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A simple model for uncorrelated meson production in p-p collisions is extended to
include exact conservation of isospin. The correlations between charged particles are so
strongly enhanced that the widith of the charged particle distribution becomes proporticnal
to the average charged particle multiplicity. For high energies the multiplicity distribution
has an energy independent sczling behavior. In the limit of infinite energy this scaling
is of the type predicted by Koba, Nielsen and Olesen. The scaling function is singular
at a certain value of N¢/Ne and beyend this point it vanishes exactly. For large, but not
infinite, values of N¢ the maximum in the tepological cross-sections occurs for Ne/Ne near
this singular point. The vzlue of the maximum cross-section behaves like NE?E Gipet. The
model is compzred with the results of recent experiments.

1. Introduction and summary

Czyzewski and Rybicki [1] were the first to point out that the prong-number distribu-

tion in inelastic #p and pp collisions has a dispersion D == N (N.— N,)* which increases
linearly with the average charge multiplicity N.. Later this was confirmed by Wrdéblewski
[2], who showed that the pp data in the region from 4 to 70 GeV/c are well described
by the linear function

D = aN.—p, )
where the coefficients ¥ and f are equal within errors, /. e.
2= f = 0.585 (2)

with an estimated error of about 0.01. Also for the recently measured energies of 102, 205,
and 303 GeV/c formula (1) is very well satisfied as can be seen in Table 1.
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Another observation first made by Czyzewski and Rybicki [ 1] is that the prong-number
distribution P(N,, s), probably has a scaling property for the cm energy ./s going to
infinity. In the language of Koba, Nielsen and Olesen [6] this can be expressed by saying
that with increasing s the function

1/}(25 S) = NCP(NCD S), z == Nc/ﬁc,

tends to a non-trivial function y(z). This we will call KNO-scalling. In Ref. [6] it was
argued that this follows from Feynman-scaling. The reverse is, however, not neces-
sarily true as we will demonstrate by example in the present paper. Later work [7] scems
to confirm this KNO scaling.

TABLE [
Comparison of recent experimental results for N. and D, with the relation in Eq. (1)
Pias Ref. |  RNdewn) | Do | DefEa. ()
- ; !
102 4] 6.34+0.14 ! 3.19+0.08 | 3.12
205 [4) | 7.65+0.17 ; 3.88+001 | 3.89
303 [5] . 8.86+0.16 | 438011 | 4.60

It is interesting to find out whether the two phenomena — the linear relation between
D and N., and KNO scaling — are manifestations of specific hadronic interactions, or
whether they can be understood on the basis of very general properties such as isospin
conservation.

In the two-component picture of particle production {8] there is an energy independent
(diffractive) contribution to the topological cross-sections as well as an energy dependent
part due to pionization. This picture leads easily [8] to D ~ N, or what ammounts to
the same thing, to positive correlations in diffractive collisions. For pp annihilation no
such positive correlations should occur, and they have indeed not yet been found. At ISR
energies it will be possible to verify other predictions of the two-component picture [9].
Whether or not for high energies the diffractive process will survive as a cause for positive
correlations, it will always be necessary to include the conservation laws as possible sources
of correlations. For this reason it is of importance to know the effects of the conservation
laws in their purest form. In this spirit the uncorrelated jet model has been used [10]
to study the effect of energy and momentum conservation. For high energies no strong
correlations were found.

One of the most recent papers on the consequences of isospin conservation was
written by Dadi¢, Martinis and Pisk [11], who also review earlier work on the subject.
These authors come to the conclusion that isospin conservation alone gives strong positive
correlations. However, the values of « and S found do not agree with those of Egq. (2).
The same result was obtained by one of us [12] in a simple unitary model for inelastic
nTp scattering.

