is perhaps justifiable and useful to collect them here for completeness.

2. Variables

To study momentum distributions, the following variables may be used:

a. Momentum p and angles (0, ¢) =

d3p = pidpdQ. 67)
b. Longitudinal momentum p,= g and transverse momentum pr = r:
d3p = ndr?dq after integration over &; (68)

q depends on the frame of reference; r is the same in the cm system, the lab (target) system
and antilab (projectile) system.

For the study of the high energy behaviour of longitudinal momentum distributions
two other useful variables are used instead of g, namely the Feynman variable x and the
rapidity y:

c. Feynman variable (scaling variable) x:
x is defined in the cms by (the star here indicates the cms)
q*

X for large s, 69
qmax! \/ /2 ( )

where |gm.| is the maximum longitudinal momentum which particle ¢ can have in the
cms, with |gm.| = $+/s fors — oo, Thus, x is the longitudinal cms momentum scaled
down, at any energy, into the interval

-1<x< (70)
Furthermore:
x >0, if ¢ goes forward (beam direction) .
x < 0, if ¢ goes backward (target direction) in the cms. 71
In the cms:

d’p = ZC%‘ dridx. (72)

2 Following the literature we use the notation f(p, s) instead of g.(p, 5) (see (62)) for the single parti-
cle distribution.



720

d. Rapidity y:

The longitudinal rapidity y is defined in any system moving along the line of collision by

R 1 E+ 1 1
yztanh_li——-smh 1 q——=_1og_q=»log Ay =
E Jm*+r? 2 TE—q 2 T1-p
- E+gq
= —log = log =——, 73
Jmir? Vm?+4r? 73)

where E and B, are the energy and longitudinal velocity of the particle. y has the following
properties:

y<0for g<0,y>0forqg >0, y(—q)= —x(g). (74)

Notice that y is not a purely longitudinal variable like g and x, since it contains also the
transverse momentum r. Since however r is small in the average, the longitudinal behaviour
at high energies can be expressed almost purely by y. In the non-relativistic limit B <1

y = By, i.e. rapidity ~ longitudinal velocity. (75)

For E> m (ie. Ex p=>qg=pcos@ = Ecos@) and @ # 0

ll 1+cos @ I . e 26
)R- — = —log{tan —}.
Y 20g1—cos@ g 2 (76)

This approximation is often used in experiments, which measure only the angles, but not
the momenta. y has the following simple additivity property under longitudinal transfor-
mations (= Lorentz transformations along the line of collision):

. 1l 1+8
= - 10g ——,
y=y'+slog i

)
where P is the relative velocity of the two systems. In the non-relativistic limit (75), relation
(77) reduces to the addition of velocities. (77) means that under a longitudinal transforma-
tion all rapidities are shifted by a constant amount; differences of rapidities are invariant,
dy = dy’, i.e. a rapidity distribution is invariant and only shifted horizontally.
According to (77) the following relation holds between lab rapidity y and cms
rapidity y*:
1 + ﬁcms

1
= V¥t Peme  With  yen = - log ——, 78
Y =¥+ Vems y 28T (78)

where y.ms and Bems are the rapidity and velocity of the cm system in the lab system.



721

Rapidity of incident particles @ (beam) and b (target) (r, = r, = 0,):

In the cms p) = —p; = p* ~ }./s for large s and
* s
yy = sinh ™! P v sinh~! \/—,
m, 2m
* s
yy = —sinh™! Ll ~ -sinh™! l/« (79)

my, 2m,
For the invariant difference of the two incident particles in rapidity one obtains

(E; +p*) (E; +p*)
~ log
m,m, m,m,

Ya—vs = log for large s. (80)

Since the rapidities of the secondary particles lie in this interval or can exceed it only by
a small amount (e.g. a particle going backward in the lab has y* < y;), it follows from
(80), that the y-range of a rapidity distribution grows like log s (see sketch).

/ \s, 2 S51<32
1 -y

i 1 1
Rlsz) i) 0 yilsi) sz 7
In the lab
. s
* *
Yo=0, y,=y.—y, = log . (81)
m,m,
yb* Ozyctns }/: _>y*
H } I
T 1 T
O=yp Yems =",V: Ya ™y
— S$1< Sy

va L
1 1 1 T

Yp Yalsy)  yalsy)

From (69) and (73) one obtains the relation between x and y in cms (the star is dropped

in the following)
4m? 4m?
\/x2+—l+x \/x2+—l—x
s s

=1 = —] 82
y = log m og om, (82)
NE s
with
m; = \/1112+r2 = longitudinal mass, (83)
d 1
> = (84)

dx \/x2+4.ﬂ12
N
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For x = 0: y =0, dy/dx = \/s/2m,. Thus the slope of y vs x at x = 0 increases with
increasing primary energy and decreasing transverse momentum. For |x|>» 2m/ \/E
(i. e. |g| > m and r) (notice that for limited r this condition is fulfilled for smaller and
smaller Ix!, when s increases; at infinite energy for all x # 0):

, 2m;
xl+x4+ — -
s|x| IXls
y ~ log ~ +log for x 2 0, (85)
2m; m,
N
dy 1
2 86
dx x| (86)

Guided by these relations we draw qualitatively in the sketch below the curves of y vs x
and notice the following property, which is also seen from Fig. 21, showing in a r vs g-plot

Rapidity contours
pp 12 and 24 GeV/e

4+

Protons

fransverse momentum {GeV/c)

4 0
C.M, Longitudinal momentum ( GeV/c)

Fig 21. Lines of constant cms rapidity in the plane of transverse vs cms longitudinal momentum (Peyrou-
-plot) for pions and protons. The circles give the boundaries for 12 and 24 GeV/e

(Peyrou-plot) lines of constant y (The circles are the kinematical boundaries for 12 and
24 GeV/c pp collisions): The curve y vs x becomes steeper with increasing energy, decreasing

transverse momentum and decreasing |x|.
larger s, smaller r

smaller s, larger r
i -
7

From the relations and the sketch one notices:

The central region appears shrunk in x around x = 0 and expanded in y. So y is the more
sensitive variable to study the central region.
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The fragmentation regions appear expanded in x and shrunk to a smaller fraction of the
total y range around y = y, and y,. So x is the more sensitive variable to study the fragmen-
tation region.

At infinite energy the slope is infinite at x = 0; finite y (central region) correspond to x = 0,
finite x # 0 correspond to y = +o0.

3 2 . dy 1
d’p = Endr*dy, since ——~ = —. (87
dq E
e. Momentum transfer ¢+ and missing mass M

Instead of the variables (p, Q), (g, r2), (x, r2) or (y, ¥?) one can also use the momen-
tum transfer ¢ between ¢ and b (target) and the missing mass squared M2, defined by

t=(py—p)°>, M? = (p,+py—p)% (88)

to describe the inclusive reaction a-+b — c-+anything (p,, ps, p. are the four-momenta
of a, b, ¢ respectively).

