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CLUSTERING EFFECTS IN HIGH ENERGY
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The effects of fireball produciicn on correlations in inclusive specira are reviewed.
Both integrated and differentiul correlations are discussed.

1. Introduction

Clustering will be the word we shall use all along to summarize the tendency which
particles have, when they are produced at very high energy, not to be independent of each
other, but rather stick together in various ways. A typical example of clustering is reso-
nance production: if m production goes through » meson production, say, then the fact
that one = is seen implies that another n has been produced together with the one seen.
Note that in this case, the two 7’s which emerge from the same ¢ have similar momenta
at the scale where we look at the energy of the secondaries. Such an effect leads obviously
to positive contributions to correlations: pairs of n’s are produced in the same region of
phase space (short range correlations). Thus we see that in general clustering will affect
both integrated correlations ( f, coefficients for example), and, say, rapidity correlations.
Now, one knows that other mechanisms are able to yield correlations. The simplest one
is obvious: charge (or baryon number, or strangeness) conservation implies pair produc-
tion. But conservation principles do not tell us that conservation of quantum numbers
has to be verified locally (in the phase space). Correlations of this kind may be a priori
as well short range correlations, as long range correlations. We shall keep the word cluster
for objects which decay into relatively low energy secondaries in their cm system. A typical
example is given by the fragmentation process: by definition, the fragments of particle «
are those secondaries which are slow in its rest frame. The fragmentation pattern of the
projectile (or target) is then a cluster. On the contrary, we know that the whole “com-
pound nucleus” which is formed by the two incident particles when they hit each other is
not a cluster: the mass /s of the object is too large as compared to the relatively low
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(~ log s) average number of decay products. A way to share a large energy into a small
number r of secondaries is to group them into f clusters containing each p particles of
small relative momenta, most of the energy being then spoiled in giving high momenta
to at least a part of the clusters. p =1 is the trivial case.

Now, why to look for clusters? The first motivation is very general: since we know
for sure that particles are not produced independently, we can try to simplify the description
of their correlations by assigning them to be correlated inside clusters, which in turn wili
be considered in a first approximation as independently produced. A second motivation
is based on experiment: two-body short range rapidity correlations are actually well
observed at ISR energies [1, 2], showing that very often particles like to be produced at
low relative momenta. Leaving aside correlations in the phase space, it is also known that
correlations exist in the multiplicity distributions between various kind of particles, n—
and 7%s for example [3], a property which may well originate in a primary production
of resonances [4]. We thus expect that at least two-particle clusters, of the resonance
type for example, do exist. Is clustering a more general feature of high energy multiproduc-
tion is the question we would like to discuss, if not answer. There are basically two difficul-
ties in trying to solve this problem. The first one is that clustering, if it exists, is certainly
not the only mechanism which yields correlations. In particular, the existence of long
range correlations is experimentally proved [5]. The second one is that as soon as clusters
are independently produced, two particles which are neighbouring in rapidity may perfectly
belong to two different clusters. In other words, we cannot infer from the assumption of
clustering that many events will present in a rapidity plot two or three well separated sets
of two or three particles each. So clustering will not be seen by just a glance at individual
events [6].

We shall first discuss the implication of the clustering hypothesis on the multiplicity
distributions, and in particular on the energy dependence of the Mueller integrated correla-
tion coefficients (Section 2). Then we shall examine the question of the one and two particle
rapidity distributions, and study the shape of the corresponding short range correlations.
This will be done in Section 3 of these notes.

2. Clustering and multiplicity distributions

The framework of the present discussion is essentially that of a kind of muitiperi-
pheral model (MPM), where the objects produced are clusters. In such a model at very
high energy baryon exchange is expected to be highly dominated by meson and Pomeron
exchanges, so that the clusters associated with the projectile and target in pp collisions
are very likely to be different from those produced along the multiperipheral chain. They
will be called fragmentation clusters (FC), have more or less the proton quantum numbers,
and generally contain a fast proton (leading particle). We shall concentrate on the other
ones, which we consider as the true multiperipheral clusters (MC).