In the present paper we construct and discuss a simple model with (1) uncorrelated
particle production, and (2) exact (not statistical) conservation of isospin.
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The first objective is usually met by taking as the final state

. AN 8
iy =e 2870) = e 227’?1”% 3

where A = [g|2. This state gives a Poisson distribution for the multiplicity of the chargeless
mesons; momentum dependence is disregarded. In order to incorporate the isospin of the
pions we modify the pionic state (3) in a simple way so that it has total isospin / and
third component m as follows

my = (47rf1(/’-))“" { dZY,, (e 10), (4)

where a n* and n° are created by a} = (a} +ia3) and d respectively. It is left to the

\/2
reader to verify that this state is indeed an eigenstate of /? and I with eigenvalues I(/4-1)
and m and that the normalization constant is

P .
ﬂ(ﬂ)—\/2111+%("»)- &)

The function f(4) is a modified spherical Bessel function of the first kind [13]. The integra-
tion region in (4) is the surface of the unit sphere. If { 7 is the isospin of a classical nucleon
then !/m) can be interpreted as the (/, m)-multipole of the meson field radiated by that
nucleon when performing a random motion in isospin space. Irrespective of this interpre-
tation, we will consider the states (4) as the generalization of the uncorrelated state (3).
We will use them to construct final states with the same 72 and I; as the initial state. The
final state after an inelastic p-p collision is therefore

ipp> = A(pp) 00> +B [\/2 (pp)i10> — (pn+np)111>] +

1 _ 3 3
+C[\71_6(pp)i20)—\/E(pn+np);21>+\/5»(:271)%22}]-}-

D )
+ \Tz(pn—np)zll), ©)

where the normalization condition requires
[A*+iB*+IC*+{D}]* = 1. (N

In the term with coefficient D the two nucleons have isospin zero, in the other terms they
have I = 1. In the same way the final state of a np collision is

Iz~ p> = A'nl00>+B’ [\/- nj10%> — \/ pll—l}]

+C’l: /2 E10>+—1~ !1—1>]+1)' J? 1205 /3 21 8
J3m10+ 5p n 'VEP’">] (8)
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with again
A'P-IB P IC 2+ DR = )

The A’ and B’ terms have I -= } and the C" and D’ terms have / = 3/2. A leading n~ in the
final state could be included by adding a term pa”™ [0 0). Although this state is already
present in the B’ and C' terms, it gets an extra weight in this way. For ntp we take for the
final state

mp) = Xplly+Y[VEn22)— VI pl21)] (10)
with
X21|Y2 =1 (n

Also here a leading n* could be described by adding a term paj\O 0>. The annihilation
part of the final state in a p-p collision becomes

ipp> = X'100>--Y" 110> (12)
with
DEEED LN (13)

For each of the above processes it is now possible to calculate any multiplicity distri-
bution, branching ratio, or correlation function. A detailed discussion of the results,
including fits to the experimental data, will be given in Section 3. For the present, however,
we just list the conclusions.

1. The total number of pions, n = n.~n_—ny, has a Poisson-like distribution in the
sense that its width increases like \/fz. This behaviour is typical for any model with uncor-
related particle emission.

2. The charged particle distribution has a width which increases like N,.

3. There are strong positive cotrelations for pairs of like pions and for pairs of char-
ged pions.

4. There are equally strong negative correlations between a neutral and a charged
pion [14].

5. The charged particle distribution shows KNO-scaling in the infinite energy limit.

6. The two-variable distribution P(n., n,) does not scale.

7. The KNO-scaling function for charged particles becomes infinite at a certain
finite value z, of z == N/N.. Fcr z>z, it is equal to zero.

8. For N, close to z, N, the charged prong topological cross-sections should satisfy
a new scaling law. This scaling law also predicts that for high energies the maximum cross-

section should occur for N, equal to ﬁczzoﬁc-—x \/]Vc, where kIS a positive number
of order one. The value of this maximum cross-section is predicted to vary like N, % gy,

9. If the energy is /s and the observed prong number is N, the average number of
neutrals can be considered as a function of s and z. For high energies it turns out to depend
on z only and to vanish for z > z,.
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2. Detailed discussion of the model

In order to find the distributions functions for the states of Egs (6), (8), (10) and (12)
we must calculate the matrix elements

Aj(n, no) = {nunnp|lm >, a4
where n = ny-+n_+no and m = ny—n_. It is easy to show that
g - -
Al(n, ng) = =——=——— | drrPt T Y, (T 15
(s o) \/4nﬁ(}.)n+!n_!n0!.[ 00 7= Yin() (15)

i 1 .
with 7o = cos 6 and 7, = —= (1, £ i1,) = —=sin 0 e**®. From this expression we see that
V2 V2

Aj'(n, no) is zero for n+/ odd. Since the integral in (15) is just a product of n-+1 spherical
harmonics it is possible to give a closed expression for it [15]. Instead of doing this, we
just list the Aj'(n, no) in the Appendix for /=0, 1 and 2.