2pr /s
dtdM? = p;,:/ dgtdr? ~ g;dqfdrf. (89)

f. Summary

From (67), (68), (72), (87) and (89) one obtains for the momentum distribution and
the invariant distribution (66), expressed in the various variables, the following relations
in the cms:

do 1 do 1 do 2 do 1 do s do

—_— = e = F== - = e I e 90
dp p*>dpdQ ndr*dg n./sdr’dx Endr’dy En dtdM’® 0
do E do E do 2E do 1 do s do
, S =F — = — = = = — = — . 91
b, ) d’p p*dpdQ m drldg w.fsdrfdx =mdr’dy =n dtdM® ©D

3. Various regions

In the cm system the total x or y interval can be subdivided into the following regions,

e.g. for y:
3
N
/4

DR

yainn

7

e

J b* 0 79
region o of target (b) central region y region 8 of beam (a)
fragments (,,pionisation” region) fragments

a) region of target fragments, around y; = y;,gcl

pB) region of beam fragments, around y, = y;,",(,jecmc

y) central region (region of intermediate particles), where particles emitted e.g. from
a multiperipheral chain (mainly pions) can be found. This region is also called ‘‘pionisa-
tion” region.
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Due to the relation between x and y at high energies, discussed above, the three regions
are given in x by:

region o:x < O(x < — —)

s

region f:x > O(x >
7)

region v : x = 0.

The boundaries of the three regions are not well defined quantitatively; in particular at
low energies there is considerable overlap.

4. Hypotheses and predictions

Various hypotheses and predictions have been made for the high energy behaviour
of inclusive particle distributions.

a. Feynman’s scaling hypothesis

Feynman scaling [45] means that at high energies the invariant cross section (66) depends
only on the scaling variable x and the transverse momentum 7 and not explicitly on the
energy s:

do
E}‘— = f(g,r*, ) —=—F(x, ). 92)
14

s>

The generalisation of the scaling hypothesis to the inclusive n-particle distribution
2Py, ..., Pnr S) (see (62)) is analogous.

b. Hypothesis of limiting fragmentation (HLF)

The hypothesis of limiting fragmentation, introduced by Benecke et al. [12], predicts
that at high energies the momentum distribution of a target (beam) fragment ¢ approaches
a limiting function in the target (beam) rest system, independent of energy:

1422, ) = 0,(p®) for a target (b) fragment c,
£.(P'2, 5) > 0(p®) for a beam (a) fragment c, (93)

where p®(p®) is the momentum of ¢ in the target (beam) rest system. Since the rapidity

y&(@) in the target (beam) system depends on p® (p®@) and not on s, HFL implies
scaling (i.e. energy independence ) of the y distribution in the target (beam) fragmentation
region.
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c. Relation between Feynman scaling and HLF at high energies

it is easy to show that for ix|>» 2m,/ \/E, i.e. for x in the fragmentation regions, the
following relations hold between x (defined in cms!) and the longitudinal momentum
q® () in the target (beam) system:

® 1 m;
For x €« — — (target fragment) ¢’ —» -|myx—~ ——1|,
\/ 2 xm,
2m, @ i m} !
For x » — (beam fragment) ¢ - -|mx— —1. (94y
NE 2 xm,

These relations do not contain s, i.e. fixed (x,r?) corresponds to fixed p®(p®) in the
target (beam) system. Thus, HLF implies Feynman scaling in the fragmentation regions.
Feynman scaling however makes also a prediction about the central region x ~ 0, where:
HLF does not apply.

d. Mueller’s Regge analysis for inclusive reactions

The following questions arise:

How can the hypotheses for limiting behaviour of particle distributions be justified theore-
tically ?

At what energies is the limiting behaviour expected to start?

With what energy dependence is this asymptotic behaviour approached from lower
energies?

The hypotheses of Feynman scaling and limiting fragmentation do not give answers to-
such quantitative questions. Answers however can be provided in the framework of Mueller’s.
Regge analysis [53], which has been reviewed in many places in the literature (see e.g.
Ref. [2], [5], [6], [46-49], [54-56]). In this analysis the single particle invariant distribu-
tion Eda|d?p (s, p) for a+b — c+anything is related to a discontinuity in the amplitude
for the elastic three body process a+b+¢ — a+b-+¢. Applying then Regge theory to
this amplitude in various kinematical regions, one is led to predictions for the invariant
distributions (energy dependence, scaling, factorisation ezc.). Here we will however not
go into further details but rather refer to the literature given above.

e. Predictions of MPP and DFP (see e.g. Ref. [11])

In the MPP the particles are emitted along the multiperipheral chain and should thus:
be distributed in momentum space rather continuously. In rapidity the particles would
have predominantly roughly equal spacing leading to a rather flat rapidity distribution
with a central plateau (see sketch).

A

0 -y

In the DFP the secondary particles are the fragments of the two incident particles
and can thus be divided into two groups. At high energies and for low multiplicities the:
two groups should be separated in phase space, one group of particles going forward and
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the other group backward in the cms. This would lead to a two bump structure in the
rapidity distribution (see sketch) with the two bumps moving away from each other (like
log s) and the valley between them becoming deeper with increasing energy. It has been

SN

0

pointed out however (see e.g. Ref. [7]) that also the DFP can yield a smooth (flat) rapidity
distribution. This 18 because with increasing energy fragmentation into higher and higher
multiplicities is allowed. Particles from high multiplicity clusters tend to have small cms
momentum thus filling the central part of the rapidity distribution, whereas particles from
low multiplicity clusters have larger y*! in the cms.

5. Experimental results on single particle distributions

a. Introduction

The following two prominent features are common to all high energy reactions:
the transverse momenta py are predominantly confined to small values, with {(p;> ~
~ 400 MeV/c;
the longitudinal momenta vary over the whole kinematically allowed region.

Because of these two features particles prefer the forward and backward directions in the
cm system (peripheralism); the events tend to lie in a cylindrical phase space.

Introductory remarks: It is of course impossible to discuss all experimental data
on the inclusive reactions of the type pp — ¢ + anything. Therefore we will choose only
a few examples to show the general and most important properties. ‘These examples will
be taken mainly from a pp-experiment of the Bonn-Hamburg-Miinchen (BHM) colla-
boration at 12 and 24 GeV/c [57], but in order to study the variation with energy also
some ISR-results will be included. More detailed and more recent ISR-data will be discussed
by Lillethun in his paper (see also Ref. [27], [58)).

We start with the longitudinal distributions (x and y-distributions) and then discuss
the distributions of transverse momenta.

b. x and y-distributions

Because of the symmetry of pp-collisions in the cm system, the events are folded onto
one half of the full x- and y-range in the following.

pp ~ 7

1 do
Figs 22 and 23 show the lab rapidity distributions -—

n dpidy

verse momenta py == 0.2, 0.4, 0.6, 0.8 and 1 GeV/c. The dashed and full curves connect
the data points at 12 and 24 GeV/c of the BHM collaboration [57], the black points are
ISR values [59] at equivalent lab momenta of 225, 500, 1100 and 1500 GeV/c. The distribu-

of = and =~ for fixed trans-
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tions end at the rapidities of the cm system (y s = 1.62 at 12 GeVjc and y,,,, = 1.97 at
24 GeV/c), i.e. at the points where y* = x =0 (O* = 90°). Fig. 24 shows the n* lab
rapidity distributions do/dy at 12 and 24 GeV/c integrated over all transverse momenta.

