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CORRELATIONS AND MULTIPLICITY DISTRIBUTIONS IN
MULTIPARTICLE PRODUCTION

By M. Le BELLAC
University of Nice*
{Presented at the XIII Cracow School of Theoretical Physics, Zakopane, June 1-12, 1973)

A general discussion of Short Range Order hypothesis and its comparison with
experimental data on correlations in inclusive spectra is given.

1. Introduction

In the absence of a theory of strong interactions, one of the main purposes of the
present experiments on multiparticle production is to discover empirical regularities in
the experimental data, in the hope that these regularities will be useful later for a more
fundamental understanding of hadrodynamics. Some of these empirical regularities have
already been known for many years, from cosmic ray experiments, and have been confirmed
later by accelerators. The following regularities are well-known:

Transverse momenta are strongly damped and the average value pp of py is of order
350 MeV.

There is a leading particle effect, and the leading particles take off about half of the
available energy in the collision.

The average multiplicity grows much slower than what would be allowed by energy-
-momentum conservation: the growth of the charged multiplicity n, is fairly well approxi-
mated by n, = 2 In (s/m?)—4, where m,, is the proton mass.

In the past two years, another very important property of multiparticle production
has been confirmed by experimental data: the one-particle inclusive spectra have been
shown to satisfy the scaling behaviour conjectured by Wilson [1] more than ten years
ago, and more recently by Feynman [2], and Yang er al. [3]. A very attractive way of
understanding the scaling behaviour of one particle inclusive distributions is to assume
that multiparticle production obeys what may be called short range order (SRO). This
concept will be discussed in detail in Section 3; let me only say now that it means lack
of correlations between particles with very different rapidities.
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However, this SRO hypothesis is only one possible way of deriving the scaling behaviour
of one particle inclusive distributions. It is well known for example that the so-called
fragmentation models [4] may also be compatible with scaling. In order to test the SRO
hypothesis in an unambiguous way, it is necessary to reasure inclusive two-particle
distributions, from which one can compute correlations. The main purpose of these
lectures is to discuss the SRO hypothesis, and to compare its predictions with the present
experimental data. 1 shall show that the present data are fully compatible with SRO, and
it is likely that this property will have to be added to the previously well established
properties of multiparticle production.

The plan of these lectures is as follows: in Section 2, I collect some useful definitions
and kinematical results. In Section 3 I discuss in detail the SRO hypothesis and its conse-
quences, and I make the comparison with experimental data on correlations in Section 4.
Section 5 is devoted to an analysis of multiplicity distributions, based on SRO, and finally
in Section 6 I examine the correlations between charged and neutral particles.

2. Basic definitions and kinematical results

In this Section I give some useful definitions and kinematical results; in order to come
as soon as possible to the discussion of experimental data, 1 shall omit most of the proofs,
which can be found for example in Ref. [4] and references quoted therein.

Kinematical variables

If a secondary is produced with longitudinal momentum p; and transverse momentum
p1» one can define the usual Feynman variable x and the rapidity y by:

L= dx s, (2.1)
pL = \/p%+m2— sinh y = mysinh y. 2.2)

Let me recall that the basic virtue of the rapidity v is its simple transformation law under
a longitudinal boost ¢:

y—=y =y—q

Then, because of Lorentz invariance along the z-axis, any physical quantity can be only
a function of rapidity differences. In a high energy reaction a+b — ¢+ ..., the
rapidities of particles a and b in the center-of-mass system are given by:

In—, y~--In—. (2.3)
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The difference Y = y,—y,, which is Lorentz invariant, is the length of the rapidity plot
and its value is given by:

Y = y,—y, = In (sjm,m,). 2.4)
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The rapidity of a secondary ¢ will be limited in absolute value:

o /ll s) 1 Y4l m,m,
L -In{ —s )= - n .
Y =2M\m?) " 2 m?

In practice the most important case is that of a proton-proton collision, the produced
particle ¢ being a pion; (2.5) becomes:

(2.5)

1 i
Ve <<= Y+In ~-Y+4+1.9. (2.6)
2 m 2

n

However, the yield of pions having |y,: > 4 Y is small. In order to fix ideas, let me give ¥
in three typical cases:

Epp (GeV): 25 300 1,500
Y: 4.0 6.5 8.2

Finally, in experiments where only the production angle © is measured, there is an approx-
imate relation between @ and y, valid provided pZ > m?:

y ~ —Intan @/2 = 5. 2.7)

Inclusive distributions (case of identical particles)
Let me call N,{p; s) the normalized inclusive one particle distribution for the reaction
a-+b — c(p) + anything:
1 do

Ni(p;s) = - —, (2.8)
o dp

where dp = d3p/E and 1 consider for the moment identical particles only. The normaliza-
tion cross-section is generally chosen to be the total inelastic cross-section but other choices
are possible; this problem is important and will be discussed further in Section 5. Similarly
one defines the normalized k-particle inclusive distribution for the reaction a-+b —
—ci(p1)-+eapr)+ ... - p) +anything:

[ do
Ndpys s Pis8) = = —————. 2.9
g dp, ... dp;

The simplest guess for the two-particle distribution N, would be to take the product
of two one-particle distributions:

Ny(p1, P23 5) = Ny(py1; SIN(p2; 8). (2.10)

The correlation C, will be defined as the difference between the actual two-particle
distribution and the guess (2.10):

Co(p1, P25 ) == No(ps, P23 )= Ni(py; NP, 5). (2.11)
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Similarly the 3-particle correlation will be defined as the difference between N, and
the “expected” value:

C3(pss P2, P33 5) = N3(py, P2, P3; 5)—
— {Ny(p1; s)Co(p2, P3; 5)+2 permutations} —
~ Ni(py; 8) Ni(p2; 5) Ni(ps; ). (2.12)

The general form for C, can be easily inferred from (2.12).

Relation between integrated correlations and moments of the multi-
plicity distribution

Let me call P(n, s) the ratio of the partial cross-section o,(s) for producing » final parti-
cles to the total cross-section a(s): P(n, s) = 0,(s)/o(s). Since a(s) = Z o,(s), P(n, s) is a prob-

ability distribution (P(n; s)>>0 and Y P(n; s)=1), which is usually called the multiplicity
distribution (MD), one can define various moments of the MD in the standard way, and
important result is that the integral of the k-particle distribution N, is equal to the factorial
moment of order k, which I denote by F;:

F, = n(n—1)...(n—k—+1) =
=Y n(n—1)...(n—k+1)P(n)
= | Ndp,...dp,. (2.13)

(I omit the variable s, when it does not play any role.) This relation generalizes the well-
-known result:

The integrals of the correlations C, are often referred to as Mueller’s moments [5] and
denoted by f;:

S = § Cidp, ... dp,. (2.14)

From (2.11), (2.12) and (2.13) we immediately derive:

Si :F1:E»

fo =F,—F{ = n(n—1)—n?,

f3 = F3—3F1F2+2F13

= n(n—1)(n—2)—3nn(n—1)+2n°. (2.15)
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Generating functions

In probability theory, it is often convenient to work with generating function; let
me for example build the following generating function:

G(z) = Y z"P(n). (2.16)
Clearly:
dh
dz Tk G(Z) oy = Fy
so that:
—1)
6= (Zk') F,. 2.17)
o "

Now, a well-known technique in statistical mechanics allows to relate the factorial moments
to Mueller’s moments [5]; in fact one can prove that

(z—D*
G(z) = exp {Z i fk} = exp {g(2)}- (2.18)
k

In order to see the usefulness of G(z), let us assume that all f,’s, but f;, are zero. Then
G(z) = exp [a(z—1)] and

1 d'6@)
nt

dz"

_re”

P(n) =

(2.19)

z=0 n!

which is the Poisson distribution. This is not surprizing: if all the correlations vanished,
then we would have f, = 0 for k >> 2 and the Poisson distribution corresponds simply
to independent emission of particles. More generally, Mueller’s moments f, measure the
departure from a Poisson distribution; in particular f, < 0 means that the MD is narrower
than Poisson, f, > 0 means that it is broader than Poisson.

