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A multiperipheral model, based on a quantum field theory approach (equations of the
Bethe-Salpeter type) is discussed. Statistical processes are taken into account as an irreducible
part of the Bethe-Salpeter equation. The fire-ball formation is obtained as a result of statistical
processes of such a type.

Multiperipheral models are very close to the orthodox quantum field theory. The
latter can explain some properties of the multiple production processes, but it is not able
to give a full description of these processes. It is very important to separate the proper-
ties, which we can explain from those which cannot be explained from the point of view
of the orthodox quantum field theory.

I would like to remind here the prayer quoted by Dale Carnegie (Dale Carnegie
“How to Stop Worrying and Start Living”"} or rather to make a paraphrase of this prayer:
“God, grant me

the serenity to accept what I cannot change (or to give up what cannot
be done);

the courage to fight for what I can change (what can be done);

the wisdom to distinguish between the two.”

It seems to me that the multiperipheral theory offers these possibilities.

There are several various multiperipheral models; however, the differences between
them decrease step by step. At present there is only one important difference. It concerns
the existence (or non-existence) of the fire-balls (or clusters).

1. The general properties of multiperipheral models

The multiperipheral models are based on the diagram for the inelastic processes
shown in Fig. 1. They correspond to the diagram for the imaginary part of the elastic
scattering amplitude shown in Fig. 2. The vertices correspond to the emission of a single
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particle, or of a resonance, or to more complicated processes accompanied by the emission
of many particles. The particles, exchanged in the process, can be pions, resonances, reg-
geons (in particular — Pomerons), and so on.

The general qualitative properties of the models are well known [1]. It is well known
also that the multiperipheral models give the microscopic structure of the Pomeron, in

I

Fig. 1. Diagram defining multiperipheral Fig. 2. Multiperipheral diagram for ima-
model ginary part of the elastic scattering am-
plitude

particular — the increase with energy of the interaction radius and of the transparence [2].
One can explain the physical meaning of this effect. Let us consider the target diagram,
that is the plane, perpendicular to the collision line. The picture of the process in this
plane has the form shown in Fig. 3. The average transverse component K, of the mo-
mentum (the transfer between the neighbouring vertices) is independent of the vertex

Fig. 3. The target diagram for the multiperipheral process

number and of the total energy s. The distances r, ~1/K; have the same properties.
The number of the vertices is proportional to In s.

All directions of K, (and r,) are equivalent. In this way we have a picture similar to
that of the Brownian motion. In each vertex the secondary particles are emitted. These pro-
cesses are going simultaneously, because the intervals are space-like.

The total radius R, is proportional to the square root of N: R, ~ VN~ Ins.

On the other hand, the width of the diffraction peak is proportional to the reciprocal
of the radius squared, and — consequently — b ~ R7* ~ 1/lns. 1t is also evident that
the average density of the “‘matter” decreases with energy.

These characteristics of the multiperipheral processes are well known also in the
Regge-pole approach.
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2. The apparatus of multiperipheral models

Let us consider a homogeneous chain, consisting of the exchange of the identical
particles of mass m (pions for example). One can write the equation of the Bethe-Salpeter
type for the imaginary part of the amplitude 4, at r =0 (see Fig. 4):

_ F; F_
A, = A+ *—/—:j A, A, D*(kP)ds dsydk*. %))
4+ ipi%s
Usually p} = —m?. This equation is a direct consequence of the quantum field theory [3].

The term A, is the irreducible part; it corresponds to diagrams without the two-particle
intermediate state in the z-channel. The parameter ¢ = 1/(2r)? is much smaller than unity;
this fact is very important.

In the t-channel the phase space has its natural form and ¢ is the natural normalizing
factor. In the s-channel the phase space is transformed and it spreads out to large values
of the dynamical variables. The “normal” region, where s, 5,, k? are of the order of m?,
corresponds to a very small fraction of this phase space. The appearance of such small
numerical factors is a very interesting phenomenon in many problems of particle physics.