The following observations can be made from the figures:

In the fragmentation region (yy,, between ~ —1.0 and ~1.0, notice that y,, < ¢
corresponds to pions going backward in the lab) the distributions for n*+ and =~ show little
energy dependence from 12 GeV/c to ISR energies at least for small p;. Thus scaling
(limiting fragmentation) is reached rather early for n* from proton fragmentation. For
farge py there seems to be a rise of the distributions from 12 to 24 GeV/e,

Going from the fragmentation region towards the central region, which of course is
still very limited and not well separated from fragmentation at 12 and 24 GeV/c, one still
notices an increase from 12 to 24 GeV/e, which is larger for n~ than for n+. However at
ISR energies also in the central region the scaling limit seems to be reached.

This scaling at ISR energies in the fragmentation and central region for nt+ and n— is
seen more clearly from a recent compilation of ISR data at pr = 0.4 GeV/c by Giacomelli
[33] shown in Fig. 25: The total y-range has now increased from ~4 at 24 GeV/c to ~8
at ISR energies, the central region is well developed and extends from y,,, ~1 to ~7.
In the figure the points do not show an appreciable energy dependence within the ISR
energies. This is also seen from Fig. 26 in which the z~ invariant cross section at 90° (x = 0)
is plotted as a function of energy for various transverse momenta. From 24 GeV/c to ISR
energies the cross section still rises considerably but stays rather constant within the ISR
energies.

Fig. 25 shows that in the central region the cross section for n= is rather independent of y
leading to a central plateau. An indication of the development of a central plateau
can already be observed at 24 GeV/c, see Figs 22 and 23. A more careful look at Fig. 25
however shows that the plateau is not completely flat, but seems to rise slightly towards
y* =0 in the cms.

Figs 22, 23, 25 and in particular Fig. 24 show that in the fragmentation region the cross
section is larger for n* than for n—, which means that a proton fragments more often into
a wt than into a 7~. Going towards the central region and towards higher energies the two
cross sections become nearly equal (see e.g. Figs. 24 and 25) indicating that in the central
region pions are produced in mtn— pairs.

Figs 27 and 28 show the x-distributions for nt and =, corresponding to the y-distri-
butions of Figs. 22 and 23 respectively. According to the relationship between x and y
discussed in Section D2, the central y-region has shrunk to a small x-region around x = 0
whereas the fragmentation region appears expanded.

pp—p

Fig. 29 shows the lab rapidity distribution of protons for fixed transverse momenta
pr = 02,04, 0.6, 0.8 and 1.0 GeV/c. The dashed and full curves give the data at 12 and
24 GeV/c of the BHM collaboration [57] (only a few of the experimental points are
shown explicitly), the black points are ISR results [59] at equivalent lab momenta of 500,
1100 and 1500 GeV/e. Fig. 30 shows the proton rapidity distributions at 12 and 24 GeV/e
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integrated over all transverse momenta. A compilation of ISR-results at p; = 0.4 GeV/c
is shown in Fig. 25 together with a dashed curve indicating the 24 GeV/c results of Allaby
et al. [60].

Comments: The proton distributions show a marked difference when compared
with the distributions of other particles (Figs. 24, 25, 30): When going from the fragmenta-
tion into the central region the proton distributions fall down, whereas the distributions

LA R B R B A O A B B G B M e B

£l pP—pX )
ol =F pp—YX 1
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100t -
& ]
T auceve P ]
$ 12GeVic )}
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E /{c" ‘ﬁ o ¥ty A ]
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(0h] v @ (}*:‘ ' z 3
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Lo v e v sl agale g v v beaaggit

yk}b

Fig. 30. Lab rapidity-distributions of p, A, £+, X-, A, integrated over pr, at 12 and 24 GeV/e (from
Ref. [57c))

of the other particles rise. This means that the protons come mainly from fragmentation
and that some of them tend to stay close to the incident protons in momentum space. This
tendency is called the leading particle effect; it means that secondary particles with
the same quantum numbers as the initial particles tend to keep the direction and a consider-
able part of the energy of the incident particles.
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To study the proton behaviour further, we show in Figs 31 and 32 the x-distributions
of the proton for various transverse momenta at two ISR energies (s = 929.5 GeV? and
1995 GeV? respectively) [61]. These figures (and also Fig. 25 near y,, = 0) show a remark-
able structure with a sharp peak towards x = 1 and a broad distribution between x ~0.3

pp—KIX
- ] T F T ¥ I LR 8L ‘ Ty 717 I LR R | ]
© —0— 24GeVi 3
05} ~-0--12 GeVic Jdos
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S 0 —01
% o ]
o - ]
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Fig. 33. Lab rapidity-distributions of Kj for various intervals of transverse momentum at 12 and 24 GeV/c
(from Ref. [S7c])

and ~0.9. The peak is energy independent and corresponds to a cross section of about
7 mb [62]. The structure can be understood by single diffraction dissociation (see sketch):

P P
I

The protons near x = 1 are the single protons at the upper vertex, whereas the protons
from proton fragmentation at the lower vertex contribute to the distribution between
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~0.3 and ~0.9. A study of the multiplicities and missing masses connected with the protons
in the forward peak shows [62], that with increasing energy also higher multiplicities
contribute to single diffraction dissociation and that the missing mass distribution, apart
from showing the low mass enhancement observed in diffraction dissociation at lower

_PpKsX

H T T ki L -
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3 o 401
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Fig. 34. x-distributions of K§for various intervals of transverse momentum at 12 and 24 GeV/c (from
Ref. [57c])

energies, extends up to ~10 GeV. The average multiplicity increases with increasing
missing mass.

Fig. 25 shows that protons are also found in the central region, although less fre-
quently than in the fragmentation region, and that a plateau is seen to develop. At ISR
energies this plateau seems to be roughly energy independent which may be understood [7]
by two opposite effects according to two sources for the protons:

Some protons from fragmentation extend into the central region. As the fragmentation
centers move away from each other with increasing energy, fragmentation tends to de-
populate the central region.
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The cross section for pp pair-production increases strongly with increasing energy, which

leads to an increasing population of the central region.

In this picture the energy dependences of the two effects would roughly cancel each
other at ISR energies leading to an energy independent cross section. Fig. 25 shows indeed
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that in the central region the p and p distributions approach each other with increasing
energy, however the p/p ratio is still ~2 at ISR energies in the central region whereas the
at/n~ ratio is ~ 1.

From Fig. 29 it is seen that between 12 and 24 GeV/c the proton distribution decreases
in contrast to other particles which show an increase (or constancy).

pp— P

The y-distribution for p at pp = 0.4 GeV/c is shown in Fig. 25. A large increase
of the cross section is observed between 24 GeV/c and ISR energies, in particular in the
central region. So at accelerator energies one is far away from scaling. At ISR energies
the distributions are still rising and a central plateau seems to develop in y.

pp —» K=

The y-distributions for K+ and K~ at py == 0.4 GeV/c are shown in Fig. 25. For K-
no scaling has been reached yet at accelerator energies, whereas for K+ scaling seems to
set in early. Energy independence and a central y plateau are observed at ISR energies.
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Fig. 37. Normalised x-distributions of A, integrated over pr, at various lab momenta (from Ref. [57c])

pp — K/

y and x-distributions for K° at 12 and 24 GeV/c for various pr-intervals are shown
in Figs 33 and 34 respectively. Figs 24 and 35 show the y and x-distributions integrated
over all pr. The distributions show considerable increase with energy (by a factor of ~2)
between 12 and 24 GeV/c, but also from 24 to 205 GeV/c [63].