Another useful generating function is that corresponding to the usual moments v,:

— d*
v =n*= E n*P(n) = —H(z) ,
z=0

H(z) = Y €"P(n). (2.20)
To the central moments y; = (n—n)* corresponds the generating function
H(z) = Y e’("""P(n) = e“”'H(z). (2.21)

These generating functions are easily related to one another; for example, the following
relation will prove to be useful:

H(z) = G(&) = exp {g(e)). (2.22)
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Finally, the so-called characteristic function @(¢) is closely related to H(z):

®(1) = Y, €""P(n) = H(it). (2.23)
It may be worth-while to remark that the factorial moments F, vanish when k& is larger
than the maximum number of final particles \/ s/m; this is not true for the other moments f;,
v, and p,. Furthermore G(z) is a polynomial in z even if s is large, but fixed.

Energy-momentum sum rules

Because of conservation laws, the inclusive distributions and correlations must obey
sum rules. If P, is the energy momentum 4-vector of the initial state, energy momentum
conservation easily leads to the following sum rules:

fdpp,N((p; s) = P,. (2.24)

The physical interpretation of this sum rule is clear: the energy-momentum of the produced
particles must add up to the initial energy-momentum. The most general form of the sum
rule reads:

k
§ dpp,Cioss(p, P15 -, Pi3 ) = (— ; Pi)CP1s -5 Pis 5)- (2.25)

(For k =1 one should take of course C, = N,.) Integrating this equation k times we
get:

p N
J—ﬂ dp; .. dpCilpys s P D) = (=) (k=D)L (2.26)

This equation clearly shows that the k-particle correlation function cannot vanish iden-
tically.

Generalization to non-identical particles

Let me conclude this section by indicating briefly how the previous results are generalized
in the case of non-identical particles. The general formulas will be obvious once you have
seen them written in the case of 2 kinds of particles, say ¢ and d. Let me first build the
generating function:

Gz 20) = z ze°zg P(ne, ny). (2.27)

Nesnd

The binomial moments Fy_,, will be given by:

ketka
ch,kd = 5."3;0—2_5'1 ch(zc’ zd) et (228)
and
Fop, = lf o .. dpl. (2.29)
¢ o )dpi ... dpidpi ... dp, ¢
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If one kind of particle (say d) is not detected in the experiment, one needs only set z, = 1
in G ie.

Gz V) = Y, 2eP(ne,ny) = 3, zeP(n,) = G(2,). (2.30)

Be,nd

On the contrary, if the experiment does not distinguish between ¢ and d (for example if
¢=n", d=rn".and one does not measure the sign of the charge), we have:

P(m)= 3 P(ngn,),

n=nc+ng

G(z) = Y, Zz"P(n, ny) = Gz, 2). (2.31)

n=nc+tng

Now, if ¢ = n+ and d = 7n~, charge conservation imposes that n, = n, so that G 4z, z;)

is essentially a function of z.z,. More precisely (taking ¢ = +, d = —) we have, if Q is
the charge of the initial state (Q = 0):
G, (z4,z)= Y 2% P(n,,n),
ny=n-+Q
Gi-(z4,2) = (2.)%°G_(z42.), (2.32)

where G_ is generating function for negative particles. Thus, from (2.31), the generating
function for all charged particles G(z) is given by:

G(2) = G, _(z, 2) = 22G_(Z%). (2.33)

From (2.31) and (2.18) we get the relation between Mueller’s moments of the charged
MD and the negative MD:

n,=Q+2n_,
fzc = _Q+2f1—+4f2—,
f3 =20+12f, +8f; . _ (2.34)

The most important point is that there are correlations coming from charge conservation
alone: even if f,~ = 0, we shall find f5 ~ n_, at high energy. Hence it is probably better
to study correlations between negative particles, in order to avoid this trivial effect.

Finally the energy-momentum sum rules will be modified in a rather obvious way;
for example (2.24) becomes:

§ dpp, (Ni(p; )+ Ni(p; s)) = P, (2.35)

3. The short range order (SRO) hypothesis

As we shall see in the next Section, all the present experimental data can be under-
stood in terms of a simple semi-empirical picture which, following Krzywicki [6], I shall
call the short range order picture. In order to define precisely the SRO hypothesis, let me
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consider the k-particle distribution Ny (y,, ..., y;, 5), where I have integrated over the
transverse momenta pr, and let me order the rapidities on the rapidity plot (Fig. 1):

=Yoo SV V2 Koo SV < Va1 = Vo

N, is a priori a function of (k+1) rapidity differences which I can choose to be:

Vi—Yors V2= V15 oo Yo = Yi—15 Y+ 1™ Vi (3.1)
Yo=Ye Y 17 Yk Yke1 =Ya
4 . i N . 17
4 1
\Ny(}')
s ‘ |
1 —L_>l
| i
I I
NN
Y
Ya

Fig. 1. Schematic plot of N;(»)

Then the SRO hypothesis can be stated as follows:

(SRO): If the rapidity difference yyu,~y, i=1,...,k+1, becomes large, then
(1) N, becomes independent of this variable and (2) it factorizes into
a product of two terms:

N(Y1=Yo, s Yas1— Vi) = A’Il(ci)(h_)’o, s Yi— Yim1) X
XMik‘-i)(yi*i-Z_yi-i—ls coos Vit 1= Vi (3.2)

where the superscript indicates the number of variables. Notice that the factorization
hypothesis (2) implies of course the weaker statement (1), so that both statements should
be tested experimentally.

Finally I must precise how large the rapidity difference is: (a) If [y, —y,!| (or |y, —¥.l)
is larger than some characteristic length L, then N, is independent of this variable. (b) If
|¥:.1—¥:!| is larger than some characteristic length £, then N, is independent of this variable.

One can get estimates for ¢ from various considerations. In Mueller’s theory, for
example, one gets &1 o~ ap(0)—og(0) ~ 4, where ap(0) (2x(0)) is the intercept of the
Pomeron (secondary Regge pole) trajectory. If the correlations are due to clustering,
with isotropic decay of clusters, one gets  ~ 1 from the fact that the transverse momenta
are limited to ~ 350 MeV/c. These estimates seem to be confirmed by experiment, and
it is then useful to remember that, at least for pions

E~ L~ 12 (3.3)

I shall first illustrate the SRO hypothesis on the simplest case, that of the one-particle
inclusive distribution. N, is a priori a function of y—y, and y—y,, but it should become
independent of these variables when they are larger than L in absolute value. One can
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then distinguish three different regions on the rapidity plot (assuming ¥ > L!, Fig. 1):
(a) iy— ) < L; this region is known as the fragmentation region of b, where ¥, is a func-
tion of y—y, only. (b} \y—y,! < L; fragmentation region of 4, where N is a function
of y—y, only. (¢) ly—y,0 > L, ly—y, > L; central (or pionization) region, where N,
should be independent of both y—y, and y—y,: then N, is an energy independent
constant. Of course this is nothing but the “old” scaling behaviour conjectured by

A2
|
j r -
N
| |
o L//
B A A v
i
| ,

J
R L

r : b/ig

Fig. 2. Two-dimensional rapidity plot

Wilson [1], reformulated in terms of rapidity variables. Let me also remark that (a), (b)
and (c) imply the logarithmic growth of the multiplicity:

n= le(Y)dy =a,Y+b;. (3.4)

The above discussion is probably familiar to everybody so that I can turn immediately
to the more interesting case of 2-particle distributions. One can now separate the two-
-dimensional (y,, y,) rapidity plot into five regions (Fig. 2).

L. y, and y, in the central region and !y, —y,! < & : N, is a function of (y; —y,) only.

II. y, and y, in the central region and !y, —y,| > £ : N, tends to a constant value:
Na(y1, ¥2, 8) = as.

III. y, (for example) in the fragmentation region of @ and y, in the central region:
N, is a function of (y,—y,) only.

iV. y, in the fragmentation region of b (for example) and y, in the fragmentation
region of a : N, is a function of (y;—y,) and (y,—y,), which factorizes into a product
of two functions of (y,—y,) and (y,—y,) respectively: N, (¥, V2, §) = My(y1 —¥3)
M(y,—y,). For two-particle correlations, this is the only result which depends on the
factorization assumption.
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V. y; and y, in the fragmentation region of a (for example): N, is a function of
(i—y) and (y2—y): No(yy, y2, 8) = M3(y1~¥a ¥2—y,). This picture is of course over-
simplified, and should hold only when the length of the rapidity plot is very large.
However the important point is that ISR results are in qualitative agreement with this
picture, as will be discussed in the next Section.