Let us next consider a final state of the form

|‘P> = lz ClmB(l: m)ilm>:

where B(/, m) is the baryonic part containing 0, 1, or 2 nucleons. The probability of observ-
ing a baryon-meson state Blnin_ny) is

P(B; n.n_ng) = |3, Cin(B, B(I, m)A7(n, no)|*. (16)

The only A dependence is in the A4}, the other parameters of the model occur in the Cp,.
From Eq. (16) we can calculate all the required distributions, averages and branching
ratios.

Detailed results for the p-p case will be discussed in Section 3. To illustrate the general
properties of the model we will conclude this section with a discussion of the simple case
of pp — pp -+ pions without charge exchange, i. e.

lv > =(pp)I00 ). an

In this case the probability of finding » pions, among which there are #, neutral pions is
PRI | (n(,—l)!!]2

P,(n, ny) = e , 18

A o) fo() noi[(n-i-l)!! (18)

where fo(A) = A~ sinh A. The probability is zero unless both » and n, are even. Summing
Eq. (18) over all even n, << n gives the distribution of the total number of pions:

1 12j+1

P(n) = —— 19
™) =G @rD! (19)

where n = 2j. This is a Poisson-like distribution with an average number
ne— 1 (20)

tgh A B
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and a dispersion

2 R Y 21
D% =(=m"=ei7 " \simn 2/ (1)
The two particle correlation is
—_— _ A \?
, = n(n—1)—n* = D*—n = 1—{— . (22)
sinh A

For 4, which in this model plays the role of the energy parameter, going to infinity, we find
the following asymptotic expressions:

ne~A-14..., DP~id.., foxl4.., (23)

1.0 F

5

«375

25

«125

Fig. 1. The probability distribution for m* as predicted by the model for various values of 4 in the case
of no charge exchange

where the remaining terms are all of order exp (—24). From Eq. (18) we also find that the

average multiplicity of the charged and neutral pions is n, = n_ = ny, = in. Adding in the
two protons gives for the average charged particle multiplicity in the limit of large A:

N, ~ 23424 24

Although the average numbers of nt, n~ and n° are equal, their distributions are quite
different as in shown in Fig. 1 and 2. The charged pions have a distribution with a maximum
which for increasing energy shifts to higher multiplicities. The distribution of neutral
pions has its maximum always at n, = 0. The reason for this peculiar difference is that
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for fixed number of charged mesons the neutrals form a one-dimensional subspace while
for fixed number of neutral mesons the charged mesons form a two-dimensional subspace.
One can also compute the two particle correlations:

fzi = ni(ni_ 1)_ﬁi,

S20 = "0(;07_1—)_ ng, (25)

So- = nn_—nyn_,

Sio =n . no—n ng.

«25

Fig. 2. The probability distribution for #° as predicted by the model for various values of 1 in the case
of no charge exchange

The charged meson correlation
Sfoo = n(n,—1)—nZ with n, = n,+n_

and the total two particle correlation f, (Fig. 2) are related to the above as follows:

J2e :f2++f2——+2f+— (26)
and
2 :f2c_|_f20+2(f+0+f—0)‘ (27)
For high energies (4 — o0) we find the following asymptotic expressions:
r ., 8
fox > El - El+...,

4 2

~—A%2— A+,
f2o 45 45
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f ! A+ +
T T 45 45 ’
2 1
fro= — =A%+ —Ai+.., (28)