Fig. 36 shows x-distributions of K from pp and n*p-collisions at various energies,
normalised to the respective total cross sections. If factorisation holds, i.e. if the fragmen-
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tation of the primary proton into K? is independent of the second incident particle, the
distributions for ntp and pp reactions should coincide in the proton fragmentation
region (negative x) at a given energy. It is seen that the data show considerable differences,
although they are smaller in the proton fragmentation region than in the region of beam
fragmentation.

pp — A, I+, 2

y and x-distributions for A, integrated over p, at various energies are shown in Fig. 30
and Fig. 37 respectively. Also here scaling is not yet reached up to 200 GeV/c. The plateau
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Fig. 40. Weighted average transverse momentum for s+ at 12 and 24 GeV/c vs x (a) and y* (b) (from
Ref. [57b])

at lower energies seems to come merely from an overlap of the two fragmentation regions.
They are more separated from each other at higher energies so that a valley develops,
indicating that the A’s come mainly from fragmentation.

Fig. 38 shows normalised x-distributions of A from pp, K*p and =*p collisions at
various energies. In the proton fragmentation regions the distributions are not too
different, which could indicate factorisation for the fragmentation of p into A at high
energies. y-distributions of £+ and I~ at 12 and 24 GeV/c are shown in Fig. 30.

c. Average transverse momenta and transverse momentum distributions

a. Average transverse momenta. The general properties of transverse momentum
distributions are known since a long time [5]:

They fall off rather steeply leading to small values for the average transverse momen-
tum {pr> ~400 MeV/c.
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The {pry-values, taken over all longitudinal momenta, are rather constant or only
slowly rising with energy (from ~300 to ~500 MeV/c).

{pry increases slightly with the mass of the particle.

{pr> is rather independent of the reaction, i.e. on the incident particles and on the
multiplicity.
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Fig. 41. Invariant cross section at @* = 90° vs pr for @ at 12 and 24 GeV/c and at ISR energies. The
full straight lines are fits of the form ¢ PPT, the dashed curves are fits of the form e~€¥ (see text) (from
Ref. [57c]

B. Average transverse momenta of pions as a function of x and y.
If one plots the average transverse momentum {p)(x) defined by

do
Pr 53— dpr
- 95

do Ip?
d3p Py
as a function of the scaled longitudinal momentum x, one observes a minimum at x =0

(sea gull effect). The effect is partly due to the phase space factor 1/E in do/d>p = E~f(p).
1t becomes smaller, if one plots instead of (95) the weighted average transverse momentum

{ppy (x) =*
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{pryw which is calculated by using the invariant cross section f(p) instead of do/d%p

do
p<E E dpr

{prow(x) = —*““*‘"i}——— . (96)
Je e

This is seen when comparing the unweighted and weighted average values in Fig. 39 of
the BHM collaboration [57] at 12 and 24 GeV/c for pp — nt. However the effect still

appears in {(Pr)y-
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Fig. 42. The same as Fig. 41 for =

If one plots {pr>, vs the cms rapidity y* rather than x (see Fig. 40b), the values are
pretty constant in the central region of small |y*|. For larger |y*|, {(py),, decreases due to
the kinematical boundary, since for large y* only small p values can be reached (see Fig. 21).
To reduce this kinematical effect, Fig. 40b shows also {p;),, vs y* for the region p; <
< 600 MeV/c. Now the weighted average is independent of y*. The result that {p{),
is nearly independent of y* in the central region indicates that the shape of the invariant
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pr-distribution is independent of y*, i. e. that f(p, y*) factorises in the central region:
flpr, y*) = glpy) - h(y*). X))

The sea gull effect in x would thus be a reflection of this factorisation in py and y*.

y. Transverse momentum distributions at accelerator energies. In the
following we considet the invariant pr-distributions
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Fig. 43. The same as Fig. 41 for protons

(see (91)) for fixed x or y. We discuss mainly the data of the BHM collaboration [57] at
12 and 24 GeV/c and treat the central region and fragmentation region separately, although
they are not yet well separated at these low energies.

Central region (x ~ 0)

Figs. 41 and 42 show for n* and 7~ respectively the invariant distributions vs p; at
x=0(0* = 90°) at 12 and 24 GeV/c and at ISR energies. Above p; ~ 0.3 GeV/c the distri-
butions can well be fitted by an exponential ¢~®?T in p;(full curves), where Bx 6.2 GeV-!
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independent of energy from 12 GeV/c to ISR energies. Thus the shape of the invariant
distributions shows early scaling. For nt rough energy independence is observed also for the
absolute magnitude of the distributions, whereas for =~ the distributions increase from
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Fig. 44. Invariant cross section vs p for 7%, @~ and protons for 0 < |y*| < 0.4 at 12 and 24 GeV/c. The
straight lines are fits of the form eC* (see text) (from Ref. [57c])

12 to 24 GeV/c and from there to ISR energies. Thus, in agreement with what was found
already from the y-distributions in the central region (Figs 22 and 23), for n* scaling sets
in already at accelerator energies whereas for n~ it is not yet reached there. For small
pr < 0.2 GeV/c the distributions at 12 and 24 GeV/c flatten off and do not follow an ex-
ponential anymore. The smalil-p; behaviour at ISR energies is not yet known.
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Fig. 43 shows the pr-distributions for protons at x = 0 at 12, 24 GeV/c and ISR
energies. An exponential fit works only above p;= 0.6 GeV/c with B=x 4.5 GeV—!
(i. e. not as steep as for n™), whereas below ~ 0.5 GeV/c the distribution flattens off.
Absolute scaling is not yet reached at accelerator energies.

The observation, that an exponential in p; does not fit the distributions down to
small py suggests that instead of p; another variable may be more useful, which for large

T
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Fig. 45. The same as Fig. 44 for K and A

pr goes towards pr. Such a variable has been proposed by Barshay and Chao [64]. They
suggest that the invariant pr-distribution should be an exponential function of u rather

than p;, where for a--b — c-- anything

. 2 4(E pa-Eap )2
®= \/m§+n2 5 nZ = (p%)c _L';i__b— = _nana’

2 B Y 0
n, = (})—+1)'—)3 Baﬁvdpapbpc' (99)
a b
For pp-collisions

n* = Bopts (100)
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where f, == cms velocity of the incoming proton. Therefore:

p = m>+Bip2 —~—+\/m +p7

m; (longitudinal mass)

Q

pr for pr>» m,

1 pp
m+ - — for pp<m (101)
2 m

14

Fig. 44 shows the invariant distributions for pions and protons at 12 and 24 GeV/c [57]
in the central region 0 < |p*| < 0.4 as functions of u. An exponential e~* in u rather
than pr is good for.all py values, as is also seen from the dashed curves in Figs 41, 42, 43.
In particular the deviation of the proton distributions from an exponential in py is rea-
sonably well described (Fig. 43) by an exponential in y. Values for the coefficient C at
x == 0 are summarised in Table II. One sees that at a given energy the = and p-distributions
have approximately the same slope in the central region.

