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EXCITED STATES J*= 1* IN SPHERICAL NUCLEI
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Energies, wave functions and M1 electromagnetic transition widths have been calculated
for %5Ni, 114, 116,118,120, 122, 124G, 138, 140Ce 142N( and *°®*Pb with the use of the
Saxon-Woods potential and “realistic” residual forces. Several excited states J® = 1t in
the energy region 2.3—12.4 MeV have been obtained for each nucleus. Some of these states
are a coherent mixture of configurations generated by spin-orbit interaction and have a large
width for M1 electromagnetic transitions.

1. Introduction

Recently, there has been considerable interest in spin-spin correlations induced by
residual interactions in atomic nuclei. These correlations affect the magnitude of odd-mass
nuclei magnetic moments in such a way that they differ noticeably from the values indicated
by Schmidt diagrams [1, 2]. Spin polarization reduces considerably the probability of
allowed f-decay between low-lying excited states [3].

Taking into account spin-spin interaction, Emery and Shapiro give evidence for M1
resonance at the energy region 5-8 MeV in even-even deformed nuclei {4]. Gabrakov et al.
indicate that in even-even deformed nuclei this interaction produces excited J* = I+
states, the strength function of which has a main maximum at 8-10 MeV and a second
maximum at 6-8 MeV [5, 6, 7]. Calculations for 2°8Pb have been carried out by Broglia
et al. [8]. They report two excited J™ = 1+ states at 5.84 MeV and 7.47 MeV.

The purpose of the present paper is to investigate excited states J* = 17 in the energy
region 3-12 MeV in 56Ni, 114.116,118,120.122,124Sn, 138Ba, 140C€, 142Nd and 208Pb-
These are the nuclei with one or both, neutron and proton, closed shells. Our results
show that in all the quoted nuclei there exist a few excited states J* = 1%, some of them
concentrating the main part of M1 electromagnetic transition.

* Address: Instytut Fizyki Do$wiadczalnej, Uniwersytet Warszawski, Hoza 69, 00-681 Warszawa,
Poland.
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2. Theoretical description

2.1. The Hamiltonian

After performing the Bogolyubov transformation
a,(1) = uDb(r) + (Db ()
a3(x) = u(D)b3(1)~ 0D)b; (1) (1)
the nuclear Hamiltonian has the form:

H = U+ Y e(0)b, (0)b(7)+

+3 2, {aBiviyedN(a; (1)ag (1)a,(t)a,(v)). (2

aByart’

Here U is the ground state energy. The second term describes independent quasi-particle
excitations and the last term represents the quasi-particle residual interaction. t is the
izospin variable (z = p, n). The other Greek letters, «, f, y and o, stand for the complete
set of quantum numbers necessary for specifying the single-particle level. In the case of
the spherical potential, {a} = {nljm}, where nljm are the well known quantum numbers.
at(a) and b+(b) are particle and quasi-particle creation (annihilation) operators. e () is
the quasi-particle energy given by the formula:

e(1) = (1) — M)’ + 47(0))* 3

where e(t) is the single-particle energy, A(7) is the Fermi energy and 4 is the energy gap.
N appearing in (2) stands for the normal product of quasi-particle operators.

2.2. Quasi-boson approximation
One can introduce the following two-quasi-particle operators B (j,j,; J*M) and
its adjoints B,(jyj.; J™M)
B:(jljzé J*M) = Z <j1m1j2m2IJM>b;1m1(T)bLm;(T)

mymy
B, {jij23 ™M) = Z <jim1]2’"2EJM>bj2m,(7)bj,m,(T)- “®
mymz

Operator B (j,j,; J"M) creates a two-quasi-particle state of the total angular momentum J
and parity 7. In constructing the pairs (Jy, j,), first all the quasi-particle states (j)are num-
bered in some convenient way (e.g., increasing order of energy ¢;), and then in the pair
(ji,j2) it is understood that g; < g;,. We first show commutation relations which are
used in the following calculations,

[B; (jij2; J™M), Bi(jija; J"M')] = 0
[B(jjz; J*M), BY(jijas J™M)] = 8,08 smpmd;, ;85,1 0mm + R

[B.(jij23 I™M), Bo(j1j3; I "M')] = 0 (5
where R ~ b bj.
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Except for the term R the B’s behave like boson operators. In the quasi-
-boson approximation one puts R = 0. It should be noted that the simplicity has been
obtained at the cost of some violation of the exclusion principle. One can use the quasi-
-boson approximation in the case of a small number of excited quasi-particles, so that the
probability that two quasi-particles are in the same state is also small.