At this point, it is useful to make the connection between the SRO hypothesis, and
a stronger assumption which has been often put forward in the past two years, and
is known as the short range correlation (SRC) hypothesis. If one makes this assump-
tion, one is then able to relate the two-particle inclusive distribution to one-
-particle distributions when the rapidity differences become large. Let
me compare the predictions of SRO and SRC in the various regions of the rapidity plot.

1. Unchanged.

IL. No(vy, Y23 8) = N1(¥)N((y;) = ai. Notice that in region II the correlation C,(y,, y,)
vanishes, and this is why I have called this assumption the SRC hypothesis.

L No(yi, ¥258) = Ny(¥2 =y Ni(y1) = aNi(32—ya)-
IV. Ny(¥15 Y25 8) = Ni(¥y = Yp)N1(¥2—Ya)-
V. Unchanged.

One can now draw important conclusions for the energy behaviour of Mueller’s second
moment f,, which is given by the integral of C,. One has only to remark that the area of
region 11 increases as Y2, while the integral of C, over the other regions can grow at most
as Y. Then from SRO (notice that one need not use the factorization assumption!):

SRO: f, = (a5 —a®)Y*+0(Y). (3.5)

If we now use the stronger SRC hypothesis, @} is equal to a?; the leading term in f, vanishes
and we get

SRC: f; = a, Y+O(1). (3.6)

These results are easily generalized to the case of the A-particle distributions and to f,.
For example we would have from SRC, instead of (3.2)

Ny i=Yos oo Yes1— V) = N(¥y—Yos s Yi=Vi-1) X
XNi-iViv2=Vitts s Ve View 1) (3.7
Mueller’s moments f, behave as
SRO: f; = a, Y*+0(Y*™ "),
SRC: f, = o, Y+, (3.8)
A theorem on the behaviour of partial cross-sections [7]

The energy behaviour of the partial cross-sections o,(s) or more precisely of the
ratio a,(s)/o(s), is strongly constrained if one adopts the SRC hypothesis.
Theorem: If one assumes that f; ~ .Y for kK << 2N when Y is large, then the ratio o,/o
tends to zero at least as fast as ¥V,
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Proof: The idea of the proof is to show first that the central moment u,y increases at
most as Y. In fact, we get from the very definition of p,y:

Han = Z ("‘E)ZNP(") = (no“ﬁ)ZNP(no),

where 7, is some particular value of #; since (1, —n)?" behaves as Y*¥, we immediately
get that P(n,) must decrease at least as ¥V, It remains to prove that p,y behaves as YV,
Let me consider the generating function of the central moments H(z, ¥)( ¢f. (2.21) and

(2.22))
n - _ : (ef—1)*
H(Za Y) =e an(Z’ Y) = exp{—zn+ 1 fk} -

k

Since f; = n, H(z, Y) has the following form:
H(z, Y) = exp {4,224+ A32%+...} =
= (1442232224 )+ 2323400,
where 4; ~ Y if i <<2N. If one calculates p,y as

2N N

=—<H(z, Y ,

Han dZZN ( )z=0

the term with the highest power of Y will come from the derivation of (N!1)~1A522" so that

Uy increases at most as Y.

In the SRC picture, all Mueller’s moments f; behave asymptotically as Y, so that the

ratio g,/c tends to zero faster than any inverse power of ¥ = In s and we indeed expect
the following behaviour [8]: o,/0 ~ Y"s™%

4. Experimental data and semi-empirical interpretation

The two-particle correlation C,(p;, p,; s) depends a priori upon 6 variables which I
can choose to be y,, y,, pi1, P21, § and @, where ¢ is the azimuthal angle:

Pit " P2t = P11P21 COS Q. (4.1)

Since a function of 6 variables is too complicated to be studied directly, one usually integrates
over some variables. Thus I shall first examine rapidity correlations, integrating over trans-
verse momenta; I shall then turn to azimuthal, or ¢ correlations. There may be other
interesting kinds of correlations, but lack of time prevents me to study them in these
lectures.

Rapidity correlations at “low” energy (Ey, < 30 GeV)

It is rather obvious that correlations would not be very interesting if they could be
explained by already known effects. This is what happens if the incident energy is lower
than 20-30 GeV in the lab system. There are two ways of showing that correlations at
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such energies are already almost completely determined by the one-particle spectra and
energy-momentum conservation: use the energy-momentum sum rules (2.25) which
relate C, to N; or make calculations with a model which reproduces correctly the one-
particle spectra, and does not contain correlations other than those due to energy-momen-
tum conservation: this is the uncorrelated jet model (UIM).

The first method is model independent, but is less powerful. Because there is a factor p,
in the integrand of (2.25) for u = 0, the constraints due to energy-momentum conservation
are especially efficient in the fragmentation regions, where p, is large. At conventional
accelerator energies, one sees only the fragmentation regions, so that we can expect strong
constraints. Let me give the following example, taken from Caneschi [9]: from equation
(2.26) we have

1

f Ci(xyy oes X)

dx d
T2 D g~ =) k=), (4.2)

X2 Xk

where

while Mueller’s moment f; is given by

5

dx dx
fio ~ fck(xl, ey Xp) e

: (4.3)
Xy Xy

0

If 5 is small enough, X cannot approach zero (for example 0.2 < X < 1 if s = 20 GeV?)
and the behaviour of f; is almost completely determined by that of the integral in (4.2).
We thus learn from kinematics alone that the moments f; should alternate in sign at low
energy, with f5 < 0. This is in agreement with experiment.

The use of the UIM is of course more model dependent, since one has to choose
a particular matrix elements, but leads to more quantitative results. Sivers and Thomas [10]
have studied the correlations in 21 GeV/c proton-proton collisions, using the following
matrix element for pp — pp-nn:

2 _ n .
T = {1 S} {11 ftg,03, 4.4)

where p; and ¢, represent the final proton and pion four-momenta. The first factor in (4.4)
reproduces the leading particle effect, while the function f(py) ensures the damping of
transverse momenta; one particle spectra are then more or less correctly described by the
matrix element (4.4).

The model reproduces at least in qualitative way the behaviour of the two-particle
distribution do/dy,dy, (Fig. 3a) which shows that this distiibution is essentially a kine-
matical reflection of already known effects. This is confirmed by the fact that the nova
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model, which is based on completely different assumptions, but incorporates correctly
the basic features of one-particle spectra and energy-momentum conservation, leads to
a do/dy,dy, in qualitative agreement with that found in UJM (Fig. 3b).

However, a more quantitative analysis reveals that the correlations predicted by UIM
are too small in the region y, =~ y, ~ 0. This is an indication for dynamical effects, which
show up very clearly in the ISR data.

Correlations between leading particles have been studied experimentally by the
Aachen-Berlin-CERN-London-Vienna (ABCLYV) collaboration [12] in the reaction

>
Kp—=Kp+MM at 101 GeVrc 3
3
O + « o' % & n s !
| A A A AR ';"i
LN T U AN AR SR ?
\\J\./ru./.l.ldt (FP]
x(p)-O.S—\‘ \\; ‘: : '” : 'I 4 ': :.positivMegaﬁve%
2000 T T D R SN SRV §
,\f\ EE I FLE g
771\/\/\&%\\\\\\\\ <
U NN
0 05 0 a

x (K%

experimental

— Monte Carlo events

Fig. 4. Leading particle correlations in K-p —» K% +X (Ref. [L1}]

K-p — K°p + anything at 10 GeV/c. The results have been compared to a Monte-Carlo
calculation using a matrix element similar to (4.4). Again the results of UJM are in quali-
tative agreement with experiment (Fig. 4).

This discussion makes it clear that one cannot learn much new physics by studying
correlations at energy lower than 30 GeV. In such a range of energy, the exclusive analysis
remains certainly the best tool in order to discover new properties of multiparticle
production.