45 45

where the remaining terms are O(1). Due to the strong positive correlations between charged
particles we find that f,. is also large and positive:

fro —A%— —A+... (29)

i. e., the same as f,,. The charged-neutral correlation is negative and cancels the positive
correlation so that f, ~ O(1), as was already found in Eq. (23). From Eq. (29) we can
derive the dispersion of the charged pion distribution with the result
D L + 3 + (30)
P (S —
The coefficient 1//5 = 0.447 is the same as found by Dadi¢ et al. [11]. For n=p this coef-
ficient is practically equal to the experimental value of 0.44 quoted by Wréblewski [2].
It is, however, quite different from the value 0.585+0.01 for p-p scattering. In our model
the coefficient will be changed by adjusting the values of the parameters in Eq. (6). The
results of this adjustment will be discussed in Section 3 where the effects of the nucleons
will also be included.
From Eq. (30) it is clear that the distribution of the number of charged pions is much
broader than a Poisson-distribution. Summing Eq. (18) over the neutrals gives for even n,

o AT (ne—DN P
Pund =75 Z no![<nc+no+1)!r] GU

no=0,2,4,...

Next let us examine the large A behaviour of this distribution. In particular we are interested
in the scaling properties of the distribution. First we will give a rather general argument
that it scales in the sense of KNO [6], /. e., that there exists a non-trivial function (u)
defined by

w(u) = lim AP (n,) (32)

where 4 and n_ both go to infinity, but in such a way that u = n_/A remains constant. The
KNO variable z = N,/N, is simply related to this u. The argument proceeds by examining
the moments d;, = (n,—n.)", where the averages are defined with the distribution Py(n).
We have shown (Eq. (23) and (30)) that n, = O(A) and d, = O(A?). From the assumption
of uncorrelated production it follows that d, is at most O(4*). This is a consequence of the
fact that in the state {/m > the amplitude for finding k pions occurs with a coefficient
proportional to g*. In principle it is not exclud d that cancellations occur and that dy
is actually of lower order. We will now prove by induction that this is not the case for
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even k. Suppose d,, = O(2*%). Tn the Schwartz inequality
|AB? < A% - B?
take A4, = (n—n)**! and B, = (n—n)*~". This gives
dyd® <dayrs dax—2
or

dad*

2k—2

dyi2 = = O(AZHZ)-

We know that ds,., is at most O(A7*¥?) so that also dy,y, = O(A4°**%) which proves that

dyy = 0% forall k=1,2,.... (33)

Consider next the even moments of p(u):

az = ] vlu) (w0 du i),

where
Jw(u)du = lim 7 E APy(n) = 2 34
O ne
and
1 wd _11. 2 ne AP,(n) = i n, 35
u—2 uy(u u—21m;t ] znc)—lmz‘ (35)
0 LS

The even moments then become

1 N 2 1 ﬁ 2k de
1 = = = A'Pl c - ‘—C - .
Gk = 2 P )(/1 A) 22 (36)

Nne

Because of (33) it now follows that all even moments of () exist and are finite. Some of
the odd moments may be zero, but are certainly not infinite. Although the moment problem
does not always have a unique solution (c¢f. the discussion in Ref. [6] on this point) the
argument given above is a strong indication that KNO-scaling occurs as soon as there is
uncorrelated particle emission and D, ~ N.. In the present case we have shown the KNO-
scaling by actual calculation of the function y(u).

Koba, Nielsen and Olesen derived their scaling law from Feynman-scaling. This also
led to scaling of P,(n, ny) in the sense that the limit of A2P,(n, ny) for 4 — o0, n, — oo and
ne — 00, but with fixed u, — n,/A and u, = ny/4, exists and is a function w(u,, u,) of
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u, and u, alone. In the present case we find that
PP (n, ng) ~ Ate 2aiu) 37

with g(uy, u;) = 14-uy+(uy+us) In (uy +u,). Since g(u,, u,) > 0 for all positive u; and
u,, the function in Eq. (37) goes to zero as 4 — co. These two results show that Feynman-
-scaling is not a necessary condition for KNO-scaling,

Next we give a direct calculation of the function w(u) of Eq. (32). The result can be
obtained in a number of ways. The one presented here is perhaps the most transparent.
Using well known properties of the I'-function [16] we obtain

w 1+1
o \Zk+21+2 1+ —k—
AP)(n) ~ 2e * '}"‘ — —_
Ane) ,__J(u) (Ck+21+2)! (38)

k=1

where no = 2k, n, = 21 = lu, and where we have neglected the term in the original ex-
pression (31) with n, = 0. The expression (38) can further be approximated by