2.3. Random phase approximation and Tamm-Dancoff approximation

In RPA and TDA the excited states are considered as one-phonon states. The funda-
mental assumption of the RPA [9] is that the excited states differ from the ground state
by the presence or absence of one pair of quasi-particles. That means retaining the ampli-
tudes:

Xy:?rz(-]"’ )= <y)EnJ”M]B:(j1j2; J M)
YILU™ 0 = {Pensmul B 123 T"M) i) ()
Hence, the general form of the excited-state vector

VEngmm) = Z [XS',')JZ(J”, T)B:(jljz; J*™M)—

(F1.j2)e
— Y (I DB 12 "M wod = Qinymn¥0d (N
where
Qi = Y. [XW,(J", DB (jujz; I"M)—
(J1.d2)c
— Y% DB 1y M) ®)

is an operator creating a one-phonon state.
From the orthonormality condition for the excited states one obtains using the com-
mutation relations (5) with the following expression:

(jz ) [XS';?U(‘]K T)X.(I':J)z(‘}n’ ‘E) YJ(:}z(Jn’ T) YJ(:'JZ(Ju’ 1")] = 51"1" (9)
1.J2

The RPA ground state |y,) is defined by
B(jij2; J*M)iyg> = 0.

24. The fundamental equations of RPA

The equations which are obeyed by X and Y can be derived most easily by computing
the comutators {H, B*] and [H, B] and taking their matrix elements with respect to

|Yensnney and |yo).
By the use of Wick’s theorem one obtains the following expressions:

[H, B:(j1j2§ J"M)] = (ejl(f)'Fejz(T))B:(sz; J*M)+

+ Z [2%x P (j1jzsdsjas "M+

(asda)e
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+2%X Ry J23 Jajas TVBes jas J*M)]+ T(I™M) (10a)
[H, B(jijz; J"M)] = —(e;(t)+e;,(2)Bj1jz; J"M)—

- Z [2%Peo(jydzsdaias J)BAjsjas J"M)+

(j3.ja)e
+ 2% Reo(jyjas jadas IHBE(sjas S*M)]— T(J™M) (10b)

where T denotes the sum of operators of the B+b*b, b*bB and b*b type.
Following the prescribed way one obtains the required RPA equations:

(ejl('f)‘i‘ejz(f))xy:?u(-]"a )+ Z [2XPtt'(jlj2;j3j4; J7)x

Usda
X XS0 )+ 2x R a3 Jadas IVYIT )] =
=E,(JMX{. (I, 1)
(e, (D +e,(NYNJ™ D+ (jgm (2% Pl jrjas daja; I %
X Y (% T+ 2% Re(fy o3 Jadas IDXG (7 1)] =
= —E,(JOY{ 7). (11)

Matrix elements of T can be neglected according to fundamental assumptions of the RPA.
The coefficients P and R are defined by the irreducible matrix elements of the residual
interaction

2xP.(jijasjsjasJ) = [uj1(T)uj2(1)uj3(r)uj4(7) +
+0;,(0)0,, (00,0, (0] @ x T +1) V2 (1) jo(1); Tl J3(2) fal); T+
+ 1, (D0, (D, (T)v; (7) + 05, (D1, (D0 (Du (1) ] %

8 ;( DRSS PN S Vi {j:jz }(]1(7)}4(‘5) ol j2(2) 5(2); I Dat
+ [ij(T)u.iz(‘c)u.is(t)vh(’t) + ufl(T)sz(T)Ufs(T)uj4(‘c)] X Z (_ I)J,+J+j2+j3 X

x (2’ +1)‘“{j;j§ }omhm T 1001720 oD T Da (122)

2X R (j1j23J3Jas ) = — [“jl(T)ujz(f)vj;,('c)vh(’f) +
+0;, (D, (Duy(Du; (0] QI+ 17 2 G1(0) ja(2)s Tliogl] ja(®) ja(T); T™Da+
+ [u,(0)0;,(Du 1, (T)0;,(1) + 05, (D, (D (D (D] x Y. (— 1) FTHH
4

x (2 + Y2 {’”"J }ol(ma(r) T 0nl 72 Ja(); I Dat
Jajsd
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+ [, (2)0;,(0)0,, (D) (¥) + 0, (D (Dt (D)0, ()] % g: (=1)"Hitisy

X QT+ 1)1 {f.‘"’?}} @ s@); Viivall 20 j3@): T S (12b)
J3Ja

for proton-proton or neutron-neutron interaction, and

2X P, (@irizsjzjasd ®) = [u;, (P (p)u;,(n)v; (n) + ”jKP)“,'KP)”},(")“;‘(")] X
X3 (— 1) PRI+ {”j} CIaPY )3 I 10l 1o (B] o) 73 +
J° J3ls