TABLE 1I

. do
Coefficients C (in GeV-') for the fit E;,T e Cratx=0
p

12 GeV/c 24 GeV/e
st 7.11£0.05 6.48 +0.05
ki 7.26 £0.05 6.61 £0.05
P 7.43+0.13 © 6.07+£02

Fig. 45 shows the invariant distributions for X and A in the central region. Here again
an exponential in p gives good fits. The slopes, in particular for A, are steeper than for
n and p.

Fragmentation region

Figs. 46 and 47 show the distributions for pions and protons vs u in the regions
0.4 < |y*| < 0.8 and 0.8 < |y*| < 1.2 respectively. Fig. 48 shows the distributions for K?
and A in the interval 0.4 <|y*| < 0.8. Apart from the points at very low g, an exponential
in p gives also here a reasonable fit. For the heavy particles p and A the slope becomes
steeper with increasing y* and decreasing primary momentum. This can be explained by
kinematics since with increasing y* and decreasing s the upper py limit becomes smaller
(see Fig. 21).

Fig. 49 shows for four y,, intervals in the fragmentation region (y < 1) the z#
invariant cross-section as a function of p2 at 12 and 24 GeV/c [57]. The distributions are
curved concavely since they are plotted vs p3 and not py, i. e. the slope decresaes with
increasing py. Furthermore, the slope increases with decreasing y,, (kinematical effect),
i. e. the invariant function does not factorise into a y and a p; dependent part in the frag-
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mentation region, in contrast to the central region, see (97). Scaling at accelerator energies
is observed for n*, but not for =~ for y,;, & 0.5, i. e. towards the central region.

The observation that the invariant distribution factorises in the central region but not
in the fragmentation region is also seen from Fig. 50. The figure shows the slope of the

-
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Fig. 46. The same as Fig. 44 for 0.4 < |y*| < 0.8

invariant distribution vs p2 as a function of the rapidity for pZ = 0.1 and 1.0 GeV2

d do
[slope: R (log 3 )] for the whole rapidity range. In the fragmentation

dpy dprdy
region y,, < 1 (7. e. y* 2 0.6 at 12 GeV/c, 2 1 at 24 GeV/c) a y-dependence of the slope

is observed, whereas in the central region the slope and therefore the shape of the distribu-
tion is independent of y. It should be noticed, that factorisation in y and p; excludes
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factorisation in x and pr, since x depends on y and p;. Furthermore it has been pointed
out [5] that factorisation is difficult to understand theoretically for the following reason:
The observed cross section is a product of a kinematical (phase space) and a dynamical

100 £

50

100
50

P
o
S 50
e
8
l—EJ
100
>
© 50
>
ol
Nuia

/d
y*=.8

T T T T 3
c) 08<ly"<1.2

12 and 24 GeV/c

pp-+pX

—

oo
— g 5
/“\c
S|s
N
1
05}
01
005
Mar

04 06 08M 10 12

14 16

=)/ Mgl ot [Geva

Fig. 47. The same as Fig. 44 for 0.8 < [y*| < 1.2

(physics) factor. Since the kinematical part does not factorise in y and py it is difficult to
imagine a dynamical part such that factorisation is achieved for the product of kinematics

and dynamics.

6. Transverse momentum distributions at ISR energies. pr-distributions
have also been measured at ISR energies; they are treated in detail in the paper of Lillethun
and will therefore not be discussed here. Some main results are:
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The distributions for 7=+ and n~ roughly coincide; they are energy independent (scaling)
in the region of ISR energies. They can be fitted for p; < 1.5 GeV by an exponential
in pp with a slope of B 6.2 GeV/c~!. Finally they are independent of y in the central
region.

The distribution of #° at x = 0 has about the same slope as for n*.

The distributions of p and p have roughly the same slope with B~ 4.2 GeV-1, i. e. smaller
than the slope of the pion distributions.
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Fig. 50. Exponential slope of the p%-di%tribution vs cms rapidity for =+ and 7~ at 12 and 24 GeV/c and at
pr = 0.1 and 1.0 (GeV/c)* (see text for definition of slope) (from Ref. [57a])

One of the most surprising and most important discoveries made recently at the ISR
is the observation, that the e ®7T law obeyed at small p; 2 1.5 GeV/c with B~ 6 GeV-1
is not followed any longer by pions with large pr. Instead pions with large p, occur by
several orders of magnitude more frequently than predicted by the extrapolation of e~ 67T
to high py values. This behaviour was observed for n* at 90° by the Saclay-Strasbourg
collaboration, for n° by the CERN-Columbia-Rockefeller collaboration and for any
charged particles by the Saclay-Strasbourg and British-Scandinavian collaborations.
A compilation of some results up to pr ~ 9 GeV/c is shown in Fig. 51.

The following observations were made [58, 62]:

The n°-distributions at large py seem to be energy dependent in contrast to the scaling
behaviour at small pq.
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The positive particles with high p; occur more frequently than negative particles, the ratio
being nffn~ =~ 1.3.

There are indications that the production rate for all charged particles is substantially
higher than the rate for charged pions. Thus at high p; the pions seem to loose the domi-
nating role which they have at low pq, and heavier particles become more important.
The associated and local multiplicity of a pp-reaction seems to increase with increasing
transverse momentum of one particle (Pisa-Stony Brook collaboration).
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Fig. 51. Invariant cross section for #t, 7, n° vs py for large values of pr at various ISR energies (z°: CERN-
~Columbia-Rockefeller collaboration, 7%t : Saclay-Strasbourg collaboration, from Ref. [62])

A number of interesting questions comes up with the unexpectedly frequent observa-
tion of events with a high-p; particle, e. g.:

Are there several particles with high p; in such events as one would expect in case that
jets with high pp are produced, decaying into several particles with high p;? Or are the
high-p; particles single?

How is the high p balanced, by a high p; particle or jet in roughly the opposite direction
(local balance) or by particles with longer range correlations? This question of correlations
is being studied by two arm spectrometer experiments.

What are exactly the correlations between high transverse momenta and multiplicities?

Are high-p; baryons produced in pairs or due to large angle scatteling of the initial pro-
tons?
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Some answers to such questions should come soon from further ISR experi-
ments.

Two pictures have been adapted to explain the production of particles with high py,
a multiperipheral picture [65] and a parton picture [66]. We mention briefly only the
parton picture in a very descriptive way, since it seems to have good chances for explain-
ing some of the observed features [58] (n. > m_, no supremacy of pions, increase of
multiplicity): Large transverse momenta probe small distances in hadronic matter and the
flattening off of the pr-distributions may indicate the existence of a granular structure
(partons) of the proton. Two such partons inside the colliding protons can have head-on
collisions, where the line of such a collision does not necessarily coincide with the direc-
tion of the two protons. Therefore such parton-parton collisions can lead to two narrow
coplanar hadronic jets with large angle with respect to the proton direction, i. e. with
large p;. This would lead to two narrow cones, going in opposite direction, of several
particles which share the available energy unevenly, the heavier particles getting in the
average more cnergy than the lighter ones.

E. CORRELATIONS IN pp-COLLISIONS

1. Introduction

Single particle inclusive reactions have the practical advantage, that they are easy to
obtain experimentally and that single particle distributions are easy to plot. On the other
hand they reveal only a limited part of the underlying dynamics since one integrates over
the variables of all other particles and sums over all possible exclusive reactions. A step
further in learning more about the dynamics is the study of two-, three-efc. particle distri-
butions and of correlations which might exist amongst several secondaries. Some of
the questions which arise here are:

What correlations do exist between the multiplicity of the target fragments and the multiplic-
ity of the beam fragments?