Rapidity correlation at ISR

Experiments have been recently performed at ISR, in order to measure two-particle
correlations. The Pisa-Stony Brook (PSB) experiment measures correlation between all
charged particles, while the CERN-Hamburg-Vienna (CHV) experiment [13] measures
correlations between charged particles and protons. Finally the CERN-Holland-Lancaster—
-~Manchester (CHLM) experiment measures correlations between leading protons with
0.6 < pr << 1.1 GeV and charged particles in the central region.

In the central region, the PSB and CHYV experiments are in qualitative agreement,
except for normalization problems in the PSB case. In fact the height of the one-particle
rapidity plateau increases by 20-30% from /s = 31 GeV to /s = 53 GeV in this exper-
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iment, while do/dy,dy, increases by ~ 609 in the same energy range. These results for
one-particle distributions are in contradiction with single photon data, as well as with all
single particle data obtained with spectrometers, which are consistent with an energy
independent plateau.

Finally, in both experiments, one measures only the production angle of the charged
particles, so that the true variable is not y, but rather n = — Intan @/2. In what follows I
shall rely mainly on the results of the CHV experiment.

Binet (dzérch /0’53~d5ch) -1

281-V8 =23 GeV {a) | V5 =45GeV fc)

[T WO SRS N AN NN R (A Sl S WS VAN SN TR SN SN S N |

V&= 30 GeV {b) | V5253 GeV {d)

08r

04

0
~0.2

1
-4

Fig. 5. Charged particle — photon correlations measured in the CERN-Hamburg—Vienna experiment
(Ref. [13]))

2 Particle correlations
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Fig. 6. Correlation length determination from CHV and PSB collaborations (Ref. [14])
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On Fig. 5 one can see the ratio R defined as

gindo/dy,dy, Ca(y1, ¥2)
R(y1, y2) = o = e (4.5)
dofdy, - do[dy, N(y)IN(y2)
plotted as a function of y; = yy, for two values of ¥, = yepargea: V2 = 0 and y, = —2.5,

at various energies. (Incidentally, plotting the ratio R is not the best way of presenting
data: it would be more useful to plot separately do/dy,dy,, do/dy, and do/dy,.) One can
see at once that there is a rather strong positive correlation in the central region, where R
may be as large as 0.6, and one can also see that this correlation is energy independent,
since do/dy, and do/dy, are energy independent. The correlation decreases rapidly when
iy1—y,| is large, and this decrease is compatible with the exponential law C(ly, —y,') ~

Contour plot of
charged particle / photon correlation function R
(HCV Collaboration }

Vs =53 GeV

Y2%¥photon ¢

..2 — |
4 N
-6 1L_ 1 I i ! 1
-4 -2 0 2 4 6
Yy =Ycharged
_p 6(1,2)
R=0in a5

Fig. 7. Contour plot of the correlation in the CHV experiment (Ref. [14]

~ exp (— iy, —»,!/2) which means that the correlation length ¢ is of order 2 (Fig. 6).
The PSB resuits for R are in qualitative agreement with those of CHV, because the ~ 609,
rise in do/dy, dy, is approximately cancelled by the ~2x25% rise in (do/dy,)(da/dy,).

A rather nice way of visualising the rapidity correlations is to make a contour plot
in the (y;, ¥,) plane [14]. This contour plot is shown on Fig. 7 and one can see the following
qualitative features.

When y, and y, belong to the plateau (ly;| < 1.5), No(ys, y.) is a function of y, —y,
only, since the contours are roughly parallel to the line y; = y,.

When y,y, < 0and |y, —y,| larger than 2, the ratio R varies less rapidly with [y, —y,|.
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However the length of the rapidity plot is not large enough to see clearly the region 11,
where one expects N,(y;, ¥,) to tend to a constant value. Taking the maximum allowed
value of y; and y, in the plateau (y;, —y, ~ 1.5) one can estimate that R would tend
in region Il to a constant equal to 0.2-0.3, which implies that

® ~ (0.2-0.3)n%. (4.6)

When one of the rapidities (say y,) moves into fragmentation regions, the contours
are seen to become more parallel to the y,—axis. This means that R becomes a function
of y,—y,, but is independent of y,. This is most clearly seen on Fig. 5; taking y, = —2.5
(fragmentation region of b), one sees that R is independent of y,, within experimental errors,,

2 particle’ correlations
dependence of correlation function R 0n ygeam -¥1

1 =proton, 2 =all charged; 06 <py < 11 GeV/c
(CHLM collaboration)

T T

10k . 'VS_:37GeV Ygeam ~ Y2 =348
¥ Y5=45 " =387
- ® 75=53 » n -4_.03
T
i~ '
b I I % !
P
© Q0

=6in
—e—

e

[ ]

R

~-10 A} I i ) L

0.5 10 15 20

{Ypeam¥1) —>

Fig. 8. Correlations between a leading proton and a charged particle at y = 0 measured in the CHLM
experiment (Ref. [14}])

in the interval 0 < y; < 2. Since the one-particle distribution scales in the fragmentation
region, one concludes that N,{(y,, y;) is a function of (y,—y,) only when |y, —p, is
large and y, belongs to the central region.

The same effect appears also very clearly on Fig. 8, where one has plotted the ratio R
for protons detected with 0.6 <X pr < 1.1 in coincidence with a charged particle at y, = 0.
In the laboratory frame, y, takes a different value at each energy, and Fig. 8 shows that
the correlation depends only upon !y, —y, and not on y, or s.

Finally there are also some partial tests of factorization; as they are not at present
very accurate, I refer to the review paper of Sens [14] for a discussion.

To summarize, all the experimental data which are available at present indicate that
the concept of short range order is approximately valid.
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Azimuthal correlations

There are now some experimental data on azimuthal correlations, coming from the
CHYV experiment, which are worthwhile to examine in some detail. Let me first make
some general remarks on azimuthal correlations [9].

Suppose that I take y; and y, in the central region, and that C, depends only upon
'y, —y>!1. Then the energy-momentum sum rule (2.25), taken for 4 = 1 and pu = 2, can be
written as

~puiaNy(pip) = jdl,Vx “YzldP2Td¢P§T cos ¢ Cy(ly1—y2ls P> Pavs @) 4.7

This equation tells us two important things:

if p, is fixed, C, must aiways have some dependence on ¢, otherwise the RHS of
(4.7) would vanish;

since |y, —y,| varies over a range ~ Ins = Y, there is a potential logarithmic diver-
gence in the RHS of (4.7). There are two completely different mechanisms to avoid this
unwanted divergence.

(1) p;is conserved locally: if particle 1 is produced with a large transverse momentum
P11, transverse momentum conservation will be ensured by its nearest neighbours. Then
the integral over |y, —y,| runs over a finite range and there is no divergence: in other
words C, decreases rapidly when |y, —y, is large. This is the mechanism chosen by the
multiperipheral model: the momentum transfers ¢, along the multiperipheral chain are
minimal when the azimuthal angles between one particle and its neighbours are around =,
and this configuration corresponds precisely to a large matrix element, because of the
momentum transfer cut-off implied by the model.

(2) In the second mechanism, all produced particles cooperate to ensure transverse
momentum conservation. This is the mechanism chosen by UJM; in this model the
leading term (to the order In s) in C, is proportional to p,p,y cos ¢/ln s and is independent
of |y,—y,l. Then the integral {dgcos ¢ C, ~ l/lns, and the divergence is again
avoided.

Now we can try to generalize the SRO picture if we assume that a mechanism of
type (1) is realized in nature. We would then expect for example equations of the kind:

Ny(y1s Pi1s Y25 Pat> Ve V) = M(z1 )(}’1 = Ve PxT)M(zi)(}’z ~ Ve P21)> 4.8)

when |y, —y,! is large. In that case C, would be cleaily independent of ¢ when [y, —y,|
is large.

