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MULTIPLICITY DISTRIBUTIONS IN PROTON-PROTON
COLLISIONS

By A. WROBLEWSKI

Institute of Experimental Physics, University of Warsaw*

(Presented at the XIII Cracow School of Theoretical Physics, Zakopane, June 1-12, 1973)

General features of the multiplicity distributions in proton-proton collisions are
critically analysed.

1. Introduction

One of the easiest experiments to perform using bubble chamber or other technique
is to study the distribution of the number of charged particles produced in inelastic colli-
sions. New experimental results on charged multiplicities in proton-proton collisions in
the range from 50 to 300 GeV/c have recently been reported and the subject has become
quite fashionable to discuss.

In this paper I am going to give a review of experimental results and empirical formulae
and models. T shall also present some new results of my own which have not yet been
published in a written form!.

2. Experimental data

I shall discuss available data on charged muitiplicity distribution in proton-proton
collisions in the range from 3.7 to 303 GeV/c [1].
It is convenient to use the probability P of producing a given number of charged
prongs in an inelastic collision:
P — 0" — an
" T inel - Zon,

M

* Address: Instytut Fizyki Doé$wiadczalnej, Uniwersytet Warszawski, Hoza 69, 00-681 Warszawa,
Poland.

! The results on the skewness (Section 3), the integrated correlation functions (Section 4) and the
criticism of an early semi-inclusive scaling idea (Section 6) have been first reported in lectures that I delivered
in Aachen, Bonn, Hamburg, Heidelberg and Munich in December 1972. The modification of Buras-Koba
scaling (Section 8) has been first reported in my lectures at the universities in Stockholm and Lund in
April 1973.
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where o, is the topologic cross-section for n-prong events and o, is the total inelastic
cross-section. Fig. 1 shows P, as a function of the average charged multiplicity <(n)

Y no,
(ny = %0' . (2)

n

The lines following the values of P, for each » have been drawn by hand only to show
that there exists some regularity in the multiplicity distribution.
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Fig. 1. The probability P, for producing »n charged prongs as a function of the average charged multi-
plicity {n>

It is worth noticing that some large statistics experiments in the range between 12 and
28 GeV/c (corresponding to (n) between 3.5 and 4.5) recorded P,’s below 10~*, whereas
small statistics *‘pilot” experiments performed at NAL went down only to P,~ 103,
thus losing a large » tail of the distribution (P, ~ 5:10~° should correspond roughly to
34-prong events). That is an important point because the average multiplicity {n)
and many other characteristic parameters of the distribution are rather sensitive to P,’s
for multiplicities which are far from the average.

Another point concerns the cross-sections for inelastic two-prong events. The two-
-prong sample is subject to the largest scanning loses and it has then to be corrected for
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elastic scattering events. The resulting sample of two-prong inelastic events may be systemati-
cally biased. Since topologic cross-sections are obtained by normalizing the total number
of events to the total inelastic cross-section, the possible systematic errors in P, influence
also the probabilities P, for n > 2. This point is illustrated in Fig. 2 which shows a compi-
lation of inelastic two-prong events in pp collisions. The large spread of points at similar
energies is then reflected in the spread of parameters describing multiplicity distribution

Two-prong inelastic cross section
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Fig. 2. Cross-section for inelastic two-prong events in proton-proton collisions. The straight line has
been drawn by eye

(see Section 3). It seems also that the inelastic two-prong cross-section at 303 GeVjc is
abnormally low (by ~ 1 mb) compared to values at lower momenta. This point will be
discussed further in Section 3.

3. Parameters of the multiplicity distribution

Let us list various parameters describing the multiplicity distribution:
1. Mean charged multiplicity <n), defined already by (2).
2. Central moments of the distribution

e = {(n—=<m)). 3
3. Absolute moments
e = <n*>. (4)
4. Absclute moments can also be represented by the parameters
k
k= %ZTZ . 3

The following parameters are of special interest:
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5. The width of the distribution defined by the square root of the second central moment,
or the dispersion

D = (n*y=<{my*)"? = (u)'"2. (6)
6. The asymmetry of the distribution as measured by the skewness
Ha
P = D3 @)
7. The kurtosis of the distribution
Ha
V2= e (8)

As mentioned before, the moments of the distribution and related parameters are
sensitive to the low and high multiplicity tails. It is then reasonable [2] to use also quantities
depending mostly on cross-sections for typical inelastic events which are best deter-
mined experimentally. These are:

8. The median multiplicity M,, defined by the equation
Y P,= Y P,=05 ©)

n<Mg n>Mg
and

9. The modal multiplicity, M,, which gives the position of the peak (or mode) of the
multiplicity distribution

di y(n) =0, (10)
n n=Mp

where p(n) is the function describing the multiplicity distribution.