How does a single particle distribution depend on the multiplicity of the reaction? How
does the multiplicity depend on the momentum of one particle (associated multiplic-
ity)?

What correlations do exist between the momenta of several particles? Here the difficulty
is encountered to separate purely kinematical correlations due to energy and momentum
conservation from correlations caused by dynamics, /. e. by deviations from phase
space.

The simplest case next to single particle distributions is the study of two-particle
distributions and correlations. Here much experimental information has become
available during the last year. We will discuss only briefly various types of correlation
studies carried out for pp-collisions, giving only a few experimental examples and referring
mainly to the reviews of Ref. [2], [5-7], [46], [47], [58], [67]
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2. Correlations between transverse momenta

As an example we mention an early paper by Friedman, Risk and Smith [68] who
have plotted for pp — pprnatn-n— at 23 GeV/c the distribution of the angle ¢ between
the transverse momenta r of two particles (transverse angle)

Fyr

Tl

cos (102)

Fig. 52 shows the distributions of ¢ for various pairs of secondary particles. The experi-
mental distributions are compared with the predictions of specific versions for two types
of models:
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Fig. 52. Distribution of the transverse angle ¢ (see text) between pairs of secondary particles in

pp — pprtataa at 23 GeVie. (a): pp, (b): pions with largest positive and negative cms longitudinal

momentum pi.,(c): pions with smallest pf, (d): protons and pions with largest magnitude py, (¢): pions

with second and third largest p. The curves are predictions of a pionisation (full curves) and a multiperi-
pheral (dashed curves) model (from Ref. [68])

dashed curves: “‘associated” model (the produced pions are associated with the leading
protons), here: CLA multiperipheral model [9]; full curves: “unassociated” model,
here: pionisation model.

As the curves show, the model predictions differ for combinations containing one or two
protons; no difference is observed for the non-leading particles (n7). The pionisation model
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Fig. 53. Average multiplicity in the backward cms cone vs multiplicity in the forward cms cone and vice
versa at /s = 30 GeV (Pisa-Stony Brook collaboration, from Ref. [7])
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Fig. 54. cms rapidity-distribution of z~ in pp — n~ + anything at 28.5 GeV/e for all multiplicities and
for n_ =1, ...,5 (i.e. 4 to 12 prongs). The curves are fits to Gaussians (see text) (from Ref. [70])
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is favoured, however good agreement could also be obtained with the diffractive excita-
tion model of Adair [69]. It should be mentioned that pure phase space predicts
a peaking towards 180° because of tiansverse momentum balance.

3. Multiplicity correlations

Fig. 53 shows at ISR energies (Pisa-Stony Brook collaboration) the average multiplic-
ity ny(ng) of particles in the backward cms hemisphere as a function of the multiplicity n;
in the forward hemisphere and vice versa. No mutual dependence of the multiplicities
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Fig. 55. Width S,_ of the Gaussian fits in Fig. 54 vs n_ (from Ref. [70])

in the two hemispheres on each other is observed. In the DFP this would indicate, that
the two incident protons fragment independently of each other at high energies.

Correlations between the average n° multiplicity and the charged multiplicity were
already discussed in Section Cl, see Figs 1-3.

4. Rapidity distributions and multiplicity, clustering effect

If one integrates the invariant distribution for 7~ in pp — n~-+anything over all p2,
the cms rapidity distribution do/dy shown in Fig. 54 is obtained by Hanlon et al. [70]
at 28.5 GeV/c (see also Fig. 24 at 12 and 24 GeV/c). It has a maximum at y* = 0, a plateau
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is not yet clearly developed at this energy. The interesting question arises, how this distribu-
tion is made up from the contributions of the various prong numbers. These contribu-
tions are also shown in Fig. 54 for n = 4 to 12 prongs, i. e. n— = 1, ..., 5. These rapidity
distributions for fixed n can be fitted reasonably well by Gaussians around y* =0,
dojdy oc exp (—y*?/2S2), where the width S, becomes narrower with increasing n_,
see Fig. 55. Similar results were obtained at ISR energies by the Pisa-Stony Brook col-
laboration, see Fig. 56: The y-distribution is flat for small multiplicities and becomes
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Fig. 56. n-distributions <77 = log (tg E) P~ y) of charged particles at 4/s = 30 GeV for various intervals

of the multiplicity (Pisa-Stony Brook collaboration, from Ref. [7])

narrower with increasing mulitiplicity. In the fragmentation picture this result can be
understood qualitatively in the following way: The fragmentation of the two incident
particles leads to two clusters with varying mass and correspondingly varying multiplicity.
The light clusters, leading to low multiplicities, have relatively large longitudinal mo-
menta; the corresponding secondaries contribute therefore to larger cms rapidities. Particles
from heavier clusters on the other hand, connected with higher multiplicities, tend to have
small cms rapidities. The separation of the two clusters is therefore the better, the higher
the energy and the lower the multiplicity is. The observed effect is a long range cor-
relation [58], since it means that selecting a certain rapidity of one particle leads to a
bias towards certain values for the multiplicity of the whole event. Since furthermore the
rapidity distribution of a second particle depends again on the multiplicity, the rapidities
of the two particles are correlated over the whole y-range.

A somewhat different display of the observed effect is shown in Fig. 57 from pp and
pn data of the Vanderbilt-BNL collaboration. The figure shows rapidity distributions for
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protons and pions from four exclusive 4C-fit reactions at 28.5 GeV/c¢ with the final state
pp-+nn with n == 1, ..., 4 charged secondary pions. The proton with the highest absolute
cms longitudinal momentum is defined as having positive rapidity; the rapidities of the other
particles are then determined. For each reaction, the upper curves give the proton rapidi-
ties, the other curves give the rapidities for the fastest, second fastest efc. pion. The figure
shows:
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Fig. 57. cms rapidity-distributions for protons and pions from pp and pn-reactions at 28.5 GeV/c with
the final states pp-+nm with n = 1, ..., 4 charged pions (see text for further explanations) (Vanderbilt-
-Brookhaven collaboration, from Ref. [67])

The leading particle effect of the proton

For low multiplicities the pions tend to have the same rapidity as the slower proton, 7. e.
to form a cluster with it (diffraction dissociation of one proton). A good separation of the
two clusters (or cluster and single proton) is observed.

For higher multiplicities the overall pion rapidity distribution is much more smeared out
and tends towards small cms rapidities.
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5. Two-particle inclusive distributions
Information about the two particle inclusive reaction
a+b —-c¢,+c,+ anything (103)

is contained in the invariant distribution (see (62))

do 4E.E, do 1 do

s Pr. S} = E.E = = e
8Py P2: 5) ! 2d3p1d3p2 s drlzdxldr%dxz n? drfdy!drgd_‘,‘z

(164)

Since the interesting information lies in the longitudinal momenta, it is useful to study the
distribution in x,, x, or ¥,, ¥, e. g. do/dridv dridy, for fixed transverse momenta or
do/dy,dy, after integration over the transverse momenta.