It is interesting to compare these expectations to the experimental data of the CHV
collaboration. Let me define the two-particle distribution integrated over p,y (since the ex-
periment does not measure the transverse momentum of the charged particles) and integrate
over p,r from pt to infinity:

Ny, ¥2. PT @) = j PanPn§ P214P2tN (V15 Y25 Pi1s P21s 9)- 4.9

T
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Fig. 9. Azimuthal correlations: (a) unintegrated (b) integrated over pr), from PT to o (Ref. [13])



920

From (4.9) 1 define the ratio

A'Yz(yla Y2 p’?a <P) _
Ni(y1, PPIN2(y2)

R(yy, y2, PT> @) = (4.10)

and approximate it by

R(¥1, ¥2. PT> @) = d' +b'(pT, ¥y, ¥,) cos ¢ (4.11)

The unintegrated ratio R will be

Noyys vas Pi1s @)

R(yi» ¥2 P> ¢) = N PinN2O) I~ a+b(yy, ¥z prp)cos . (4.12)
The coefficient b(p,y) is plotted in Fig. 9a, while &'(pT) is given in Fig. 9b for pf = 0, 0.1
and 0.3 GeV/c. It can be observed that this coefficient is different from zero (except when
pT = 0) even when |y, —y,! is large, and that there is no tendency for b to decrease when
¥ —¥2!| increases. It seems that there is some long range effect which would contradict
the SRO expectation (4.8). However, one must decide whether this effect is in some sense
important, or small. One can for example use UJM, since this model is precisely at variance
with (4.8), the coefficient b being even independent of |y, —y, . The UJM gives the following
predictions for N, and N, in the central region [15]:

2 42

1 NN 1 . A
Ni(py) = if(P'r)e_p”rA /2% o~ Ef(P'r) (1 - P;Y ) s (4.13)

o1 AX(pir+pit)  APpirParcos @
No(pyr Por) = Zf(Pn)f(Pz’r) (1 - *“-;TT'E‘ - ﬁ*’l'T‘%‘ ) (4.14)

with:

2
j prf(pr)dpr = —,
7

i 3 2 2 T2 <
J prflprdpr = —5 = - p1. (4.15)
A i3

1t is interesting to observe that the sum rule (4.7) is satisfied to leading order in 1/Y by
(4.13) and (4.14). Then one easily obtains the following values of b:

/LZETPH'

b(pyr) = — Y

, (4.16)

A% § piflprdpy
bpry ~ — ST 0T — (4.17)

j prf(pr)dpr

rmr
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As a particular case of (4.17) we have

o /1 pZ 52
PP =0~ —— ==~ —. (4.18)
prY

Taking f(py) ~ e~ °’T we can now compare the data to the predictions of the UIM. We
find b(p1) ~ 0.25 piq, B'(pF = 0) ~ 0.08, b'(pT =0.1) ~ —0.09, b(pT = 0.3) ~ —0.13.
Except for the case pT = 0, the estimates of UJM are not so far from the data, which
might suggest that SRO cannot be generalized when one wishes to take into account
transverse momenta.

5. Multiplicity distributions

As we have seen in Section 2, the study of multiplicity distributions (MD) is comple-
mentary to that of correlations, since it gives information on their integrals. 1 wish to
show now, how the experimental data for MD also confirm the SRO hypothesis.

Experimental data for MD are available at 50, 69, 102, 205 and 303 GeV/c in pp
collisions [16], and also at 40, 50 and 200 GeV/c in np collisions [17]. I shall use mainly
the pp results, which are more detailed and which 1 happen to know best.

T T T I T i T T 1 T T T

6L 303 GeV/c  pp .
NAL - UCLA
SE 4
4+ -
6
{mb)

3+ _
2 4
7k B

! I ! L ! 1 L T & 3 37

n=2 4 6 8 10 12 1 16 18 20 2 24 26
n_=0 7 2 3 4 5 6 7 8 9 10 none

Fig. 10. Mutltiplicity distribution at 303 GeV/c and fit by a Poisson distribution in n_ (Ref. [16])



922

The MD can be displayed either as a function of the number of charged particles s,
or of negative particles n_, which are related by n, = 2n_+2 in pp collisions. A typical
MD at 303 GeV/c is shown on Fig. 10, where it is compared to a Poisson distribution with
the same mean value 7_.

Empirical regularities

Although the variable n_is preferred by most theorists, it seems that empirical regulari-
ties appear in the MD when one uses the variable n_; in fact it seems that some definite
asymptotic features appear in the MD when the energy is larger than 30-40 GeV in the

T T T T T T T T T T
Proton - proton
interactions
<Nep> T
(<ndy >—<ng > )2

) 4
[] M [ i
5L Pl { T 1 ]
+ 1 I L
v Boggild et al.
a Smith etal.
o Soviet —French coll.
B e Chapman et al. N
v Charlton et al
a NAL-UCLA
7 ! i i Lol 44 34 i 1 L IR
20 0 50 100 200 300 500
PaglGeV/ic)

Fig. 11. Ratio Dc/n. (Ref. [16])

lab system, and when one uses the variable 7.; a good explanation of these observations
is still lacking.

Czyzewski and Rybicki and Wroéblewski [ 18] have noticed that the ratio n./D., where
D, is the dispersion

D, = (u)* = (n—nd)?
is constant and equal 2 within experimental errors above 50 GeV/c. This ratio is also
somewhat larger than 2 at conventional accelerator energies, which seems to imply that
some asymptotic feature of the MD is indeed reached above 30-40 GeV/c (see Fig. 11).
The equation D /n, = 0.5 can also be written as #2 = 1.25x2 and it is remarkable
that this relation generalizes to higher moments:

nt = o, (5.1)
where ¢, is energy independent from 50 to 300 GeV/c. The following values of ¢, have
been calculated by Slattery [19], using the 50-300 GeV/c data.
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¢, = 1.24440.006 c¢; = 1.813+0.020 ¢, = 2.97+0.06
¢s = 5.36+0.15 ce = 10.4+0.4 c; = 21.6+1.1
ce = 47.0+2.8 co = 107+7.8 Cro = 252422

However, higher moments are very sensitive to the tail of MD, and (5.1) should not be
taken too seriously for k£ < 4.

Another interesting feature is the behaviour of f;~. If Q is the charge of the initial
state, we have seen that

n. = 2n_+Q,
D} = fy+n, = 4f; +2n,—2Q. (5.2)
Using the empirical relation D, = 0.25n7 we get
fr =0.25n" —0.51_+0.25. (5.3)

Thus £, is positive and incieases as 7> ~ Y2 when the energy of the collision is large.
Experimentally f5~ is positive for £, = 50 GeV (n- > 1.66), which means that the MD
is then broader than Poisson. The fact that f,” is negative at low energy is to be expected
from 4-momentum conservation, as was explained at the beginning of the last Section.

KNO scaling

Koba, Nielsen and Olesen (KNO) have made the observation that the behaviour (5.1)
can be derived asymptotically from SRO, and were able to propose a kind of scaling
law for the MD, which is remarkably satisfied by the data.

In fact, from the SRO hypothesis (and even from the first part of it} we get that

1 do .
Fk = - —‘—""-—"dyl e d,Vk ~ Y (5.4}
g)dy,...dy
or Fy ~ ¢n*. The proof of (5.4) was discussed in Section 3 for k = 2, and is obviously
generalized to any value of k. Of course (5.4) is a very asymptotic result! Equation (5.4)
has a simple and exact solution in the form of a compound Poisson distribution [21]:

the MD P(n, n) is given by
_ dx (x\e *x"
P,y = | = f(Z : (5.5)
n n/ n!

where f(x) is defined by its moments

G = iix"f(x)dx. (5.6)

However, this is not the solution chosen by KNO, since experimentally one does not
have F, = c;#* but rather (5.1). Of course both equations are asymptotically identical,
but it might be preferable to start from that which is satisfied by the data. Let us then assume
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that #* == ¢,n* and define a probability density p(x, n) by [22]

p(x, 7)) = Z P(n, n)o (x— g) (5.7)

whose moments v, are simply ¢,. The characteristic function ¢(z, n) of p(x, n) is directly
given by the ¢,’s:
- itx " (it)k
(1, n) = e p(x, ndx = Ck T (5.8)

Equation (5.8) shows that ¢(r, n) is indeed independent of », so that its inverse Fourier
transform p(x, n) is also independent of n:

o s}
»

T |
P ) = 5 j e~ gt = p(x), (5.9
T

R 53

where (x) is defined by (5.9). We thus have KNO scaling:

- 1 n
Pnony==ypl-}, (5.10)
n \n
where w(x) is completely defined by the ¢;’s, and must satisfy the relations
[ wx)dx = | xp(x)dx = 1. (5.11)
0] 0

Equation (5.10) is valid to the order 1/n?, for two reasons: first we should have
n* = n*+0#*"') and secondly we have identified the continuous variable x in (5.9)
with the discrete variable 1/n. In fact P(n, n) given by (5.10) is not in general a probability
distribution since Zp(n, n)#1, even if (5.11) is satisfied. However, the error will be of
order 1/n* if (0) = 0, since the Riemann sum and the integral of w(x) differ by 1/n?,
not 1/n, in that case.