In the complex orbital momentum representation the equation (1) has the form
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By solving the equation (1) (or (2)) we get the amplitude 4 and its properties, namely:
(1) The position of the poles in lplane. (2) Their residua. (3) The slopes of the trajectories.

{4) The properties of each of the iterations, that is the cross-sections of the processes with

Fig. 4. Diagrammatic representation of Eq. (1)

a given number of the vertices. (5) If the characteristics of the inelastic processes are known,
we can obtain a complete picture of the inelastic process. (6) If the value of 4, (or the
value of @) is known for the r-channel, isospin 7 =: 1, we get the corresponding values
for the p-trajectory.

If the chain is not homogeneous, then one can use two approaches:

One can calculate the properties of the inelastic processes directly (as it was done
in CLA work [4], or in the paper of Levin and Ryskin [5]). Unfortunately, it is very
difficult to obtain the analytical properties of the amplitude in this way.
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One can use another method, let me call it “matroshka” (a Russian toy):

One can start from the equation (1), with pion exchange; one can write for 4, a similar
equation with a ¢ meson exchange, and so on. Both methods can be used only if, in the
final step, the irreducible part consists of the emission of a single particle (or a single
resonance} only. It seems to me that there is no basis for optimistic expectations that the
process is that simple. In the language of the Carnegie’s prayer such an optimism is the
result of the lack of “wisdom”.

In reality there exist irreducible processes of the following type:

a) Interaction in the final state (see Fig. 5).

b) Interference processes (see Fig. 6). The relative contribution of these processes
depends on the value of the momentum transfer, and increases for large k2 (in particular,
when the exchange of heavy particles takes place).

¢) Many particle exchange, leading to a “statistical process”. It is possible that the
latter process is the result of the multiple interactions in the final state, that is — the process
{c) can be considered as a result of the process (a) (see Fig. 7). Let me explain this.

7 . i —
Fig. 5. Diagram representing interaction Fig. 6. Diagram representing interference
in the final state processes

Let us assume that two resonances are created as a result of the peripheral interaction.
Fig. 7 illustrates this process using the rapidity scale. The distance dy = |y, —ys| is large.
Consequently, the probability of interaction between particles 2 and 3 is smalil. (The prob-
ability of interaction between particles 3 and 4, or 1 and 2 is large because {y, —y,! and
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Fig. 7. Diagrams representing ‘‘statistical process™

i¥3— ¥a| are smali; however this interaction does not lead to an increase of the multiplicity,
because the energy values s, and s, are low.) If nevertheless particles 3 and 4 interact then
there appear two new resonances and the corresponding picture is such as shown on
Fig. 7b. In this case all distances Ay have the values more close to each other than in the
first case. This leads to an increase of the probability of interaction between particles
belonging to various vertices. Besides, the interaction between particles which earlier
belonged to one vertex, may now lead to the generation of new particles. This leads again
to a further decrease of distances 4y and to an increase of the probability of the next
interaction. It can be expected [6] that the process is dynamically instable, and, conse-



889

quently, leads to a statistical object [7]. We are dealing now with a trigger-like process:
if a first interaction in the final state does not take place then the process is a peripheral
one. If, on the other hand, a first interaction occurs, then the process develops as a chain-
like reaction, resulting in a statistical system [8].

3. The quantitative multiperipheral model

At present, in the Lebedev Physical Institute at Moscow, we try to undertake the
quantitative work on this program [9]'.
The irreducible part of the zmz interaction consists of the following terms:
Z = Zres'*'zdiff +Zc
or — in terms of the cross-sections (4 = \/ 12pi%s 6):
E = Eres+adiff +Ecs (3)

where .., = the cross-section for the resonance interaction, &4y = the diffractive inter-
action, ¢, = the so-called ‘““‘central” interaction due to the many particle exchange (beyond
the resonant peaks).