In two papers [70, 71] the distributions and correlations of n-n~ in the reaction
pp — n-n -+ anything have been studied at accelerator energies. As an example we show
two figures from Ref. [70] at 28.5 GeV/c: Fig. 58 shows the rapidity (y,) distributions for
one n- for fixed rapidity y, of the other n~. The distributions can be approximated by
Gaussians of the form

do (y2=y2)°
22 pexp( - ), 105
dy, P < 25?2 (105)

where the central value ¥, and the width § depend on y,. Results for ¥,(y,) and S(y))
from the fits are shown in Fig. 59. The following observations are made:

For small y,, y, == 0 and S are independent of y,, i. e. do/dy,dy, factorises into a y, and
a y, dependent part.

For large positive y,, y, becomes negative, an effect which is expected from longitudinal
momentum conservation: If one particle goes strongly forward, an other particle has
a higher probability to go backward than to go forward.

For large iy, the width § of the r,-distribution becomes larger. This is an effect from the
lower multiplicities mentioned above (Figs 54, 55): Since dog/dy is broader for lower
multiplicities, low multiplicities are enriched in events with larger y,, which then lead to
a broader distribution also for y,.

At ISR energies, with more particles being produced, kinematical effects between
two particles should be less important and dynamical correlations should show up more
clearly, if one restricts oneself to the central region. 1/o; do/dn,dn,* has been measured
for charged particles at \/E = 30 GeV in the central region, extending roughly from
n* ~ —3 to +3 by the Pisa-Stony Brook collaboration, see Fig. 60. The distributions

3 The experiment measures 9 = log (1g ©/2) which according to (76) is approximately the rapidity
» for high energy particles in most kinematical regions.
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have their maxima at 5, == 5,, independent of 5, (see arrows in Fig. 60). This indicates
positive short range correlations (depending only on the difference |n;—#,! and
not on the position 7, in the central region). This is also seen from a comparison of the
data points with the curves 1/6%do/dn,do/dy, expected for the case of no correlations.

Fig. 61 shows 1/odo/dn, dn, vs n, for ny = n, at various ISR energies (Pisa-Stony
Brook collaboration). The figure shows:

PISA-STONY BROOK COLLABORATION

2 Vs = 30 Gev
10
A
- ‘AA‘ ba staa
a Tf‘ = 1.96
o Th =0
v ’ﬂ, = -0.9
10 il ’ i A 1 5. 1
-3 3
) o 1 do ®
Fig. 60. Two particle distribution — ——— | where 77 = log{ tg — } ® y Jvs n; for three values of #,
ot dndn, 2
for charged particles in the central region at +/5 = 30 GeV. The arrows indicate the positions 7, = 7,.
1 do do
The curves give — - — + — (no correlations) (Pisa-Stony Brook collaboration, from Ref. [38))
031‘ dn, dn:

The two particle distribution increases with energy, the straight lines showing a fit propor-
tionally to /s.

The central plateau (if there is any) is smaller than for single particle distributions (Fig. 25).
This means that the probability for finding one particle is roughly constant over a wider
y-region than the probability for finding simultaneously two particles with the same
rapidity.
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6. Two-particle correlation function

The correlation function C(p,, p,, s) for the two particle inclusive reaction (103) is
defined as

o ) 1 do 1 do do
P P2 S) = — - - 2 : .
e Oy d3p1d3p2 ‘7% d3p1 d3P2

(106)
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collaboration, from Ref. [6))

i do @]
Fig. 61. Two particle distribution — — at 3y = 4 vs m(n = log (tg? = y) for charged par-

C(py, p;) = 0 if there are no correlations between the two particles ¢, and c¢,, i. e. if the
shape of the single particle distribution of one particle is independent of the momentum
of the other particle.

The corresponding correlation function C(y,, y,, s) for the two rapidities y, and y,,
after integration over the transverse momenta, is defined by:

o ) 1 de 1 do do
Vie V2, 8) = — o dy, dv,
Yis ¥2 op dy,dy, g% dy, LI_VZ

(107)
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For several reasons [67] the correlation function as defined above may not be a very
sensible quantity. We mention two of them:

The two terms of the correlation function C get contributions from different multiplici-
ties. Consider e. g. the inclusive reaction pp — 77~ -+ anything. The single particle distri-
butions in C (for pp — n~+ anything) get contributions from 4, 6, 8... prongs whereas
only 6, 8... prongs contribute to the two-particle distribution. o(for pp — anything)
finally contains all prong numbers. Thus correlations are produced artificially by these
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Fig. 62. Normalised two particle correlation function { » =log{ts— Jx yJ| —— = — — —
2 dn.dn,  ordngdn,

1 do do _
— —— — ps 1, — 1 for three values of 7, for charged particles at 4/s = 30 GeV. The straight lines
ot dny dn,

[ —n2)
2

show the expression 0.75 exp (—— ) (Pisa-Stony Brook collaboration, from Ref. [6])

different multiplicities, in particular at low energies where the average multiplicity is small,
i. ¢ where the lowest multiplicities contribute substantially to the total cross section.
This difficulty is avoided by defining a correlation function separately for each multiplicity
and then taking the sum over all multiplicities to get the overall correlation function [70].
This latter correlation function is different from the definition (106) above.

The two particle distributions for the various multiplicities have different kinematical
boundaries, which leads to kinematical correlations in the overall distribution.

The general difficulty to separate kinematical and dynamical effects from each other
was already mentioned above.

Much work has been done recently to obtain experimental information on correla-
tion functions [5-7], [58], [67], [72]. As an example we show Fig. 62 by the Pisa-Stony
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Brook collaboration at /s = 30 GeV. Plotted is (n = log (tg0/2 ~ y)

Cny, 12) _< do 1 da.d(r)/l do do

1 do do  \dndn, oy dyy dny)|opdn, dn,

(108)
oz dn, dn,

vs y1-y, for y; ® 0, —1, —2 (i. e. in the central region). Thus the points give the difference
between the points and the curves in Fig. 60. The figure shows:
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Fig. 63. Average associated muitiplicity n(y)—1 vs y for negative pions after removal of one 7~ with cms
rapidity y, for various lab momenta (from Ref, [71])

tf also {y,| < 2 (i. e. in the central region)* and if furthermore |y, —y,| is small (< 2)
The points follow roughly an exponential of the form (see straight lines in Fig. 62)

|y1—y2]|

C=075-¢ 2

with a correlation length A4 =~ 2, in agreement with the value predicted by the Mueller
analysis (see below). Thus in the central region C seems to depend only on [y, —y,| and
not any further on y, or y, alone. The decrease of C with increasing |y, —y,| and its in-
dependence on the position in rapidity space implies the existence of short range correla-
tions in the central region.

If |y,] or |y,| becomes larger than ~ 2 orif |y, —y,| becomes larger than ~ 2 (fragmenta-
tion region), the correlation function starts to deviate from the simple form (109) and
becomes y; dependent in addition to its |y; —y,| dependence. This implies the existence
of long range correlations, which do not depend only on the rapidity difference.

* This means: y;—y, between —2 and 2; —3 and 1; —4 and 0 for y; = 0, —1, —2 respectively.
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In conclusion one may say that both types of correlations (short range and long
range) are observed, if the fragmentation region is included. For particles in the central
region short range correlations show up rather purely [58].