Let me illustrate the formalism on a simple case: assume that ¢, = k!; then

o (it 1
0=y K=l

k

and

- 1 =
p(x) = e *0(x), P(n,n)==¢e""
n

Although one would expect 1/n corrections to the scaling law (5.10), experimental data
are in excellent agreement with (5.10) from 50 to 300 GeV, showing the approximate
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validity of early KNO scaling. A very good fit (x> < 1 per point) is obtained with the follow-
ing limiting function [23] (provided the variable n = n.):

w(x) = AxPe™, (5.12)

This is a one parameter fit since y(x) must satisfy the normalization conditions (5.11);
Weisberg finds that § ~ 1.1-1.2 gives an excellent fit to the data.

Density correlations

An interesting observation has been made recently by Weingarten [24] in connection
with the KNO scaling. Starting from the ordinary moments v,, one can define moments K,
exactly as one defines f; from Fy:

. Zk Zk
H(z, n) = Z Vg = exp {z K, ?J} . (5.13)
k k

These moments are nothing but the cumulants of the MD. Then from (5.1):

- (zn)* (zn)*
H(z,n) = Z Cx 2 = exp {Z Vi 0 } (5.14)
k k

The values of y,, y; and y, have been calculated by Slattery [19] who finds:

1 1 1
sy¥2 = 012240003, =y, = (1.34:£0.07)- 107% S ye=(39%14)-107%

It thus appeais that the coefficients y,/k! decrease quickly with k and that y,/4! is already
negliglible. Weingarten has shown that the coefficients ¢, to ¢;o can be calculated to
a good approximation from y, and y; alone. Then it is sufficient to keep the first three
terms (with y, == 1 by definition) in (5.14) in order to obtain the generating function H
to an excellent approximation. Similarly one can write the characteristic function g(¢) in
(5.8) as follows:
- 1 2 i 3
g(t) = exp (ll— 7 Yot — 3 yat ) (5.15)
From this form for ¢(t) one can calculate y(x) by making a Fourier transform; the result
shown in Fig. 12a gives a very good fit to the experimental MD. Keeping only y, would
lead to a Gaussian form for g(x), but the agreement with the data is then much poorer.
Weingarten’s work shows why it is possible to obtain a scaling function y(x) depending
only upon a few parameters. Furthermore Koba and Weingarten [25] have shown that
the y’s can be obtained as integrals of quantities called “density correlations”, which are
not submitted to kinematical constraints as the usual correlations. Then one may set
v, = 0 without any problem.
However this work does not shed any light on the reason why early KNO scaling
is experimentally valid, and why the variable n, plays such a privileged role (early KNO
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scaling is not very good with the variable n_). It could well be that the validity of KNO
scaling is a mere accident, and in what follows I shall give two other possibilities, which
also give good fits of the MD, but do not satisfy eaily KNO scaling. Nevertheless the KNO
parametrization (5.10) remains at present the simplest parametrization of experimental
data.

Short range correlations and clustering

The first alternative to KNO is based on the short range correlation hypothesis. After
my previous emphasis on SRO, it may seem surprizing that I come back to SRC: actually
the present experimental data do not disprove SRC, although I do not think that this

70 T T T H T T ’0 T 7 T T T T
o 4 AP(n) “

70'1* ! 1 L ! L 1 70..4 1 i L 1 ) 1
00 10 20 n/B 30 00 10 20 n/f 30
fo) (&)

Fig. 12. KNO scaling from Weingarten’s fit (Ref. [24])

assumption will continue to stand against forthcoming experiments. It has been shown by
Slattery [19] and Weisberger [26] that Mueller’s moments can be fitted by the linear
formula

fe = aun+ By (5.16)

predicted by SRC (Fig. 13). There is a possible physical interpretation of the coefficients «,
which I would like to discuss now. The idea is to assume that particle production occurs
via clusters which decay into the observed particles. Let P(m) be the probability of produc-
ing m clusters and G(z) the corresponding generating function. I call w; the probability
that a given cluster decays into exactly j (identical) particles, and I construct the generating
function A(z):

o)=Y 2w, A1) =1 (5.17)
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The probability P(n, m) that m clusters decay into » final particles is P(n, m) =
= Y w..w;8n—j—...—jm) so that

Ji..jm

Y 2"P(n, m) = ()™

I can now compute the generating function G(z):

G(z) = Y. z"P(n) = Y, z"P(n, m)P(m) =

n.m

and we get the important relation:

G(2) = G(A(2)).

> ()" P(m)

(5.18)

(5.19)

Assume for example that the clusters are produced independently, so that f}(z) =

= exp (m(z—1)). Then

G(z) = exp [m(Az)— 1)]

(5.20)
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and making a Taylor expansion around z =1 we find

2 _ 1)\
-1 = > e
k=1 ’
so that
_d* _— :
f = 0 =mj(j—1)...(j—k+1). (5.21)
2 iz=1

For example, if w; = J; ;, i. e. if a cluster decays always into exactly j, particles we have
S = mjo(o—1)... Go—k+1) (5.22)

and we find f, = 0 for k > j,+1. From the Weisberger fit to /5~ we find f; ~ 0.8 n_ =~
~(jo—1) n-. Then if our picture is the correct one, there are on the average 1.8 negative
pions in a cluster; this would suggest a model where the clusters contain 5-6 pions. It is
easy to generalize (5.19) to the case of non-identical particles. If A(z, z,) is the generating
function for the cluster decay into two kinds of particles, ¢ and d, we have

G(Zc’ zd) = G()'(zc’ zd)) (523)

and

c,d

ke = mjlje=1 . Ge—ket Dja .. (Ja—ka+1). (5.24)

The diffraction + pionization model

While the SRC model discussed above is possibly valid with o, as the normalization
cross-section, it is certainly ruled out by the data if one chooses oy instead of g;,; because
of the theorem proved at the end of Section 3, the elastic cross-section should be rapidly
decreasing with energy, which is certainly not the case. Let me recall that the theoretical
models which predict SRC would like to use o as a normalization cross-section, and not
6;,. Having already subtracted o, to pass from oy to o;,,, one is naturally led to subtract
also the cross-section for diffractive processes and to build the so-called diffraction + pion-
ization model (DPM) [27].

In this model, one assumes that any event is either of the diffractive (D) or of the
pionization (n) kind, and that the two mechanisms should be added independently (for
another version of DPM, see the paper by A. Morel in this issue). The partial cross-section
o, is then written as g, — a5 -+o~. One generally assumes that the multiplicity of diffractive
events is finite, while the pionization component obeys the SRC hypothesis; the correspond-
ing multiplicity n, is then logarithmic. For the sake of simplicity, some authors assume
a Poisson distribution for ¢7, but this is certainly not required by the model.