We choose the following form of the last term:

_ z z -1
6. =a (1 - —> F(K*)F(p®) (—) . 4
Zf Zo

In order to describe the dependence of &, on k* and p?, we assume that the process is
similar to a deep inelastic electromagnetic process, and we use the formula:

4 1
A+K2 1+pKE’
4 = 0.3 GeVZ; B =0.035 GeV-2; Bk* = o /o,.
This formula was found as the result of a fitting procedure of the Bjorken scaling rule to

the experimental data on the deep inelastic electromagnetic processes [11].
In this way we obtain values of free parameters given in Table 1.

F(k?) =

TABLE I

a™ The “cross-sections” of 4 mb

a™N {the “central” : 8 mb

aNN interactions 10 mb

s7*  The threshold parameters 1.6 GeV?
s}'N of the “central” interactions (the “end” of the resonance region) 6 GeV?

I The pole position of the “central” interactions 0.97

Ares The parameters in the form factors of the resonance 1.5 GeV?
A4, interactions and pseudoscalar-vertex 0.18 GeV?

1 The low-prong events were successfully described quantitatively by a multiperipheral scheme (without
the term A.) developed in [10].
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In order to-determine them we used the experimental data on the elastic scattering and.
energy dependence of the total cross-sections of #N and NN interactions. More exactly,
we used the two-pole parametrization of the amplitude [12, 13}:

s ap+ypt s ap’ +yp't
A=o, [2 <2—M—2) exp opt+/2 1 <2M2> exp gp,t:| , (6)

where M is the nucleon mass.
For ¢ = 0 it corresponds to:

0 = 0. (1471//s).

In Table II there are given the “experimental” values of the parameters (the result of
fitting (6) to the experimental data).

TABLE 1I
“Exper” “Basic” (input) “Calculated”

1 j«p — the pole position of the Pomeron 1 | 1 !
2 |yp —the slope of the Pomeron 0.2 GeV-2 0.5 ©0.15GeV?
3 |@pr — the pole position of the P’ 0.5 0.5 :
4 |yp  —its slope 0.5-1.0 GeV-2 [ 0.7 Gev-2?
5 ogoN — asymptotic cross-section for 7N 23 mb 23 mb |
6 O'I:ON — the same for NN 38 mb 38 mb }
7 | r™N __the relation between the “resid- 1

ues” of the P’ and P poles in =N i

interaction 1 1 ,
8 | NN _the same in NN interaction 1 1 |
9 | o™ — the logarithmic derivative of the 1 1 "

residue of the zN amplitude 3.5 GeV-2 ( 3 GeV-?
10 | ONN __ the same of the NN amplitude 4.5 4.5 |
11 |a, —the intercept 0.5 Los
12 |y, — the slope 0.5-1.0 : 0.9
13 | f, ~—-the residue | 140 140

We have 8 “free parameters” and 13 “experimental” ones, some of them we choose as
“basic” parameters and then calculate the remaining ones. The “calculated” values of the
parameters are given in Table II. They are in a rather good agreement with the “exper-
imental” values. Finally, we obtain the values of free parameters given in Table I. Let us
make few comments on their values:

1) The pole of the “central” part is close to unity: I = 0.97.

2) The value of the “central” nn cross-section is relatively large. In the “reasonable’
range of energies about 309 of the nm collisions are nonperipheral. This is the result of
the small value of the parameter .

3) The values of the “central” zN and NN cross-sections are also relatively large.
This fact is very important from the point of view of the inelastic processes properties.
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Fig. 8. The high energy behaviour of total cross-sections (the dashed line gives the total cross-section,
the full lines represent iteration cross-section)

The large values of the above mentioned cross-sections have nothing to do with the para-
meter e.

To achieve a better understanding of the situation we consider another model: without
“central” aN and NN interactions at high energies. In this case it is possible to calculate
the NN cross-section, if 7N cross-section is known:

2
S JF(kZ)Dzdkz j ds, (s, K?) [ K+ KW]

\/s3

V(s + k2= M2 + 8> M? (s, + k2 — M?)

