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EXPONENTIAL INTERACTIONS AT HIGH ENERGY
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It is shown that the exponential interaction exp z? leads to Regge-type high-energy
elastic scattering amplitudes when summations are carried out in the major coupling constant.
A more complicated entire interaction of the same order yields similar resulis.

1. Introduction

At present, there are many indications [1]-[4] that the non-polynomial interactions
can solve the divergence problems in particle physics. Likewise, it is essential to provide
asymptotically decreasing or constant amplitudes and this is the task of the paper. Although
there exist general estimates [ 5] showing that rather complicated non-polynomial amplitud-
es possess reasonable high-energy bounds, it is necessary to discuss the details of the
asymptotic behaviour in explicitly solvable models.

In this paper we calculate the high-energy sum of the ladder amplitudes for two
entire interactions of the order equal to two. In accordance with the expectation, we get
Regge-pole structures for the leading asymptotic behaviour.

Section 2. contains some details of éalculating the ladders and the summation over
the major coupling constant for a general non-polynomial interaction. These ideas are
applied to two models in Section 3, where we also discuss contribution of the cut.

2. Ladders at high-energy

To prepare the summation of the ladders coming from exponential interactions,
let us consider a general non-polynomial interaction

Z(kp) = §k§0f(’€) (k) ¢y

and show the method of calculating the ladders with superlines as rungs at high-energy.
g(k) is called the major (minor) coupling constant, ¢ is a real scalar field.
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First, it is easier to calculate the ladders with multiple loops coming from the inter-
action g: ¢**#(x). Thus, consider the diagram drawn in Fig. 1. This case gives the essential

information necessary for (1).

To make the contribution of Fig. 1 finite, we introduce a Pauli-Villars regularization
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Fig. 1. Ladder with two rungs

into the internal meson lines and write

a2
Ag(p) = —i [ dL(pP*—p®—L+ie)™%, A* = M?>— )2
0

M > p is a large regulator mass. By making use of the identity
k
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we can integrate over the internal momenta [6] and get for the contribution of Fig. 1,

My = 2—g%e)? 5! [(2n)*En)*] ! 1; {dLdL} f {ado} {BdB} {o'da’} x
¢} [
x (1= 3 ay— 3 oi— By~ B)C(x, o', BY* x
x [t 2%+d(2 o, B, L, L, 5)]~°

with
o= (k+2)1*k!™",
Cla, o, f) = Cul) H o+ Cyla) H o+ (B + B)Cu@)Cil«)
and
d(a, o, B, L, L, 5) = B1B2Cu(@)Cule) + 1*(By +B2) (Cile) H a;+ Cy(2) H @)=
—(u*+ Z o Lh + Z L+ B Ly + oL, —ie)C(a, o, B),
where
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(4) has not yet a convenient from to discuss the high-energy behaviour. Therefore
we introduce new variables into (4)

K K
V=D % Y2 = 21 a, =71 =718 ®
=y i=

In the second step we get rid of the é-functions by introducing the scaling variables

¢ =1-py, fj = (1—91')91"'91'—13 & = 01.0k-15 J=2,.., k-1 )]

and similarly & — ¢;. In such a way, it is easy to find
iz 1
My = 2—g0)*S![(2n)*@4n)**] ™! | {dLdL} | {ydy}x
0 i)

x {e(1—o)do} {e'(1—0")de'} {BdB}O(1 —y,—y2— By —B2) %

k—1
C('}’, Qs 9,9 ﬂ)4[l’})1')’2 l:li Qi(l - 01)9:(1 - @:)+d(Y9 ﬁ’ [ 9,9 L, L" s)]—ﬁ, (10)
where
C(a, o, ﬁ) iy o, B, L, L,s)
= ()" l I (@io)* ™! . (1)
C(‘y’ \’._’ﬂ) d(y’ﬁ’ Q’Q,L9L’s)

Clearly the leading term of #, for 1 — o is determined by the end-point contributions
of (10). Discussing the mixtures of the various end-point contributions by well-known
methods [6], one is led to the high-energy amplitude

(1 t)u—x
n.—
M2_#2)2k 2\ 2

(4n)? Qk-1!

= (329)222"_1(271)"4( K(s, M?) (12)

and
iz i

K(s, M%) — 3 J arrar, [ @PudB:8.8:00 =B, B)

J [B:Bys—u*—B,Ly—BsL,+ie]*

(12)

K(s, M?) represents the contribution of the contracted diagram belonging to Fig. 1; it
describes the slope of the Regge-trajectory [6] in summing ladders. K(s, M?) is bounded
for M —» oo and s — o0, respectively.