We shall now continue as if the MC production was the main production process,
or equivalently as if we were able to separate this process from the others. In this picture,
we expect the MC to be responsible for the increase of the multiplicity when the incident
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energy is increased. In the spirit of a conventional multiperipheral model, we now assume
that we produce f independent MC, according to a Poisson distribution with average
value M:

s

uM
P(f) =e 7!—. (21)

For simplicity, we assume further that all MC are clusters of the same nature, each of
them decaying into p; particles according to a multiplicity distribution f(p;) which we do
not specify for the moment. The processes of cluster production and decay are inde-
pendent of each other. The total number of particles produced by f MC containing
D1, .- Py particles is of course

Mg =pi+p21 ... +ps (2.2)
and the probability for finding m particles through this process is

Pim)y = %  PNf(p) ... flpPsm—p,— ... —py. (2.3)
Jip1yenps
The general properties of such a distribution have already been discussed in the Le
Bellac’s lectures, together with its generalization to the case when one identifies different
kinds of particles. In particular, with Eq. (2.1), we find for the Mueller’s correlation coef-
ficients [7]

Jo=Mp(p—=1) ...(p—q+1))y, (2.4)

where the symbol { ), means averaging with the distribution f(p). Let us make some
comments on this formula.

(i) All f’s are linear in M, as a reflection of the assumed Poissonian distribution of the
clusters.

(ii) One has, of course,

{my = M<p),. (2.5
(#iiy If clusters never contain more than P particles (f{p > P) = 0), then
f,=0if g>P. (2.6)

(iv) Since we are in the framework of a multiperipheral model, we expect {m) to
increase more or less as log s with energy. Now, it is interesting to discuss how this will
be actually realized, namely what are the energy dependences of M and {p), in Eq. (2.5).
We shall discuss only two particular extreme cases:

(a) Conventional MPM model: M increases logarithmically with s, whereas
{p>, is constant: the nature and composition of the clusters are energy independent.
Eq. (2.4) becomes

S = o, <m) 2.7



944

with
, = =D - (p—a+ 1)),
! <P>f

so that all f;’s are linear functions of the multiplicity. Of course the remark (iii) above
applies.

(b) Modified MPM model: instead of applying really the MPM model to clusters
one may also consider that when the energy is increased, the dynamics prefer to create
heavier clusters rather than make the MC chain longer. The extreme case is of course
M = const., {p), ~ log 5. The energy dependence of the f;’s now depends on the particular
form chosen for the distribution f{p)".

In order to illustrate the kind of multiplicity distribution which can be obtained in
this case, and its relation to KNO scaling, let us quote here the model of type (b) proposed
by Lévy [9]. He assumes that f{p) is a distribution which is sharply peaked around p = {(p}.

Then, replacing m, == p, - ... =p, by m; = <{p) f, one obtains
Prob. (m) o P (/ - '1) (2.8)
<p>
which, owing to Eq. (2.5) yields
Prob. (m) o ( f=M <'">> (2.9)

This foimula is valid whatever the cluster distribution P is, and under the assumption
that M is constant (case b), yields exact KNO scaling. By the way, when normalizing
Prob. (m) to Y Prob. (m)=1 one obtains

Prob. (m) = " = M p (™ (2.10)
Uin <m> {(my

m ZNIP M m 211
(<m>)— ‘ ( <7n_>> 1D

Specializing P to be a Poisson distribution with average value M, we obtain an explicit
form for 4 which depends only on M. A numerical value for M can be easily deduced
from the observed result that, above 50 GeV/e, (n>*D? ~ 4, and it is easy to convince
oneself that under the assumption made, M = <nc>2/Df. So, the final Lévy’s result for
the KNO function is:

so that the KNO function is

()_se‘44‘ 51
YO = ey @1

The agreement with experiment is nearly perfect.