What do the two pictures MPP and DFP predict qualitatively for the correlation
function [6, 7, 58]?

In the multiperipheral picture MPP short range correlations are expected between
particles which are close to each other in the multiperipheral chain, /. e. for which the
rapidity distance !y, —y,| is small. With increasing distance |y, ~y,| the correlation
should become smaller.

In the fragmentation picture DFP short range correlations, depending on |y;—y,|,
are expected between particles in the same cluster. Correlations between particles in
different clusters should disappear with increasing energy. In addition the rapidities of
the particles within one cluster depend on the mass of the cluster (i. e. on the multiplicity).
The correlation function therefore depends not only on |y, —y,|, but also on the position
of the particles in the total y-range. This is a long range effect.

A quantitative prediction for short range correlations is given by the Regge-analysis

of Mueller. The prediction is
C o exp (— '—y—‘;—yz’) (110)

where the correlation length A = 2. Furthermore for particles in the central region
the correlation function should be independent of energy and only dependent on |y, — y,|.

7. Integrals over inclusive distributions, multiplicity moments

In this and the following section we summarise for completeness some relations which
exist between integrals over inclusive particle distributions and moments of multiplicities
and correlated multiplicities [71, 73-76].

a. Single particle distributions

For the differential cross section do/d®p for the inclusive reaction a--b — ¢~ anything
the following relation holds:

_do Y‘ do,

oroy(p) = il n Fp (111)
n

where:

de,/d®p = cross section for the production of n particles ¢ with one of them having mo-

mentum p (notice that each event with n particles ¢ contributes n-times to da/d>p); p,(p) =

= normalised inclusive single particle distribution,

Integrating o,(p) yields:

1 " da, 1
Flzfel(p)d%:— E nJ—?dp=— E ne,, (112)
Ot d’p Ot

n
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where o, = cross section for the production of » particles ¢. Since

Zn: no,

n= o = — " 113
" Zan GTZnG ( )

n

is the average multiplicity of particles ¢, one obtains with (112):

3 1 (do _

Fi=\|odp)d'p=—|-5-dp=n (114)
J or)dp

i. e. the integral of the single particle distribution is the total cross section times the average

multiplicity for particle c.

b. Two-particle distributions

Analogously for the differential cross section do/d3p,d3p, for the inclusive two par-
ticle reaction a-+b — ¢,+c,+ anything the following relation holds:

_ do - do, .,
0102(Py, P2) = T, Z M O (115)
niny

where
do, ,,/d*p,d°p, = cross section for the production of n, particles ¢, and n, particles ¢,
with one particle ¢, having momentum p, and one particle ¢, having momentum p,.
Notice that each event with n, particles c; and n, particles ¢, contributes n; - n, times to
the two particle distribution dao/d>p,d®p,. do/d3p,d®p, = inclusive two particle differen-
tial cross section.

Integrating (115) yields:

1 :—ﬁ do,,,
F,= JQZ(P1’P2)d3P1d3P2 = - nyny J"‘ 32 d3p1d3p2 =
o1 d°pd’p,

nin2

1 :
= nanUnmz (116)
Ot

nina

where ¢,,,, == cross section for the production of n, particles ¢, and n, particles c,.

Since
Z N N300, 1
—_— nin2 .
nin, = = — N30, s (117)
niny T
Yo o

niny niny

.one obtains with (116)

1 do
F, = j@z(Pn Pz)d3P1d3P2 = _Jrg—r“ dp,dp, = nn,. (118)
or) d p,d’p,

Corresponding formulae hold for inclusive reactions of higher order.
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If ¢, and ¢, are identical particles, it is easy to see that n; - n, has to be replaced
by n(rn—1), i. e.

1 —’ do,
02(P1s P2) = — n(n— 1) —5 (119)
or p.d’p
3 3 1 do 3
Fy; = 0:(pi, p2)d°p1d’py = — | Epaps Bp,d®p, = n(n—1) = n®—n.  (120)
1

For the integral of the correlation function C(p,, p,) (defined by (106))
c(py, P2) = 02(P1> P2)—0:(P1) 01(P2) (12D

one obtains from (114) and (118) the correlation parameter f5:

fa= j c(py, p)Ppid’py = nyny—ny - my. (122)

For identical particles

fo=n(n—1)—n? = n2—n—n* = D*—n (sce (5)). (123)

Thus, if the particles are produced without correlations (C = 0), the correlation parameter
vanishes (e. g. Poisson distribution). The correlation parameter and the experimental
results for it (Figs 10, 13) were discussed in Section C3.

8. Partially integrated distributions (Ref. [73-76])

If one does not-integrate over the momenta of all particles, one obtains partially inte-
grated distributions. We mention here briefly the case of two particle inclusive reactions.
From (115) one obtains:

Fup)) = 1 [ do e i de, ,, (124
= — i, ——
APy Jd P1d3p2 d’p, or 2 iy )

niny

where do,,,,,/d*p, = single particle distribution of ¢, for fixed multiplicities #, for particles
¢; and n, for particles ¢,. Correspondingly, the partially integrated correlation function
yields

filpy) = XC(PD Pz)d3pz = Fy(py)—o:(p1)" ny =

mnz n2 n‘nz nmz it
= — n1n2 — = n1 n,—n,).  (125)
o1 Yd D1

ninz ANz ninz
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Physical interpretation of f3(p,)

The normalised probability P(n,, p,) to find n, particles ¢, when one particle ¢, has

momentum p, is given by
z . do, .,
1
d3p1 do_

P(n,, py) = -

i
= E ny —-2 (126)
Zn danlnz O-TQI(pl) ! d3p1
1 43 ny

with Y P(n,, py) = 1.
Thus according to (125)

F2(py) = 01(p) * Y P(ng, py) (3 —13) = 0.(py) (ny(py)—ny),

f—((%l) = ny(p)—ns, (127)

where n,(p,) = average multiplicity of particles ¢, when one particle ¢, has momentum p,
(average associated multiplicity). If no correlations exist between ¢, and c,, the
average multiplicity of ¢, is independent of the momentum p, of ¢, i. e. nj(li) = 1,
and f>(p,) = 0. For identical particles ¢, and ¢, formulae (124), (125) and (127)
have to be replaced by

1 d
Fy(p) = - E n(n—1) df; , (128)
1 do, -
f(p) = o E n p [(n—1)—n], (129)
L n(p)—1—n, (130)
o(p) )

where n(p)—1 is the average multiplicity of the remaining particles ¢ after ane particle ¢
with momentum p has been removed.

Experimental results on partially integrated distributions and associated multiplicities
can be found in Ref. [71], [73-76]. As an example we show in Fig. 63 for pp-collisions

at various momenta between 13 and 28.5 GeV/c the average associated multiplicity n(y) — 1

of the remaining n—’s, after the removal of one n~ with rapidity y, vs y. n(y)—1 has been
computed according to the formulae given above from the single and two particle distri-
butions for pp — 7~ anything and pp — n~n~+ anything respectively. The figure shows
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a dependence of the average associated multiplicity on y: it decreases with increasing y.
This correlation is a reflection of the fact discussed above (Figs 54-59) that large y-values
are preferentially connected with small multiplicities whereas for large multiplicities the
cms rapidity distribution becomes narrower.
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