From (12) one can obtain the contribution of the g?-order ladder by neglecting the fac-

2\k
tor g%0 - 2*7*K(s, M?) -{ ———— ], because by short —circuiting in Fig. 1 the two lines
(4n)?

running through, we get one rung with 2k—1 single lines. Furthermore, from the same
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reasoning and from the factorization of the reduced graph (Fig. 2) it follows for the high-

Fig. 2. Contracted graph

-energy contribution of the ladder with m rungs

¢ mk—1
In —
B gZQ m 2 2(M2__“2) mk pme1 _2( ﬂZ)
“””’"(2) <2n)4< @ ) KoM oy - @

The summation of (13) in m is described in [7].

Returning to our original task, we first remark that the high-energy behaviour of an
m-runged ladder having k, single lines in the i’th rung (i = 1, ..., m) is quite similar to (13).
Consequently, the summed ladders with superlines as rungs give the following contribu-
tion at ¢t = o©

t 1
M= g Moy =2 [(2@4:2 In — K(s, MZ)] E yrx
"
- 1

m=

@K

> I k=D H (2 (ki + 2) ) 154 =

Ki.okmm=1 i=1
= (k) [2m)° P K(s, MH)] ™1 P(x, p). (14)
Here

2
11
x = 2(K—u> In—, y= 18 k*K(s, M?)
47 U

M2 " N o
K2 = (_3_ _.1> Kz, g2x4 — g2K4_ (15)
/]

k and g are kept finite. As it is seen from (14) the amplitude ¥(x, y) satisfies a Volterra-type
integral equation,
y H(x—x") , ,
(x, y) == dX)+y | ———— ¥, p)dx’. (16)
X X—X
0

Its kernel generates the gZ-order ladder

-1
My = gt l:(2zr)4t2 In ;j—{l &(x),
N fe+2)"(k+2)!1*

Px) = Ki(k—1)!

k=1

amn

In [5], starting from (14) several estimates leading to Regge-type behaviours were
described.
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3. Exponential-type interactions

From the results (14)-(17) it is apparent that for entire interactions there exists the
amplitude .#. Let us, therefore, consider interactions represented by simple exponential
functions. As it is known [5] exponentials of order > 2 generate non-local (local) inter-
actions.

In what follows we consider a less trivial class of Lagrangians [8, 9] than the linear
exponentials,

Z.(z) = ge* - 1). (18)

The relevance of (18) lies in the fact [8] that equal-time current commutators require
second-order exponentials in a vector field.
To solve (16), we take its Laplace transform, then

o(p, y) = ye(p)(1—ye(p))™, 19)

where @(p) denotes the Laplace transform of and o(p, y) determines ¥(x, y) accord-

ing to the inversion formula

ic+ao
¥(x,y) = @2rni)"" [ olp, y)e**dp, o> 0. (20)
—iw+a
From (17) and (18)
& — 2k + 3)?
_(x_) = (__Q x2k+1 (21)
X ki(k+1)!
=0
and
@(p) = 8[p°+8p° —(p*—4) (P-4~ 2. (22)

Consequently w(p, y) has poles of finite number, whence ¥(x, y) gets contributions of
the type exp. (pix) ~ 1*®, that is a Regge-pole behaviour arises. There is, however, a cut-
-contribution, too. This is due to the square roots of (22) and it amounts to the integral

g _ t 2(4n)-2k2u2p
j B(p, y) (l-‘—z) dp (23)
=2
where S(p, y) denotes the discontinuity on the cut
B, y) = 8yp*(p* +8)(p* —4*[(1 +8)*(p? — 4)> — Byp*(p* +8)°]". 29

It follows that the interaction (18) produces a fixed cut in the complex angular momen-

K\ kpu \?
tum plane between —{——) and [—}.
4n 4n
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Summarizing, from the point of view of asymptotic properties the non-polynomial
interaction (18) is perfectly sensible.

Now, we want to show that there exist entire interactions of the same order without
cuts. Namely, consider the Lagrangian

2@ = 5 kR, 2= i 25)
One can easily find

x1P(x) = xA(x+2)exp x (26)

and
@p) = A -2p)p—1)2. @7
Substituting into (19) and (20) we have for the complete ladder amplitude .# at ¢ — o0
R 5. (iz)zm) ~B) (iz)m] 28)

22n)°p J [
with

By 2(s) = [1+2(y—DF2/y(y— D] [4(y-D] %,

ay,2(8) = (:—Lu) -y --1 29

T

4. Discussion

In the present paper we have presented a high-energy summation of regularized
ladders defined by non-polynomial interactions. Non-polynomial interactions have been
considered as limits of power-type interactions. A similar construction of rational Lagran-
gians was investigated in defining the local commutativity for nonlocalizable fields [10]
with the result that many essential properties can be preserved from those od the localiz-
able fields.

For entire interactions there exists the complete amplitude (14). We have investi-
gated the class (18), (25) where the nonlocalizable feature starts to come in and found
a completely reasonable power-behaviour at high-energy. We know from [5] that this
is no longer true for higher-order entire Lagrangians.
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