The dispersion of the proton-proton multiplicity distribution has been found to
depend linearly on the average charged multiplicity [3]. Experimental data in the range
from 4 to 303 GeV/c are well described by the formula:

D = A{n)—B, (1)
where the coefficients 4 and B are equal within errors. The best fit to the formula
D= A((n>-1) (11a)

gives 4 = 0.576£0.008, so that 4> ~ 1/3. These results are illustrated in Figs 3 and 4.
As it has been mentioned before, significant spread of experimental points is due to system-
atic errors in cross-sections for two-prong inelastic events.

The skewness of the proton-proton multiplicity distribution appears to be constant
in the range from 12 to 303 GeV/c (see Fig. 5):

y1 = 2/3. (12)

Also the kurtosis y, seems to have a constant value of about 3.2 in the same range
of momentum, but in this case experimental uncertainties are much larger.
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Making use of (11a) and (12) one can easily obtain expressions for the frequently
used quantities <{n)/D, C, and C;:

{n) 1 <n)
D A my-1 "
_ <n2> 42 _ M 42 1 A
3
Cy = %;) = (C, = 1) +3C, -2, (15)

These quantities are plotted in Figs 6, 7 and 8. If (11a) and (12) is true also at higher energies
then:

o, 1.732, (13a)
D

C, — 1.333, (14a)
C, — 2.128, (15a)

for {(n) - .
It has been suggested by Slattery [4] that the normalized moments C, and C; have
already reached their asymptotic limits in the range from 50 to 303 GeV/c. In my opinion

T T T T T T
4+ -
pp interactions
o~
S
N
s
< 3F .
v
1}
A
wsf,
[\
"
Q
e 4T .
2
&
3
Q
9
<)
- _
0 ] 1 | 1 ] L L

2 3 4 5 6 7 8 9
Average charged multiplicity <ngp>

Fig. 3. Dispersion D as a function of <n)>. Empty circles in this and other figures show low energy data
not corrected for strange particles
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the experimental evidence for this conjecture is rather weak, because it is based almost
only on the 303 GeV/c point. At this energy the reported two-prong cross-section is ab-
normally low, which results in rather low values of C, and Cj. If one increases the question-
able cross-section by 1.2 mb from 1.8 to 3 mb (compatible with the results at lower energies)
one obtains the values of C, and C; as indicated by crosses in Figs 7 and 8, and Slattery’s
conjecture loses support.
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Fig. 4. The ratio of ({n>—1) to D for pp collisions. Broken line shows the value 4 = (\,’.3:)“
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It is not my intention to correct other people’s experiment. I should like only to point
out the importance of two-prong inelastic cross-section which is the most difficult to deter-
mine experimentally 2.

4. Integrated correlation functions
The two-particle correlation function is usually defined as follows

c( ) = 1 d% 1 do do (16)
Yo Ya) = o dydy, a® dy, dy, ’

where ¢ is the total inelastic cross-section. Integrating (16) over the whole range of rapidities
Y1, Y2 We obtain

fo = [C1, y2) dyydy, = {n(n—1)) — (n)?, an

2 In his calculation Slattery [4] has made use of the preliminary results of the 50 GeV/c experiment
as reported at the Batavia Conference. The two-prong inelastic cross-section at this energy has been since
then corrected down by 0.43 mb [1]; this decreased the values of C, and Cs. Figs 7 and 8 show values
calculated from the published data [1].
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Fig. 6. The ratio <n»/D for pp collisions. The continuous line shows the predicticn based on formula 13)

because
2

do d‘o
J— dy = {(ndc and dy,dy, = {(n(n—1)) - 0.
dy dy,dy,

Formula (17) can also be rewritten, using (6), in the form

fr = D*—<n). (17a)
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Fig. 7. Second norma]ized moment C, for pp collisions. The continuous line has been calculated according
to formula (14). The cross shows the “corrected” point at 303 GeV/c (see text)
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Fig. 8. Third normalized moment Cj for pp collisions. The continuous line has been calculated according
to formula (15). The cross shows the “corrected™ point at 303 GeV/c (see text)