! Cases (a) and (b) can be considered as extreme cases of the continucus sets of models which have
been concidered in the thermodynamical framework [8].
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The preceding discussion shows that clustering effects may be present, and if they are,
lead to well defined predictions on multiplicity distributions and integrated correiation
coefficients f,. Now, we have to take some care when we compare to data and try to deduce
something about the very existence of clusters of multiperipheral origin. Even if it is true
they populate the central region, the existence of diffractive dissociation events, which are
exclusive of central production, certainly gives rise to long range correlations. When
integrated over the whole phase space, these LR correlations give rise to non linear terms
in the expression of the f, coefficients [10, 11, 12]. It is thus necessary, if one wants to in-
vestigate further the cluster problem, to go into more details, and especially to look at
distributions in the phase space, according to our definition of clustering.

3. Clustering and momentum distributions

3.1. Small transverse momentum behaviour

We shall mainly discuss here the one and two- partic]e distributions in rapidity
y=4%log [(E-+p)/(E—p,)] or in the cosmic variable n = — log tg /2, after averaging over
all transverse momenta. Let us make before a simple remark on a possible clustering effect
on the p distribution at small transverse momenta (turn over effect). This remark has
already been done in the hypothesis of ¢ meson production [13], but it is in fact more
general. In order to simplify the calculations, we consider that a cluster has been emitted
along the longitudinal axis, and decays isotropically in its rest frame. Let f(k) be the
momentum distribution of a particle of mass y inside the cluster. The l-particle decay
distribution is

k*dk
dl(k, Q) = f(k)d cos 8d® 3.1)
[4]
and the corresponding p  distribution
k? d/\
— ‘ fk)s(p> — 2 sin? 0)d cos 0
[¢]
which, after integration upon cos 0 takes on the form:
kdk
J . (3.2)
ip 1L ko \/k2 "“pi

p,

Now we assume f(k) to be peaked around some value K of k (for a ¢ resonance, decaying
into two n's, f{kyoc §(k*—1 mj —*)). For p, < K, we can estimate a’a/dpzL by

kdk
‘f(/\) e (3.3)
l‘o v k? "“P
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which is an increasing function of p, . For large p, values, the behaviour of the p, distri-
bution will be essentially governed by f(p,). Thus in general, we expect clustering to give
a turn over effect, or at least a flatter p, distribution at small values.

3.2. One particle rapidity distribution

We now turn to the rapidity distributions, and consider that we have averaged over
all transverse momenta [14]. We want to obtain a quantitative estimate of clustering
effects in 1 and 2-particle rapidity distributions, and for doing that we choose a simple
MPM for cluster production, and again a simpie isotropic decay distribution in the cluster
rest frame [15]. Furthermore, we do not distinguish the cluster rest frame from the one
where its rapidity y is zero. Let z be the rapidity of a secondary in this frame, and k& the length
of its 3-momentum. It is easy to find [16] for the z distribution

k k+kq
———— for |z} <log s
2k, ch” z u
p(z) = i (3.4)
k+k
0 for |z| > log ¥

For clusters decaying into 7’s, it is certainly correct in general to set k/k, = 1. If it is not
so (maybe for heavier decay products, ¢ production of K’s, production of pairs baryon-
antibaryon), an approximate formula would be:

1 1
- for |z} < arcth (1/{1/v)),
oz) = <v> 2ch?z

(3.5)
0 otherwise,

with {1/v) being the average inverse velocity of secondaries in the cluster. In a more
refined version of the model, one should take into account the transverse momentum of the
cluster, but the model is too crude in its present form to go further into details. Now we
are going to calculate the rapidity distribution P(y) in the total cm system. Let M(Y)
be the cluster rapidity distribution; we have

P(y) = [dY M(Y)p(y—7). 3.6)
In the spirit of a MPM model, we take simply for M a plateau of width 4, and find (with

<1/U> = 1)
P(y) = ! th th 3.7

The result is essentially a plateau with a little smaller width as 4, supplemented by smooth
edges yielded by those clusters which decay at the extremities of their allowed range.
Eq. (3.7) is certainly well adapted to fit the one-particle data in the central region, but of
course this cannot be considered as an evidence for clustering. Note that the only free
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parameter is 4. Remembering that the things we describe are only what we have defined
as multiperipheral clusters (excluding the two fragmentation clusters and diffraction
dissociation), the best way to estimate 4 is to look at the experimental rapidity distribution
for high multiplicities. We expect these events to be essentially produced by MC. Using
the Pisa-Stony Brook data [1], we obtain the reasonable value 4 ~ 3.5 at /s = 30 GeV.
The contributicn of the process under consideration to the inclusive cross-section
normalized to the non diffractive total inelastic cross-section g4 is