1673

One can see that the relative contribution of the P’ pole in the NN cross-section should
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be greater than that in the 7N cross-section, due to the fact that + < % and K < 1. This is
the situation in all the multiperipheral models without “central” zN and NN parts.

This picture is in contradiction with the two-pole parametrization. When central
parts o™ and o™ are present, then the two-pole parametrization can be satisfied due to
the threshold behaviour of the central parts. This problem is closely connected with the
recent experimental data on the cross-section increase with the energy. We shall discuss
it later on.

4) The contributions corresponding to various iterations replace each other very
slowly (see Fig. 8). This follows from the fact that [ is close to unity. The result of it is the
small value of yp = 0.15.

5) In the P’ pole the main contribution comes from the “‘resonance” irreducible part.
Consequently the slope of the P’ trajectory is not small.

4. Description of inelastic processes

In order to describe inelastic interactions it is necessary to know the characteristics
of the process in the vertices. These are well known for the “resonance’ and ““diffractive”
parts.

For the central interaction we use a statistical approach in the Pomeranchuk form
[14-16]. I would like to remind this approach. The process is considered as a statistical one.
At the beginning (that is at the time of formation of the statistical system) we are dealing
with a cloud of heated matter, characterised by the temperature 7;, and the volume V.
The size of the system is of the order of Ja .

If the energy is high (M* > 10 GeV), we use a hydrodynamical approach of Landau[17].

In the case of lower energy (M* < 10 GeV) the hydrodynamical pressure does not
play any important role, but the effects of viscosity are most essential. In this case the
evolution of such a statistical system leads to a decrease of the temperature T, the matter
density o, the entropy production, and to an increase of size; it is assumed that the
system at any time is in equilibrium. When the density ¢ and the temperature T become
“critical” (i. e. po; ~ m,/1 fm)® ~ m%, T.. = m_, these values being independent of the initial
conditions), the interactions between the particles become weak enough and, in conse-
quence, the system decays into free particles. Their angular distribution is quasi-isotropic
and the average number of particles is {n) ~ M*/¢, & ~ 0.45 GeV. From the point of
view of the multiperipheral approach (for nucleon-nucleon interactions) only the final
state properties are important.

However, the development of the system in time may be important for problems
connected with the fireball transition through the nucleus. These are discussed by Za-
lewski [18]. The cross-section for the fireball-nucleon interaction may be time-dependent
and small at the initial moment, as was suggested by Migsowicz [19]. Indeed, the cross-
section of fireball-nucleon interaction is of the order of magnitude of its size squared
(the system being a classical one). The size itself increases with time relatively slowly,
because its expansion proceeds with the velocity of sound, (C; < 1 (see Fig. 9)). It is
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possible that at high energy such a statistical system moves through the nucleus without

interaction (due to its small dimensions).

Coming back to the proposed scheme we would like to remark that it is a combined
one because the process is partly described by the quantum field theory and partly by

o (- Q**

Fig. 9. Increase of the fireball radius

the statistical theory (the irreducible part). At this important point we hope to use the
“wisdom to distinguish between the two™. Let us stress that the phenomenological descrip-
tion of the statistical process does not introduce any new free parameters. Since all para-
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meters discussed above are determined from the properties of elastic scattering, we start our
description of inelastic processes practically without any free parameters.

We have simulated about 20000 events of pp collisions at the energy E = 70 GeV.
All information on the events is stored on magnetic tape and ready for use in any kind of
analysis.
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Figs 10-15 give some traditional distributions. The pion and nucleon distributions
vs p, and “x” seem to be quite ‘‘natural” and we hope that they will agree with
experiment. The distribution vs the multiplicity and the correlation of {(n,> and n.. also
agree with experimental data, but it can be simply the result of the “multiduality”: the
results of all the theoretical models are consistent with all the experimental data (Mor-
rison).
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5. The modern problems

The fireball (or: cluster) model

The first observation of the fireball effect was done by the Krakéw group fifteen
years ago. Formation of two groups of particles (two fireballs) from 5-7 charged pions
without nucleons was observed at high energies [20]. Each group decays in its own system
isotropically. At lower energies one fireball was observed [21]. At the present moment
the question of creation of particles in groups (or clusters) is one of the most interesting
problems and is widely discussed (in particular, at this School).