We find therefore that the integrated two-particle correlation function f, is determined
by the parameters of multiplicity distribution. It is also easy to obtain the formula

fi= SC(Yh V2, ¥3)dy dydys =
= {n(n—1)(n—2)) = 3{n(n—1)){n)+2{n)* = puy+2{n>—-3D> as)

Let us now consider the correlation functions for negative secondary particles in pp
collisions. We have

n_ = $(n—2) 19)
and (lla) is to be rewritten as
D. = A((n->+1). (20)
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Fig. 9. Integrated two-particle correlation function f, for negative particles in pp collisions. The dashed
line has been calculated from formula (21)
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Fig. 10. Integrated three-particle correlation function f; for negative particles in pp collisions. The dashed
line has been calculated from formula (22)

Taking A% = } we obtain from (17a) and (20):
fi=Dl=(n > =3<n - 3 <nd+ 15 (21
In a similar way we obtain an expression for f3:
__opy [ +3D1-2n) 2
nENR Ty T D® T3
[ =0.128¢n_)*—0.808{n_»*-+1.096{n-» — 0.234, 22)
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where we used (11a), (20) and (12). Results (21) and (22) are shown in Figs 9 and 10.
The corridor of errors drawn in Fig. 10 was calculated taking 0.01 and 0.02 as the errors
of A and y,, respectively. We see that the leading term in (22) is positive, so that if (11a)
and (12) are true also at higher energies, the correlation function f;~ will become positive
near {n.) ~ 4.5, which corresponds to p;,g = 800 GeV/c.

5. Empirical formulae

For some time the Poisson distribution has been the most popular candidate for de-
scribing the charged multiplicity distribution. It has been shown [3] however, that none
of existing models, which incorporate the Poisson formula, can reproduce the experimental
linear dependence of D on {n). The coincidence of model prediction with experimental
data at some value of (n) is purely accidental.

We shall now discuss some other empirical formulae which have been proposed
during the last years.

(A) Czyzewski and Rybicki [5] have generalized the Poisson formula for non-integer
variables by replacing a factorial by a I'-function and introducing one free parameter.
Their formula reads

my s
LU Ty )
P, =" N exp (—d°), (23)

(d 2 <D> +1)

where (n) and D are taken from the experiment and d is the only parameter to be fitted.
Using new variables

n—<n>
= -, =D-P, 24
x 5 y (24)
we obtain
2d2(h—1)
= —d¥, 25
¥ 0 exp (—d°) (25)

where & = dx-+d?+1. The formula of Czyzewski and Rybicki with d = constant gives
a good fit to all experimental data for pp, zp and Kp interactions (see Fig. 11) for pL.p S
< 30 GeV/c. It appears that the formula (25) is not very sensitive to the value of d. In Fig. 11
the curve is plotted for d = 2. (The best fit value of d is 1.7 for pp interactions and 2.2
for mp interactions.)

The recent pp data from Serpukhov and Batavia make it possible to check the Czy-
zewski-Rybicki formula for p, ,g = 50 GeV/c. Fig. 12 shows the ratio R of P, (experimen-
tal) to the probability P, (theoretical) calculated from the formula. Instead of random
fluctuations of points around R = 1, the data seem to show some systematic behaviour
around the position of the average charged multiplicity. Assuming that the deviations
from R = 1 depend on n—{n), the distance from the average value, one may plot in one
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graph all the data for 50 GeV/c < pyap < 303 GeV/c, as shown in Fig. 13. Fig. 14 shows
the result of combining the points into groups of five what reduces the errors and allows
us to see better the systematic deviations from the Czyzewski-Rybicki formula.

One has, however, to remember that the largest systematic deviations occur at the
wings of the multiplicity distribution which contain few events, so that the y2 values for
individual experiments are still reasonable. It appears that the Czyzewski-Rybicki formula
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Fig. 11. Low energy data for charged multiplicity distributions fitted with the CzyZzewski-Rybicki formula
(from Ref. [5])

with d = constant gives wrong prediction as to the position of the mode M, as illustrated
in Fig. 15. In order to get a better fit one has to decrease d as p; g increases. At 303 GeV/c
one gets for d~ 1.2 a good fit and a correct position of the mode.