1 mc

Ona Ay

= {p>ME(y). (3.8)

Here, 0,4 also contains the contribution of possible non diffractive fragmentation
clusters. The energy behaviour depends on {(m) = {(p> M, the average number of the
multiperipheral particles, and 4. Scaling corresponds to {m>/4 = const. The height of
complete inclusive cross-section at y == 0, where most probably only the MC clusters
contribute, is given by

1 do 0. <M A4
— T (y=0 =" Zth{—). 3.9
Oin dy (y ) Gin 4 2 ( )
With 4 ~ 3.5, an estimation <{m_> can be obtained from the experimental value of
1 d
— 2 (5 = 0), which is about 1.8-2.
Oin dy
We have
Ona _
{myy ~ 6 to 7 at /s = 30 GeV, (3.10)
Oin

and we are left with 3 to 4 particles in average from the fragmentation and diffractive
dissociation processes.

3.3. Two particle rapidity distribution

Let us now consider the two-particle rapidity distribution. Once we know that two
particles are produced, either they belong to two different clusters and their distribution is

V(y1,y2) = P(y1) P(y2) G.11)

or they belong to the same cluster. In this case, their distribution is

472
I yy) = — | ay——2 ! (3.12)
Yoy =g hZ (y,—Y) ch? (y,— Y) '
—A4/2

which is no more the product of individual distributions. Let us now construct the two-
body cross-section, normalized again to o,4, the non-diffractive cross-section. It is just
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a matter of simple counting to find

1 do™° —M2< >2P( )P( )+M< ( OS]
o dydy, P> Py )P(y2. pp=1I(yy, y,) (3.13)
for identical particles, and
o M2,y <oy PP 4 MCppodT
= )
O-nd dyldyz pl p2 Jl y2 p1p2 (J/n );2) (314)

for particles of type 1 and 2. M is as before the average number of clusters, and the symbol
¢{ > always means averaging over the multiplicity distribution of the individual clusters.

Let us study the shape of the function (y;, y,), which contains all short range cor-
relations [17]. From (3.12) we have

(SIS

—¥1
1 1 1
I(yh ,"2) = J du 2 2 (3.15)
44 ch”u ch® (u—(y2—yy)
A

—5*)’1

which shows that for |y,| small enough as compared to 4/2, one obtains a function of
|y1—y.!| only, exponentially decreasing with |y, —y,|. The function is no more symmetric
in y, —y, as soon as y; approaches the edges of the distribution, y, >~ +4/2, and it is
smaller at y, = y, = 4/2 than at y, = y, = 0, because one now integrates upon only
half of the preceding interval in ». Thus, I represents a short range correlated part of the
two-body cross-section, which falls off exponentially in |y, —y,|, and is symmetric in
(y1—y,) for small |y,].

Let us now turn to the question of the size and composition of the clusters. For doing
that, we first compute the contribution of I to the two-body correlation function

gia/‘d)’1dY2
do do

dy, dy,

This contribution is, for two charged particles,

Gin {P(pc—1)> Iy, y2)
ias 3.17
Ona M<Pc>2 P(y)P(y,) ( )

and for one charged particle and one =°:

R(yy, y2) = oip (3.16)

E*(yy, y2) =

<0 Tin  PPo>  I(yi, y2)
E¥(yy, y2) = :
s M{p> {po> P(y)P(y,)
Let us first concentrate at the point y, = y, = 0. It is easy to find

(3.18)

gin 1(0,0) 6,4 1—th?(4/2)3
Mo,y (P(0)?  o6,,M 2th4)2

(3.19)
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or using Eq. (3.9), and th 4/2 ~ 1

i 1(0,0) _ 2% '3.20
Mo,y (P(0))? 1 do° ‘ o
3—-—(y=0)
O-in d_)'