AP (ny) = Z W(no) \/ 14+ 2, (39)
o

no>0

nc notng
n.| —

(ng+n)!’

where

W(ne) = e no = —n, —n.+1, ... 40)

is a normalized Poisson distribution with average

o= (5 =1)n. (@1

D =V(ng—ny) = \/% (42)

and dispersion

We now distinguish between the following three cases:
a. o< 0 and |ne!> D or u>1 and u—13» DL,
b.n,>0and ng» Doru<1and 1—u>» D,

c. ngi <D or !l—ul & ——.
Ve
In case a the peak of the distribution function W(xn,) falls completely outside the range
of the summation. We therefore find that

p(u) =0 for u—13» D1 (43)
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In case b the peak of W(n,) falls completely inside the region of summation. Since V1 +n.lng
varies but slowly over the width D of the peak, we find

nC
APy(n.) ~ \/ 1+ =— (44)
Ry
or
(w) ! f l—u>» D! 45
= or —— P> .
v = u 45)

In the limit that A and n. actually become infinite we see that p(u) has a singular point
at u = 1.

For A and »_ large, but not infinite, there is an intermediate region, case c. In this case
a finite fraction of the peak falls inside the region of summation. We now approximate
W(n,) by a Gaussian distribution with the same n, and D,

U — o (no—mo)?
W(no)z\/z e 2n o s u~-1l (46)

A,

and replace the summation over n, by an integration over y = no/ \/ Z—nc This gives

AP,(n) = ("5) 6) 47)
with
) 1 o e~ 02
G(y)=—E£ NER
and
y= \/%=(1—u)\/"§?. (48)

The function G(y) provides a smooth transition between the two cases a and b. For y large
and negative, which corresponds to u > 1 it approaches zero and we have case a. If j » 1,
corresponding to ¥ < 1 we have

1
G(y) =~ —=

Jy

and

AP(n ) =~

1
NI

This is just the result for case b.
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The function G(p) is plotted in Fig. 3. It has the property that it has a maximum
value at § = y, = 0.544 with value G, == 1.2235. This means that for large values of n_
the cross-section o, (1) has a maximum for

e > 3 n.—Yo~/3n.. (49)
The value of this maximum is
_ . L/ 4\ -
S(n.) = Max o, (n;) ~ 5(3:) GoGine(ne) = 0.759 n. > *6(n,). (50)
ne ¢ n.

The numerical constant in this equation will change with the parameters of the model
but the n, dependence remains the same. Since y,,, seems to increase like nZ [17], it
follows that S(n,) increases like n/*.

5
12'\
Q]
10
ost
0975 50 725 00 LoE

y

Fig. 3. The scaling function G(»). For compzrison the limiting form with its singularity at y = 0 is shown.
Also plotted are the experimental values as described in Section 3 for N > 10 and P = 50, 69, 102,
205, and 303 GeV/c

The function G(y) can be looked upon as a scaling function in a new scaling law
implied by Eq. (47). In the next Section we will compare both this new scaling and the
KNO-scaling predicted by this model with the experimental data.

In the same way as we calculated the scaling function p(u), we can also determine
the average number of neutral pions for a given number of charged pions. In the limit
A = o0, n, - o0, but u = nf fixed we again find scaling and the limiting behaviour is

7(}1)_)(\“”:; foru<l,
folfte 1 0 for u > 1.

(51

This formula is another manifestation of the strong correlation between the neutral and
charged pions in this model. To obtain the quantity usually reported in experimental
papers this value of ny(n.) should be divided by on /gy
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3. Comparison with experimental results

The properties of this model as described in the preceeding Section give some hope
that the model will be in good agreement with experimental observations. Any precise
comparisons require that values be given for the various parameters which enter into
equation (6). The method chosen was to determine the constants by fitting the model to the
experimental topological cross-sections [3, 4, 5, 18, 19, 20, 21]. The strategy which was
eventually used was the outcome of an extensive investigation of the possibilities.

The parameters which must be determined are A, |4|> = AA, |B]*> = BB, |C|* = CC,
|DI1? = DD and the phase between the complex numbers 4 and C, which enters as cos
@4c = RE. The fits to the data were made by minimizing y* using the Rostock method of
minimization.