(B) Tati and Yokoyama [6] have introduced a scaling parameter which transforms
a given distribution into a Poisson one. They define

n.=—n_ (26)

and assume that using n’ one gets a Poisson distribution, so that

(n_(n_—~1)y—<n_3* =0. @7
Then
fr = (a-—1)<{n
or
a. =1+ f2 (28

(noy
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Fig. 13. Ratio R (see Fig. 12) as a function of n— {n>. Experimental data are from the range 50 GeV/c <
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Fig. 15. Mode M, as a function of {n) for pp collisions. The dashed line (CR) has been calculated from
the Czyzewski-Rybicki formula with d = 1.7. The decrease in d decreases the slope of the dashed line

and further
S5 = (a-—D(@-—2){n-),
S = (o—— Y oa——2)(o-.—3)n), etc. (29)

This is an elegant representation of multiplicity distribution. However the scaling para-
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Fig. 16. Scaling parameter «_ of Tati and Yokcyama plotted as a function of {n_>

meter o_ is changing with energy in a rather erratic way, so that it is difficult to predict
its behaviour at higher energies. If one assumes that at high energy a_ grows linearly with
{n_) one obtains simple predictions for integrated correlation functions [7]. It is however
seen in Fig. 16 that the linear approximation for {n_> > 1 is not very good.
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Fig. 17. The ratio a/<n> for § = 2.215 in Bozoki et al. formula

(C) Hoang [8] has also proposed to modify the Poisson distribution by introducing
a compound distribution

P, = P(a) (1+pn)’, (30)

where P,(a) is an ordinary Poisson distribution with an average a. Hoang’s formula thus
contains two parameters to be fitted at each energy.
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(D) Bozoki er al. [9] have proposed an empirical formula
P,=c-n""lexp| — L (31)
" 202 )° ‘

where ¢ is a normalization constant determined by the condition ) P, = 1, and «, § are
n

two free parameters to be fitted at each energy. The authors of Ref. [9] have obtained
good fits to the data below 30 GeV/c, the data used were however of rather poor quality.

Recently Weisberg [10] used the Bozoki er al. formula to fit high energy data above
50 GeV/c. He has determined

B = 2.215+0.015 . (32)

by fitting the normalized moments C, and remarked that the further normalization
condition

2 P, =<n) (33)

determines then o as a function of {#). For py g = 50 GeV/c 2/{n)> is indeed almost
constant and (31) becomes an one-parameter formula (see Fig. 17). However at lower
energies formula (31) with' B = const. as given by (32) and a determined by (33) gives
poor fits to the data. In order to obtain better fits one is forced to allow both « and B
to vary, so that (31) is a two-parameter formula. Weisberg’s conjecture (32) can be criticised

on the same grounds as the one of Slattery (see Section 3).
{E) Parry and Rotelli [11] have proposed a truncated Gaussian formula

b 2 1 (x—a)? 3
T \/; 14 a—2 CXP[— 202 ]’ (34)
"[* (a\/é)]

where
2 2
Y, T
o

In the case of usual Gaussian formula the continuous variable x runs from —oo to -+ oo,
whereas for pp interactions x = n is always == 2, hence the reason to introduce a truncated
Gaussian in which x runs from 2 to +o0. Then (34) is a two-parameter formula with a
and o to be fitted at each energy. For example @ = 1.75, ¢ = 2.81 at 19 GeV/cand a = 7.0,
o = 5.64 at 303 GeV/c. The fits are good. It is not easy, however, to extrapolate a and ¢
to higher energies and to predict the multiplicity distribution.

Concluding this section we find that many one- and two-parameter empirical formulae
can provide reasonable fits to the experimental data. We have to await more accurate
data, especially in the range above 50 GeV/c, to be able to make a proper choice.
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6. Semi-inclusive scaling (KNO scaling)

Starting with the Feynman scaling assumption Koba, Nielsen and Olesen [12] have
shown that one can obtain the following asymptotic result

(ny - P, T»w(-i), (36)
e ()

where v is an energy independent function; its shape is not determined by theoretical

arguments and is to be found from the experiment.

Slattery [4] has examined the data in the 50-300 GeV/c range and found out that
the plots of <{n) - P, vs z = nf[{n) are indeed very well represented by a single curve (see
Fig. 18).