Now, the clusterization is defined in a wider sense i. e. by clusters one understands
two different processes: (a) the formation of resonances (such a cluster consists of a small
number of particles and can include a nucleon); (b) the formation of fireballs.

- TN
- 5TN G
_ Ea T T(1.b)
o T(1.b) -
g T (f.b)
o N TN
a b

Fig. 16. Diagrams representing the producticn of fireballs

We shall discuss the second type of clusters. In the framework of the discussed scheme
the formation of fireballs is due to the decay of the statistical system of the central nx inter-
action. The creation of one or two fireballs is described by Fig. 16a and Fig. 16b respec-
tively.

However, in the framework of our model the cross-section for such processes is small
(about 1 mb). It increases with the energy, but very slowly, this is the 1esult of large value
of the N “central” cross-section (the first and last vertices take too much of energy).
It can be shown that the cross-section for the fire-ball formation is higher (about 10 mb)
if the ™ is assumed to be equal to zero (or — very small [22]). Thus, the problem of
the fireball formation and the problem of the cross-section dependence on energy are
closely connected with each other.

At very high energies E; ~ 10'3-10!5 ¢V there can appear in the framework of the
model clusters of quite large masses. It follows from an extremely slow decrease of ao7"
and the contributions from iterations (see Fig. 16a, b) with increasing energy.

The problem of the cross-section dependence on energy

There are two different problems, namely:

a) Superasymptotic behaviour in the nonrealistic energy region.

b) An increase of the cross-section in a realistic energy region (preasymptotic beha-
viour).

We discuss only the second, more realistic problem.
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ISR-data [23] demonstrate an increase of the pp cross-section at energies E; ~ 1011
—10'2 eV described by a fit [24]:

s 2

Op, = 38.4+0.4 <1n m) .

Such a fit corresponds to a pole of the third order at the point / = 1 or to three usual

poles close to each other and to this point (the difference between these two possibilities
is not important in the energy region under discussion).

Two remarks can be done about the relation of this fact to the multiperipheral theory.

First, the two-pole parametrization (6) should be corrected. Some parameters are
changed. For example, such parameters as [ and 47" are changed very slightly, the para-
meters 4,, 4,,, Q}N and s} (also being changed) are of the same order of magnitude as
in Table I. The most important effect is noticeable for parameters a™ and a"" (i.e. &N
and 6°7) because they are very sensitive to the role of P’ trajectory. There are some argu-
ments in favour of the statement that the values of 6™~ and ™ are negligibly small for the
new parametrization. If it is the case, the role of fireball formation increases. Thus we hope
that the new parametrization helps to make the model better.

Second, a new problem arises about the properties of a third order pole in the total
partial wave amplitude. It is easy to show that the behaviour of ;" must be quite similar
to the following one:

2 sz’ —1’

X" ~ (Ins) I<i

ie. in a wide energy interval g, (s) must increase logarithmically and then slowly decrease
in the asymptotic region. It is possible to explain this behaviour. I would like to remind
the Heisenberg paper in which he used classical approach to the multiparticle production
problem and got the result: ¢ ~ In® E [25].

:BZ%E"

Fig. 17. The collision of the two classical objects

I repeat his arguments. Let us consider the collision of the classical objects with
exponentially distributed densities (Fig. 17)

rme

o ~1"

The particles do not interact if the impact parameter (radius of the interaction R) is so large,
that the excitation is less than M* < 2m,. In this case radius R increases with energy
logarithmically and

o~ R~ In?E,.
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At very large impact parameters (R > m™,) this argument is hardly a correct one:
one can say that here Heisenberg violates the Heisenberg uncertainty relation. However,
at finite energies where the radius is still small enough (RS m; ') the classical aproach to
the “central” collisions is reasonable. Because of lack of time I shall discuss the second
problem only.