By examining the data a single energy at a time it was observed that most of the energy
dependence would be represented by letting A depend linearly on In Py,,. The other para-
meters could then be taken as energy independent. It was also observed that the low
multiplicity cross-sections were fit badly by the model. This is not unexpected in light of
the current evidence that the low multiplicity events have a significant diffractive compo-
nent [8, 9]. In order to include this effect without increasing the number of free parameters
unduly we introduced 3 energy independent diffractive components o(2), 6p(4) and op(6)
in the 2, 4 and 6 prong cross-sections respectively. A final determination of the parameters
was made using the parameters a and b in

A= a+blogo Pip, (52)

the four parameters, A4, BB, CC and DD which, in fact, give only three free parameters
because of the normalization condition (7); the phase RE and finally the three diffractive
cross-sections. Thus there are a total of nine parameters to be determined.

Perhaps as much was learned about the properties of the model in the process of
choosing the parameters as can be learned from the final choice of parameters. Provided 4
was chosen properly by appropriate choice of a and b the other parameters of the model
could be chosen more or less freely without drastic changes in the fit to the data; part of
the change in the multiplicity distribution being compensated by changes in the diffractive
component. The diffractive contribution to the 2 prong cross-section was always small and the
total diffractive contribution does not vary significantly. A model such as this with independ-
ent particle production is expected to be best at high energies where threshold effects and
resonance production are unimportant. This was found to be the case but not dramatically
so. Fits made to the seven energies, 19 [18], 28.5 [19], 50 [21], 69 [21], 102 [3], 205
[4] and 303 [5] GeV/c typically gave x? of ~ 190 for 63 data points. Fits to the highest
5 energies were somewhat better giving y* of ~ 90 for 50 data points. Fits using only the
highest three energies were best and will be used for the remaining discussion.

As has been noted by others [9], the two prong cross-section at 303 GeV/c seems
to be too low in comparison with those at lower energies. We have used the published
value for the total two prong cross-section but have used an elastic cross-section of 6.8 mb
as found in recent ISR experiments [17] at comparable energies, instead of the value of
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7.2 mb as used in the paper. Finally, we observed a tendency for the value of DD to be
small. This has a simple physical meaning: the / = 0 state of the two nucleons is sup-
pressed relative to the I = 1 state. We have therefore chosen DD identically zero.

The best fit to the topological cross-sections at the three highest energies gave a y2
of 43.8 for 33 data points and 8 free parameters. The values of the parameters were

a= —6.33 op(2) = 0.187 AA = 0.178
b= 139 op(4) = 1.505 BB =0.576
op(6) = 1.535 CC = 0.246 (53)
DD =0.0
Jp = 3.23 mb RE = —0.503

In Table II we show a comparison of the experimental values of N, and D, with those
given by the model. Asymptotically we find

D, ~ 0.58 (N, —3.29). (54)

In Fig. 4 the topological cross-sections predicted by the model are plotted for Py, from
15 to 1500 GeV/c. For comparison the experimental points are also plotted. Since the

TABLE II
Comparison of experimental values of N; and D, with those predicted by the model with the parameters
of Eq. (53)
Pas | Netexp) Weth.) Defexp) Ne(th.)
102 i 6.34+0.14 6.28 3.19+£0.08 3.12
205 7.65+0.17 7.60 3.88+0.08 3.84
303 8.77+0.20* 8.35 4.3540.15% 4.26

2 The two prong cross-section has been adjusted as described in the text.

parameters are chosen to optimize the fit at high energies the fit at lower energies is not
good. The fit to the low energy data can be improved by a different choice of parameters.
In Fig. 5 we show the topological cross-sections at 205 GeV/c as predicted by the model
and from experiment. The diffractive contribution is indicated. The break in the curve
between N, = 6 and 8 indicates that an 8 prong diffractive component is probably present.