A polynomial fit to the scaled data yielded

w(2) = [3.79 2+33.7 23— 6.64 z°+0.332 27} exp (—3.04 2) (37)

and the normalized moments C, were found to be practically independent of energy (see
Section 3). Slattery has taken these results as an evidence for the precocious onset of the
KNO scaling in the range from 50 to 300 GeV/c. The result is quite surprising because
KNO scaling prediction is based on explicitly asymptotic arguments which are not yet
valid in the energy range considered. In particular, in this range the inclusive cross-sections
have not yet developed a well defined rapidity plateau and (#) does not yet increase as
log s.

As remarked by Slattery, the data at lower energy (19 GeV) do not follow the universal
curve {37). In fact one can see from Fig. 19 that all the data in the range from 12 to 35 GeV/c
seem to follow better another curve which is (1) narrower and (2) higher at the maximum
(by ~ 20 percent) than (37); the modes for the two sets of points are not in the same
position.

The difference in width can be understood as follows. When one plots P, as a contin-
uous function of n (making an interpolation for non-integer n) then one gets a curve
of a unit area because of the normalization condition: ) P, — | P,dn = 1. The curves

for each energy are then rescaled by multiplying the horizontal axis by (n)>~! and the
vertical axis by {(n), so that the normalization is maintained. Thus if the width of each
curve, or D, is proportional to {n), i.e. D/{(n) = const., the scaled curves will all have
the same width. But we know already from Section 3 that the condition D/{n) = cons{.
is approached slowly because D/({n)>—1) = const. When we use instead of z another
scaling variable z' = (n—1)/({n>—1) and plot P,({(n>—1) vs z’, we find indeed that
all the points in the 12—303 GeV/c range follow better a single curve (Fig. 20), although
the differences in the position of the mode are still present.

Now, the position of the mode -provides a sensitive test for semi-inclusive scaling.
The average value of y(z) is, by definition, at z = 1. For the rescaled curves to have similar
shape it is then necessary that

Mo _ 2y = const. (39)

(nd
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Fig. 21. The ratio M,/<n> for pp collisions

However Fig. 21 shows that the ratio in question changes smoothly in the whole energy
range considered and it does not seem yet to approach a plateau. Using Slattery’s fit (37)
Schlitt [13] has computed z, = 0.8 and %(z,) == 1.6 for the “universal” curve in the 50 to
303 GeV/c range. It can be seen from Fig. 21 that Schlitt’s value gives indeed an average
position of M,/{n) for the considered energy range but the physical meaning of this result
is doubtful.
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If one assumes that the ratio M,/{(n) is approaching a limiting value as 1/{n>? one
can get a good fit to data giving lim M,/{n) == 0.6 which is still rather far from what

300

we find in the range from 50 to 303 GeV/c.

The question of an early KNO scaling has been also investigated by Fiatkowski and
Miettinen [ 14], who have studied several “reasonable” theoretical models. In these models
the approach to the asymptotic KNO scaling limit occurs extremely slowly. The authors
conclude that the real KNO scaling limit (if any) may be very different from that deduced
[4] from the present data.

My conclusion of this section is that there is rather weak evidence for an early semi-
inclusive scaling in the 50 to 303 GeV/c range.

7. Buras-Koba scaling (BK scaling)

Recently Buras and Koba [15] have proposed to use a variable

4

_raor(ny 39
w——4—.. —z Zn—)> ()

to describe the normalized multiplicity distributions at high energies. The authors have
introduced a new scaling function

2
D(w) = E o P, = !

T n nz

w(2), (40)

where (z) is the KNO scaling function (see Section 6); the factors n/4 and 1/r in (39)
and (40) are for normalization purpose. The pp data in the 50-303 GeV/c range fit very
well to a simple function

P(w) = exp (—w) 41)

which gives a straight line with unit slope in the semi-log plot of &(w) vs w (see Fig. 22).
The formula (41) is directly connected to the empirical formula (31) of Bozoki et al. with
B = 2. In order to explain this simple behaviour the authors have introduced a Local
Excitation Model in which the hadron-hadron collision is imagined as consisting of colli-
sions between a number of constituents of one hadron and those of the other. The details
of the model are given in Ref. [16].