The distribution of the transverse momentum of the secondaries

In the region of p, < 1.5 GeV the differential cross-section is well described by the formula:

do S0P ST

—_—~ P ~ e

dp,

in the statistical model this corresponds to the temperature equal to the pion mass T = m,,.
At the large p, the distribution is proportional to p7°. Moreover [27, 28]:

In the region of 2 < p; < 3.5 GeV the fraction of heavy particles (K, p, p) is greater
than the average.

The multiplicities are higher than the average ones.

There is an excess of the positive particles.
From the point of view of the multiperipheral model higher values of the transverse momenta
of the secondaries are due to the contribution of a high momenta of the virtual exchanged

IB | res
_(CEs Si

Fig. 18. Diagrams representing interaction with high transverse momentum

particles. Let us consider a diagram in which &k, is high enough (Fig. 18a, b). This leads
to the generation of real secondary particles with large p, in two cases:

a) The process in one of the vertices is of diffractive type. In this case p, ~ k,
and the secondary particle is identical with the exchanged one.

b) There is a resonance formation in one of the blobs. In thiscasep, <k (p, ~ 0.5k )
and the fraction of heavy secondary particles should be larger than usually. The calculation
of the differential cross-section in the region of 2 < p, was done on the basis of the
formula (5) [29]. The results are shown in the Fig. 19. The dependence of the type i’
appears quite naturally, and the agreement is satisfactory.

One can easily explain the increase of the multiplicities. Namely, for higher values
of k and, consequently, k2, the distribution of the s, is shifted to larger values.

It seems possible that, if this picture is correct, the large fraction of heavy particles
(and the positive particle excess as well) should be observed in the intermediate region of p ,
only. In the 1egion p, > 5 GeV the secondaries should be mainly pions. It would be interest-
ing to test experimentally this suggestion.
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The model developed above can be used to evaluate the triple Pomeron vertex. The
inelastic processes with irreducible diffraction part shown in Fig. 20a correspond to the
elastic scattering amplitude of the form shown in Fig. 20b. Because the multiperipheral
chain produces Pomeron in the elastic process, one has to deal with the triple Pomeron

1+ ~e‘5P.L
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-5 = G50 GeV

.
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Fig. 19. Large transverse momentum distribution of z° at ¢ = 0 for different ISR-energies. Lower (1)
and upper (2) theoretical bounds for s = 2850 GeV? are shown. The limiting form of the distribution at
s — oo is shown by the curve 3

vertex. The processes of Fig. 20a, can be calculated in the framework of the model. The
triple Pomeron vertex is expressed through the parameters of the model [30]

6(ota)’

gp(0) =~ Z(1-10)* ~0.15 GeV™L

a

It agrees quite well with the value of gp(0) =~ 0.2 GeV-! obtained from the peak of proton
spectium at x ~ | at ISR energies {31]. As a result of such an agreement one can state

that the contribution of inelastic diffraction processes is correctly reproduced by the
model.

In conclusion I would like to make two remarks.
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The first is a pleasant one

A multiperipheral model, which uses a relatively small number of free parameters,
is able to give an almost complete description of inelastic processes.

The second remark is a sad one

The interaction radius increases with the energy and most of the information obtain-
able from the experiments on inelastic processes concerns only the interactions at relatively
large distances. The information on the innermost structure of the elementary particles
can be obtained only from the analysis of very rare events.

a b

Fig. 20. Diagrams for calculation of the Triple-Pomeron vertex

Anyway one can hope to obtain new and interesting information from the study
of clusterization. It may happen that many particle processes (in particular those of the
statistical type) cannot be described by means of the contemporary quantum field theory
[6, 7]. In that case one can expect that the investigation of clusterization processes will
lead to the development of the theory itself.

1 am grateful to E. L. Feinberg and 1. M. Dremin for very fruitful discussions.
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