Next we look at the various scaling properties of the model. The presence of a diffrac-
tive contribution complicates the situation. In Fig. 6 we show the KNO scaling function
predicted by the model along with the experimental data and the curve given by the model
for 303 GeV/c. We see that both the experimental data and the model are far from the limiting
behaviour that is predicted. In the limit the diffractive component should give a delta-
-function contribution at z=0. While the major portion of the peak for z less than [ is
the diffractive component we see that it is far from a deita-function. In spite of the clus-
tering of the experimental data in a narrow band we must conclude that we are far from
the scaling limit. In Fig. 3 we have plotted the experimental data under the assumption
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Fig. 4. The charged prong topological cross-sections predicted by the model with the parameters (53).
The experimental data of Refs (3, 4, 5, 18, 19, 20, 21] are shown along with some typical error bars

that it scales according to Eq. (47) with n, == N_. The general form of the scaling relation
is in this case

_ Oy N.\?*
N, a5 ),
< ( > ) xQG(y) (55)
where
2 R R _
x=3-13 Q= 1—2, R =2,/2(AA- CC)* RE+BB—CC—2.DD
and

- Nc * xNC
y=1\—= 1— —=].
2 N,
While there is not striking agreement, the data agrees with this scaling better than it does

with the KNO limiting curve.
The model makes predictions about various average multiplicities. The average
charged paiticle multiplicity is given as a function of Py, by

N, =~ 2.141n Py, —3.54. (56)
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The average number of neutral pions is related to the average number of negatives by
no ~ n_+0.329.

In Fig. 7 we show a comparison of this prediction with the experimental data. In this
model the average number of neutrons is independent of A and therefore of P,,. The value
given by the model is 0.657. This corresponds to an average number of protons of 1.34

64r

4.8

40F

o (NC)
w
N

24r

PLAB=205

0.8

Il 1 1

00 40 B8O 120 180
NC

200 240

Fig. 5. The charged prong topological cross-sections for Piap, = 205 GeV/e. The contribution of the diffract-
ive component is the difference between the two lines

which is in agreement with experimental measurements [22]. In Fig. 8 we show the n°
multiplicity distribution. We see that in this model the peak in the distribution for low
multiplicities comes from the pn and nn final states while the high muitiplicity part goes
with the pp final state.

Finally we have computed the prediction of the model for the experimentally measured
quantity, the average number of #n° for a fixed number of charged particles. The results
are shown in Fig. 9 along with the experimental results [23]. There is a striking disagree-
ment between the model and experiment. The strong peaking for low N, in the model is
related to the strong negative correlations between charged and neutral pions in the model
which are required to give a broad charged particle distribution. If we started from a total
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Fig. 6. The KNO scaling function. The curve which is singular at z = 1.5 is the infinite energy limit as
predicted by the model. The second curve is that given by the model for 303 GeV/c. The experimental
points are those from Ref. [7]
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Fig. 7. The relationship between the average number of neutral pions and the average number of negative
pions. The line is the high energy relation predicted by the model. This figure was kindly provided by
Prof. A. Wroblewski
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pion distribution which was broader than Poisson, instead of that required by uncorrelated
particle emission, it is possible that we would obtain better agreement for this quantity.

It is a great pleasure to thank Professor A. Bialas for exciting discussions and
correspondence while this paper was written.

APPENDIX

In this Appendix we list the non-vanishing 47(n, ng) for /=0, 1 and 2. n+/ must
be even and m = n.—n_. For a given !/ and m these two restrictions determine whether
ny is even or odd.

1 =0, n even

0 A1 (-1
Ad(n, no)—\/m-ﬁ-m (ny even)

=1, n odd

An, =\/_)~T'\f3. no!!
1, ng) 7@ \/n_.e..' n2)h (ny odd)

n 3
AE N, ) = $\/ P NI(—net1) (mo—D!

J1i(D) \/nac? (n+2)! (ny even)
=2, n even
49 ,Hp) = _}?_1/_3_(3%—-;1)'("0_1)”
) \/fz(l) 2 Jng!  (n+3)! (no even)

N _ " V30 Via—ng+1 "
AFYn,ny) = F \/_)_“_ V30 Vi Mot Mo (o odd)
£ 2 Jre!  (m+3)N

A22(n, ng) = \/z V30 Vn=ne) (n=ne+2) (mo—N!!

— (ny even)

(D) 4 Jno! (n+3)N
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