The Buras-Koba conjecture of an early semi-inclusive scaling (BK scaling) is open
to the same criticism as Slattery’s observation on the early KNO scaling (see Section 6).
When one plots the lower energy data from the 12-28 GeV/c range using BK variables
one finds large deviations from (41). The points for two prongs and the high multiplicity
tail lie below the straight line given by {(41), whereas the points for four prongs are above it
(see Fig. 23). This would suggest that different multiplicities approach the limiting distri-
bution (41) in a different way.
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Fig. 25. Rama Rao-Sarma plot for pp collisions in the range from 10 to 28.5 GeV/c (from Ref. [17]). The
insert shows details of the plot for small 7 (two-prong events). The straight line in this and preceding figure
represents the exponential given by formula (43)
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Rama Rao and Sarma [17] pointed out recently that the available data for pp colli-
sions scale better in terms of a new variable

n(n—1)
n = IR
{n(n—1))
which being proportional to the number of pairs of charged particles may provide a better
insight into the mechanism of production process. The new scaling function

1 (n%=nd

x(n)=§' 1

gives indeed rather good representation of data in both lower and higher energy range
(see Figs 24 and 25). One may notice, however, that the points for two prongs in lower
energy range lie systematically below the straight line (43) as in the case of the BK scaling.

My own modification of the Buras-Koba scaling is explained in the following section.

(42)

P, = exp (—1) 43)

8. Two-component model fits

During the last years a large variety of models has been proposed in order to explain
general features of inelastic collisions of particles at high energy. The observed features of
topologic cross-sections have ruled out many of these models as only mechanisms of
particle production. For example, an essential feature of diffraction models is that the
topologic cross-sections eventually become independent of energy, for which there is yet
no evidence even at lowest multiplicities. On the other hand, the fact that above 50 GeV/c
the multiplicity distribution becomes broader than a Poisson distribution is rather difficult
to explain using a short range correlation model (of multiperipheral type).

Many authors [18-24] have pointed out that the features of multiplicity distributions
can be explained in terms of the Two-Component Model first proposed by Wilson [25].
In this model it is assumed that there exist two different mechanisms of particle produc-
tion: (i) diffractive dissociation producing mostly low multiplicities and (i/) a non-diffrac-
tive production of particles (‘‘pionization”), for which there is plenty of models (e.g. multi-
peripheral or thermodynamic model).

The two-component model approach provides an excellent fit to the multiplicity
distribution below 303 GeV/c and allows also for an extrapolation to higher energies.

I shall first discuss the paper by Van Hove [19], who has shown that the linear rela-
tion (11) can be simply understood if there are indeed two distinct classes of inelastic col-
lisions. Let us denote by p; and p, = 1 —p; the probabilities for an inelastic collision to
belong to the components 1 and 2. Let {»;> and D, be the average multiplicity and the
dispersion for component i:

D} = (nfy—<n?, (44)
where i = 1,2. We have then
n) = py {ny>+psy <ny), (45)
(n?*y =p,; <n21)>+P2 (n§>
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Using (44) and (45) it is easy to show that the dispersion D for the full set of inelastic
collisions is given by

D? = (n*) —<{n)? = PlDf'}“Png +p1ps (Kny)—<np)% (46)
For {(n> » <{n,) we obtain

D~ A{n)—B,
where

A= (PZ/Pl)”Z;

piDi+p2D;
24{ny

B = A(n,>— 47

Experimentally, the slope A is constant in the range from 4 to 303 GeV/e (see Section 3).
This means that the p, are constant. Using (11a) one finds p, = 3/4, p, = 1/4 for pp col-
lisions. For np collisions in the range from 4 to 25 GeV/c the slope A = 0.44 [3] which
gives p, ~ 0.16. However, recent data at 50 GeV/c [26] and 205 GeV/c [27] for np
interactions show the slope A4 close to the value found for pp collisions (see Fig. 26).

As an example of the two-component model fit to the multiplicity distribution I shall
discuss the paper of Fiatkowski and Miettinen [20]. They have assumed that the ratio of
the two components is energy independent. For the non-diffractive part the simplest choice
of independent emission of pairs of secondary particles was assumed. This leads to a Poisson
distribution in multiplicity of negative pions n. for the non-diffractive component. The
(2n_-+-2)-prong cross-section was then calculated from the formula

enos M
¢ — +0D, s (48)

Oan_+2 = 0€
n_
where o, is the total cross-section for non-diffractive (“‘pionization”) component and ¢”
refers to the diffractive part. The contributions 012),,_+ » were found to be constant in the
range from 15 to 303 GeV/c for n =0, 1, 2, 3 (that is for 2, 4, 6 and 8 prongs). The ratio
o”/o, was found to be 0.28, what corresponds to p, = 0.233.