It is easy to calculate the behaviour of Mueller’s moments:

D n

_ 1 _ op L0 o )
fi=n=- (no?+nol) = — n-—-4 -7 n-"
o o . op O 0,
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or
n = anp+(1 —a) 7, (5.25)

where @ = op/o is the relative amount of diffraction. The calculation of £, is quite similar:

f2 =ann-— l)D"l‘(I _a) n(n- 1)7:—(“’_1D+(l "’1) ;ln):z‘

The most interesting point is the high energy behaviour of f,: since in the pionization

component n(n 1), = nZ+0(n,), we have

- — — o
fr ~(I—oni—(1—a)n? = a(l —a)n? = ; n. (5.26)
—
/
/
/
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Fig. 14. f, in the diffraction + pionization model (Ref. [28])

We thus get the important result that £, behaves as n? in DPM. More generally f, behaves
as n,; for example:

a(2e—1) —,

R -2
f3 = (1-—»’1)2 n +0(K )s
—bat622)_,
= (:T%Tw 7+ 0(°). (5.27)

Let me give some details of the fits for the MD obtained by various groups.
Fiatkowski ef al. [28] assume a Poisson distribution for ¢;. Then the only parameters
are the diffractive cross-sections o7 ; the only important diffractive cross-sections are o5,
6>, 0% ob =2.340.5, ¢ =3.1404, o5 = 1.7+0.7, (65 = 0.6+0.3) (mb). The total
diffractive cross-section is then estimated to be of the order of 7 mb. This means that
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o = op/0;, = 0.22: diffraction represents 229, and pionization 78 %, of the total inelastic
cross-section. The parameter f; is in very good agreement with experiment (Fig. 14).
The results of Frazer et al. [29], who also use a Poisson distribution for g}, are very
similar to those of Fiatkowski. They find « = 0.19 and o5 = 2.0, 65 = 2.7, 65 = 1.7 (mb).
The most important prediction is that of a dip which appears in the MD at the highest
ISR energy (Fig. 15): at high energy the diffractive component becomes clearly separated
from the pionization one, leaving a dip between both distributions [27]. However this
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6} Q) P 4g=200GeVic | b) PLag=500 GeV/c
S5r L
4+
Ik
= 1
3 2 B
£ 1
s [ oL
. 1
5 V0 NN
§
Lk CIP ug=1500 GeV/ie | d) P 4g=5000 GeV/c
g non - diffractive
© S5 T diffractive component
‘ component
3 -
2 ]
| Jn
7 “3 1 "“1
beq -
- 2 4
1 i s * //-//1/{ 1 t
10 20 10 20

Number of charged prongs

Fig. 15. Multiplicity distribution in the diffraction + pionization model (Ref. [28})

prediction depends in a crucial way on the assumption that o5 is energy independent;

in view of recent ISR data on the inelastic proton spectrum, this may be an oversimplica-
tion.

Harari and Rabinovici [30] assume that £ is non zero and parametrize £, as follows:
f3 == cn,+d,. In other words they take non-zero correlations for the pionization compo-
nent. The main parameters are again oy, 65, 65 and also ¢, and d,. Since part of the cor-
relations comes from the pionization component, the value found for « is slightly lower:
a = 0.16 while the results for o2 are: of = 2.0, 6% = 2.2, 63 = 0.9 (mb). In any case
the introduction of the non zero f,' does not change the qualitative features of the fit, and
a dip in the MD is again predicted at the highest ISR energies.

In conclusions the DPM model gives a satisfactory fit of the MD with a small number
of parameters. This fit does not satisfy early KNO scaling since the limiting function
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p(x) is
p(x) = ad(x)+(1—a)d (x._ L)
1—a

and this limit is clearly very far from being reached, even at ISR.

Some difficulties with DPM may arise when one considers higher moments of the
MD. For example f; tends to be more negative in DPM than in experiments, since
a200—1) _,

15~ e ne o~ —0.20n°.

However, these difficulties may be ascribed to phase space effects.

Further discussion of the model: correlations

It is easy to obtain the form of correlations in DPM. One begins by defining the
diffractive and pionization one and two-particle distributions:

b 1 do® . i do”
Ni(y)=——, Ni(»=— ’
op dy o, dy
N ) = 1 de® N(y) = 1 do" (5.28
2 Y2 = op dy,dy, ’ 2= o, dy.dy, ) )

The correlation C, is given by

C,=N NN—1 do + do” \
2o Y1 dy,dy, dy,dy, B

1 dGD+dG" daD+da"
o’ \dy, dy,/\dy. dy,

C; = aN7 +(1—o) Nj—(@N7()+(1 —2) Ni(y,)) X
X (@NT(y2)+(1—2) Ni(2)

or

and finally:
Cyy1,y2) = aczb(}’x s ¥2) H(1 =) C3(yy, ¥2)+
+ol —a) (NF(y) — N (1) (NT(y2) — ND(2))- (5.29)

Since diffractive processes are not supposed to populate the central region, C? and N?
are negligible in that region; Cj corresponds to SRC and vanishes when |y;—y,]| is large.
Thus, for y, and y, in the central region and |y, —y,| large we have

C; ~ a1 — )Ny INI(y,) = & N1 ()N (72). (5.30)
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The model is thus of the SRO kind, and integrating (5.30) one recovers the behaviour
(5.26) of f5:

o

fr =

n®+O(n).

1—a
The positive correlations observed in (5.30) are due to the fact that once a pion has been
observed in the central region, this means that the event was of the pionization kind, and
the probability of finding another pion in the central region is increased. The diffraction -+
pionization model realizes SRO in a very peculiar way, since all the constants g, in (3.8)
can be calculated in terms of one parameter only (see (5.27)).

One of the main virtues of DPM is that it makes the ‘““‘true” correlation C; much
weaker than that which is displayed by the data. The argument I am going to present
now is essentially that of Pirilda and Pokorski [31]. For the sake of definiteness I consider
the + n° correlations of the CHV experiment. The result of the experiment is given by the
ratio

Co(¥+» Vo)
R(y1, Yo) = - oot
Ni(yIN1(yo)
Hence
k 1 x
Ci(y+sy0) = — | R(y 4, yo)— 1—:; aidy, (5.31)

where a, and a, are the heights of the plateaux. In order to calculate /77 ®, I have to in-
tegrate C3 over y; and y,; to get an estimate of the integral, I shall consider only the
point ¥, = 0, and integrate over the domain where R = /(1 —a) ~ 0.3:

aph ‘ o

) o+ D
fr+o 27 R— =
Oy Oy

R>GD]¢7=

dyy = agn IO, (5.32)

y+=0

The value found for I¢t? is ~ 0.6. On the other hand, if we assume that the correlations
are due to clustering, we have from (5.24):

no=mie, 300 = mige. (5.33)

Comparing (5.32) and (5.33) we get

[+ ~ Jrto (5.34)
Aol +
If j+jo = jijo, we find that the average number of n’s (or n°’s) per cluster is @, /"% ~ 0.6.
In the case of charged-charged correlations studied by Pirila and Pokorski [31], (5.34)
should be replaced by

_iG=D

I =
a.j

(5.35)
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Pirild and Pokorski have taken a model of the diffractive component in order to evaluate
more accurately the integral I° in (5.32) (see Fig. 16). The model clearly reduces the amount
of clustering which is necessary to reproduce the experimentally observed correlations.
With short range correlations only, we would need 5-6 particles per cluster, while two
are sufficient in DPM. In the latter case, one would expect the “true” n+t—n* or 7=—n—
correlations to be very weak, since the production of cluster with charge &2 seems unlikely.

07+
o o
06 -
o o
S o5}
) o
~lo o o
kS b‘s 041 o o
~Jo
X 03f
g
& B
01+
[¢]
_07 -
| 1 1 1 1 H 1 1

1
-4 -3 -2 -1 0 1

p =~In(tan 2i)
Fig. 16. Correlations from PSB experiment. Open points = experiment, full line = contribution from

the diffractive and long range part. Full points: difference between the experimental correlation and the
diffractive + *““long range” part (Ref. [31])

Another interesting aspect of DPM is its possible relation with the inelastic proton spec-
trum for x near to 1. The inclusive cross-section for protons presents a peak for x > 0.95
in the ISR energy range, and this peak seems to be energy independent. The corresponding
cross-section has been estimated to be ~ 7 mb [14], in agreement with previous esti-
mates.

However, the fact that the peak scales shows that the missing mass M increases with s,
since M? ~ s (1 —x), while in the naive picture of diffraction one would expect something
like

E d’c 1
d’p s

It seems possible that the picture of diffraction we have in mind is much too naive, and

(1-x)"%2
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it is obviously very important to investigate the properties of particles produced together
with a proton having x > 0.95. In particular it would be very useful to know precisely
what is the multiplicity associated with that peak, and how it varies with energy.