Owing to equations (3.16) and (3.20), and recalling that at y, ~ y, =~ 0 only the MC
clusters contribute, we obtain for the R functions:

RCC(O, 0) _ Oin—0nd <pc(pc_ 1)> Gin

Opng p.y  dof ’
—(y =0)
dy
0 Gin—Ong <pcp0> Oin
R 0(0, 0) = + —. (3.21)
Ond 3(pyy do®
— (=0
dy

Let us evaluate from Eq. (3.21) the characteristics of the cluster. We take for definiteness

1 do*

R%(0,0) = 0.7 [1], R®0,0) = 0.6 [2], 6, = 32 mb, 0,4 = 26 and — Ta (0) = 1.8. With
Oin 4

these numbers we get

$ —1
PPl ys, PP Ly (3.22)
(P (Po>

Let us try to interpret these numbers. The first remark is that they are large as compared
to clusters which would be single resonances like ¢, w, ... efc. For example, {pp.— 1}>/
{p.y == 1 for p, or w production, and ¢ production. Now, we have to remember that our
calculations hold for independent clusters, whereas production of ¢, w, ... etc. would
require exchanges of «, o, , ... etc., which are known to lead to short range correlations.
So, if these g or w resonances are produced by uncorrelated clusters, they should emerge
from Pomeron exchange and thus be produced by pairs at least. Thus a simple idea is to
consider pairs of resonances, coupled to an isospin zero state {7]. We obtain in the simple
case of a pair of ¢’s coupled to I =10:

plpe—1) _ {pebor

<pc> - <p0>

Clearly a 20 model gives the right order of magnitude. We do not claim, of course, that
data prove in any way that pairs of p’s are independently produced. We just want to point
out that if the cluster model has any sense, we do have rather large objects. Certainly,
uncorrelated single resonances cannot work. We infer from this discussion that very
probably clusters exist which contain more than Iz, or in other words that we expect
sizable short range correlations between negative tracks.

= 2. (3.23)
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Independently of the example of a 2¢ cluster model, from Eq. (3.22) and the reason-
able assumption that charge is conserved in a cluster we obtain
(p_-—-1 1 (p.—1
p-(p-—=1) _ _[(p (p.— 1) _1] ~ 075
<p-> 2 <pe>
So, with the same input experimental quantities as for the charged particle correlations,
we get at the same energies (/s = 30 GeV)

R—(0, 0) = 0.23+0.25 ~ 0.5. (3.25)

(3.24)

‘The first term is the same long range contribution as before. In this case, both contribu-
tions are of the same order of magnitude.

Let us end up with a few comments about energy dependence of two-body correla-
tions. The fact that at y;, = —2. [1] or —2.5 [2], R(y4, y,) is smaller than R(0, 0) has to
be attributed to the presence there of fragmentation or diffraction events which do not
.contain short range correlations. Now, if the energy is increased, the same value of y,
'will fall ultimately in the central plateau so that R(y,, y,) will tend to R(0, 0). On the other
hand Eq. (3.21) implies the constancy of R(0, 0) if do/dy(0) is constant (scaling). So we
-expect all short range correlations at y, and y, # 0, to tend towards a constant value at
larger energy. An indication that this actually happens can be found in Ref. [2].

As a conclusion, let us say that equations (3.21) provide a simple tool for getting an
insight into possible independent clusters production in the central region. The isotropy
hypothesis allows simple calculations, but is not really fundamental. Other distributions
in the cluster rest frame could be looked at. We consider that isotropy probably yields
a lower bound to the correlation length. Indeed there is more chance that clusters remember
the longitudinal direction. Secondaries would then have larger momenta along this direction
than along the transverse one, as it is in a multiperipheral model where exchange of Regge
poles with intercept 0.5 leads to a correlation length equal to 2, rather than 1 [15]. The
structure of Egs (3.21) would not be modified, and the relative strengths of the two-body
short range correlations at y = 0 for various configurations not affected. Obviously the
question of the existence of short range correlations between negative particles is very
important in this aspect, and good data about them will be welcome.
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