The extrapolation of this simple model to higher energies gives a very interesting
prediction of a dip which should develop between the diffractive and non-diffractive com-
ponents inside the ISR range (see Fig. 27). At 5000 GeV/c the two components would be
already largely separated and the cross-section for 4-prongs would be about twice as large
as those for 8 and 10-prongs®*. This conjecture has however little support in the results of
emulsion studies of cosmic ray jets. For example, the “world survey” sample of jets
at ~ 10000 GeV contains many more 10-prongs than 4 or even 6 prongs (see Fig. 2 in

3 Other authors find similar values for the percent of diffraction. The values of p, are: 0.16 [21],
0.19 {23], 0.25 [22] and 0.27 [24].

4 This prediction of a bimodal multiplicity distribution at high energies is common to all other models
with energy independent diffractive component [21-24].
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in the two-component model of Fiatkowski and Miettinen (from
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Ref. [28]). Because of the well known uncertainties in emulsion studies we cannot take
this results for more than a hint against the model with constant diffractive component.
But a good ISR experiment at 1500 GeV/c would be capable of proving or disproving
this simple approach.

Finally I shall discuss my own modification of the semi-inclusive scaling in the spirit
of the two-component model. As discussed before the idea of semi-inclusive scaling in-
volves the constancy of <{n);D ratio. Experimentally we find that ({(»)>—1)/D = const. in

oif kD
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f l i
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Fig. 28. The plot of @ vs w’ in the modified Buras-Koba scaling. All data from Ref. [1} are included

the range from 4 to 303 GeV/c. Let us then modify the Buras-Koba variables w and @ by
replacing n by (#—1). We have therefore

, 71:( n—1 )2
wo=—{— ,
4\ (n>—1

(<"n>_}l)ﬁ P, (49)

’

1
4

Fig. 28 shows a semi-log plot of &’ vs w’. More than 130 data points at 21 momenta between
3.7 and 303 GeV/c are used. The straight line fit

@' = A exp(—Bw') (50)

gives a very good description of data for w = 1. For w' < 1 experimental values liec mostly
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above theline (fitted for w’ > 1). Fig. 29 shows the deviations cf data points from the straight
line separately for the five lowest multiplicities. It is seen that the “second component™ is
concentrated at 2 and 4 prongs and only for p; 45 Z 70 GeV begins to show up in 6 prongs.
Fig. 30 gives the sum of all deviations from Fig. 29. The total cross-section for the second
component increases rapidly at low incoming momenta and then levels off at ~ 4.5 mb
(i. e. 159 of inelastic cross-section) above 20 GeV. In other words, the empirical formula
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Fig. 29. The deviations of experimental points from the straight line fit shown in Fig. 28. The deviations
for higher multiplicities (not shown) are very small and do not show any systematic behaviour (as in the
case of 10 prongs)

(50) with two constant parameters 4 = 0.78 and B == 0.86 can account for about 859,
of the total inelastic cross-section.

I have of course no proof that the purely empirical formula (50) describes the non-dif-
fractive component and that the second component as given in Figs 29 and 30 represents the
diffractive part of inelastic pp collisions. However the second component as found with
the use of formula (50) fits exactly in the place in which we do expect the diffraction part.
One may notice also that in this approach the second component contribution to each
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multiplicity is no longer fixed constant although its total cross-section is obtained to be
roughly constant. The unlikely bimodality of the multiplicity distribution at higher energies
may thus be avoided.

6(mb) 4} | Mi ]% l % %

J
5 10 100
p  GeVic
LAB.

Fig. 30. The total cross-section for the szcond component as a function of laboratory momentum

9. Conclusions

1. The study of charged multiplicity distributions in pp collisions has revealed im-
portant empirical regularities.

2. There is rather weak experimental evidence for an early onset of KNO semi-
inclusive scaling below 300 GeV/c. Present energies are probably still far from the Asymp-
topia. As remarked by Giacomelli: “The asymptotic region would seem to be round the
corner, but this conclusion was already reached at previous conferences and therefore
cannot be taken too seriously” [29].

3. The two-component models provide excellent fits to the multiplicity distribution.
The diffractive component is found to be between 15 and 30 percent of the total inelastic
cross-section. The bimodality of multiplicity distributions predicted by many models for
energies above 1000 GeV has to be investigated by ISR experiments.
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