Another interesting possibility to investigate diffractive processes would be to meas-
ure semi-inclusive cross-sections do,/dy for small values of n: the naive diffraction
picture predicts a two-bump structure, and it would be nice to know if it actually shows up.
Finally it remains to give a better theoretical status to the model, since the incoherent
superposition of two independent and disconnected mechanisms remains rather artificial
and unsatisfactory.

6. Correlations between charged and neutral particles

To conclude this paper, I shall examine another kind of correlations, which seem to
be interesting: the idea is to study the multiplicity distribution of one kind of particles,
say b, while the number of another kind of particles, say q, is fixed in the final state. In
practice one takes b to be neutral and a charged particles. Let me start again from the
generating function

Gl(zq 2p) = X 222y P(nr Mp)- (6.1

I can calculate the factorial moment Fy (n,) as follows:

Fing)) = nyny—1) ... (ny—k+1) (n,) =

= (P(n,)~* Z ny(ny—1) ... (ny,—k+1)P(ng, ny). (6.2)

It is then clear that Fy (n,) can be obtained by derivation of G at the point z, = 0 (exclusive)
and z, =1 (inclusive):

1 5na+k
b -1 .
Fk(na) = (P(na)) —' A ngA_Np G(Za: Zb) za=0
n,! 8z3°6z} gut
1 do,,
= ——dy, ... dy,, (6.3)

0, ) dyy, ... dyy,

where o, is the cross-section for producing n, final particles and do, /dy,, for example,
the semi-inclusive cross-section for measuring a particle » with rapidity y, together with
na particles in the final state,

Several models have been proposed in order to explain the experimental data on
charged-neutral correlations. I shall now review the three most popular models, which
are known as the o, = and p models [32].

o-model

One assumes that pions are produced via isospin zero clusters which decay into two
pions. The probability that such cluster decays into ntn(n°z°) is p(g). From isospin
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invariance, we must have, of course, p = 2/3, g = 1/3. Let G(z) be the generating function
for g-production; we have from (5.23)

G(z-, zo) = G(pz - +qzp) (6.4)

since Mz, zo) == Y w(n-., no) z"-zy* and the only non-zero w's are w(1,0) = p, w(0,2) = q.
The zZ term in (6.4) reflects the 7°-7° correlations coming from the 7°—7° decay mode.
On the other hand there are no n—-n— correlations from the decay, and A is linear in z.
Because of these n°%-x° correlations, it is more convenient to work with the variable
1= 2n,; Mz, z;) = pz_-+qz,. Let me first take the case wherc the ¢’s are produced inde-
pendently: G(z) is then the generating function of a Poisson distribution:

G(z) = eNe--1), (6.5)
where N is the average number of ¢’s. Then
G(z-, ;) = exp {(pz_-+-qz;— 1) N} (6.6)

and, taking derivatives at z == z;, = 0 we obtain

e~ MWV NN (n_+1
P(n_, l) = . ; (;z,) ﬂ-q‘ = e_;}iv) (nn )pn_ql =
41
= P(N) (”nf ) g 6.7)

where P(N) is the MD of 6. The repartition between the n-n~ and #°z® decay modes is
given by a binomial distribution.
In order to find the moments Fi(n_) we use (6.3)

1 o
Fin_) = (P(n )" = P q*G" "¥(g)
while, from (2.30)

1 -
Pn_+k)y= (Z—_FT); P"—*H(G(n-i»k)(q)‘

Comparing both expressions we have [33]

. _(n_—}-k)! q\* P(n_+k)
Fk(ll-) = B “—' (;) m . (68)
In particular we have
F(n_) = no(n_) = 2y () = DR D), (69)

P(n.)

Notice that if P(n_) is Poisson, then n,(n.) is independent of n: ny(n-) = n,. From (6.9)

we see that in the general case one can calculate ny(n_) from the experimental
data on P(n_).
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w-model
In the = model, one begins by assuming that each kind of pions follows a Poisson
distribution:

xn + xnoxn -
— (6.10)

n,'n_lny!

P(n,, ng,n_) = C(n,, ny, n_)

(Using the same x for n;, n—, ny in (6.10) means that we shall have the same average number
of nt, % and n~.) Now, charge conservation imposes that n; = n_ so that

e—xx2n-xno

P(n_, ny) = im!m ,

(6.11)
where the Bessel function /,(2x) is there in order that the MD be normalized to one. This
distribution has the following features: n. ~ n,—1/4; it is narrower than Poisson for
n~’s: f5- =~ —3n_; it is Poisson for n%s.

Now, as any MD can be written as a superposition of Poisson distributions, I can
write the most general n-model as:

P, o) = [ fopdx =2
—s Ng) = X g, .
- Mo O oot (2) (6.12)
[¢]
From the trivial identity
N hgto—1) o gk 1) = e
L0 e ne!
no
we immediately get
y x2n-+k
no(ng—1) ... (ng—k+NDP(n_, ny) = f x)dx —————
Z olng—1) 0 ) 0) f(x) A
no 4]
which is directly related to the charged MD P(n_--k/2). We thus have [33]
(n_+Kk)N\* P(n_ +k/2)
Fi(n_) = o4
x(n-) ( ~ Pon) (6.13)
and in particular
3\ P(n_+1/2)
ngn_) ~{n_+ -}— — 6.
o(n-) (n 4) Pn) (6.14)

g-model

In the ¢ model one produces g+, o~ and ¢° which decay according to: o — ntn®,
o~ = mn’ 0% > ntn. Let Ny, N~ and N, be the number of ¢’s; we have, assuming that
the charge of the initial state is zero: n. = N,+N,, n_= N_+N,, ny = N.+N.
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or
Ni=N_=1=no/2, Ny = n_—L. (6.15)
Starting from a ¢ MD analogous to (6.11):
PN, Ngy = S XX (6.16)
s WNo) = T T, .
14(2x) (N_1)?N,!
9 GeV/c 205 GeV/e
£
o Exp. o &P
o < model
o & model ;
~ 8F — 0 model B
e T 00! |
- S —— g mode!
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> e -
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41 4 i
2 i
Lt X
g 2 4 n- 0 2 4 & n-
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i
= — 7 mode{
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¢ -~ @ model
< ]
s 2 1
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4 \\
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Fig. 17. no(n.) and f2(n_) calculated from the charged multiplicity distribution in the o, 7z and ¢ models
(Ref. [33])

and substituting (6.15) we get

e~xx2lxn_—l

T Lo U)m_—D (6.17)

P(n_, ngy)

The results analogous to (6.8) and (6.13) in the case of the p-model are rather complicated,
and I refer to the article by Drijard and Pokorski [33] for details.

The results for ny(n.) are compared with experimental data of Fig. [17]. One can
see that the prediction of the o-model are a bit too low, while those of the 7 and ¢ models
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are in agreement with experiment. The parameter f3(n_) = F,(n_)—n°n_)* calculated
from the experimental charged MD is displayed on Fig. 17. One can see that the three
models give rather different predictions, and it may turn out that experiment can discrim-
inate between the various possibilities.

Approach from SRO

Another approach to the problem of charged-neutral correlations has been proposed
recently by Krzywicki [6]. If the “Pomeron” exchanged in Mueller’s theory has I = 0,
and even if it is a very complicated singularity in angular momentum plane, one should
have:

nZnf ~ nl*e, (6.18)

since this I = 0 “Pomeron” dees not distinguish between n*, n° and n~. Then one should
expect

p,9 _ 0 — ot}
NENG = Cp e = Cpy Mo (6.19)

which means that c,, depends only on the sum p-+g, and not on p and g individually.
Krzywicki has indeed verified that ¢,, = ¢,,, within experimental errors at 205 and
303 GeV/c [6].

7. Conclusions

To conclude this paper, it seems fair to say that the short range order picture is in good
qualitative agreement with experiment, at least for one and two-particle inclusive distri-
butions and the multiplicity distribution. However, one may have to integrate over trans-
verse momenta to get a valid picture. Further data, especially on n—-n~ correlations,
azimuthal correlations and MD at higher energies will be extremely useful in order to
make further experimental verifications of this picture.

Finally, there are many interesting topics which have been omitted in this paper:
for example the correlations between particles produced together with a leading proton,
the correlations associated with large transverse momenta, and certainly many other
kinds of correlations I have not been able to think of.
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