+ [u; (P, (p)v; (mu; (1) +v; (D)u;,(P)u s (m)v; (n)] x

o -
ERNAT SIS J1J2 )
*2.(= ( ”{mu}x
x (ja(P)ja(n); I ol i1 (P)Js(n); I (12¢)

2xRp(j12sJsias J%) = [v;(Pu;,(Pu; (m)v; (n)+ uj,(P)sz(P)Ujg(")“j.(")] X

x ¥ (=)t + 2 {":‘*’?J } GaAP)is(m); I 110l j1(P)jam)s I+
¥ Jajad

+ [0, (Pu P (mu () + 1, (P, (PYu 1, () ()] %

% (ja(p)ja(n); I 1|0gnll (D) J3(m); T (12d)

for proton-neutron interaction.
One has the symmetry relations:

Ptr’(‘x; »8: jn) = Pt't(ﬁ; o Ju)
Rtt'(a; ﬁ: Jx) = Rt't(ﬁ; a; Jﬁ) (13)

resulting from the definitions of P and R.
The RPA equations can be summarized as

A—ExI, B [x]_
[ -B ,-A—ExI:HiY]"O 19

A=2xP+ex]
B = 2xR. (15)

in obvious notation
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The matrices 4 and B are symmetrical and real. Their order is equal to the number of two-
-quasi-particle excitations. The eigen-value problem in RPA is equivalent to diagonalization
of a 2n by 2n matrix, n denoting the number of two-quasi-particle excitations.

It can be shown [11] that this problem may be reduced to the diagonalization of
the n by n, symmetrical and real matrix N or M defined as

N=A+B and M= A-B.

Following the work [11] one obtains the expression for X and Y,

1 ‘
X(n) . %TX (E XN3/2+N;1!2) x Vn(n)

1 ,
Y™ = LT x ( = xN,}/Z——N;”Z> x e (16)
\E,

where matrix 7 diagonalizes N:
TNT = Nd.

V"™ nad E? are the eigenvectors and eigenvalues of the real symmetrical matrix
{N;/’TMTN;/’}. From the normalization condition (9) one obtains the equation:

(I")N(n), Vu(n)) = E“. (17)
TDA equations can be obtained from (11) putting ¥ = 0.

3. The width of the magnetic dipole transition

1n the quasi-particle representation we get the following expression for the magnetic
dipole operator:

3
MM M = (4ﬂ) 2m - Z 73 [v; (Du;,(t)—u; (Dv,()] %
(J1.j2)r
x ()l ;(’v')"jz(f» [B+Oxj2§ Jr= 1+3 M)—
"B:(JlJz’J =17, M)]"‘/{Jﬂ 1+,m(r) (18)

where i is the magnetic dipole moment,

() = g(v)l+g(r)s
and

g=1, g,= 5585 for a proton,
g =0, g,= —38263 for a neutron.

The last term of the equation (18) is a component which does not lead to transitions between
excited and ground states. The reduced transition probability has the form:
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1 N :
Byl = X041 [{Wgngm=1+1l ‘/”Afv;ﬁ[Wo){z =
eh \? 3 1
= <§‘m";> y E \73[”jl(f)“jz(f)“”jl(T)sz(T)]><
p
(J1sj2)t

x G0 [X,0" = 17, - Y™ = 1%, 9])% (19)

Therefore, the width of the magnetic dipole transition can be written as

ha)
™. =lhoxax

m C

[v”(r)u“(r) u;,(t);,(1)] x

(J1,J2)t
x Gy p@llj2(0> X907 = 17, 0 -Y 0™ = 17, 9] (20)

where o is the fine-structure constant. I' is obtained in MeV if one puts transition energy fiew
and proton mass myc? in MeV.

The right-hand side of the expression (19) is the squared sum of thr terms which
correspond to various two-quasi-particle states. It is possible that for some excited states
this sum is coherent or nearly coherent. Such a state has a large M1 transition width as
compared with the others, and is usually called a “collective state”.

4. Numerical calculations

The numerical calculation has been performed for 36Nj, 114> 116 118; 120, 122, 124Gy
138B, 140Ce 142Nd and 2°8Pb. The excitation energies E, amplitudes X, Y and M1 transition
widths I' were computed by the use of a realistic residual potential. The Saxon-Woods
potential [12]

V(1) = — o Hf(r)
where
—R\ !
fn) = [1 +exp (r__ ):l
o
and spin-orbital potential
1 d f
Vsolr) = —x V
r dr

has been assumed for single-particle state calculations. The parameters are as follows [18]:
R =rod' ry = 1.24fm, o = 0.63 fm,
N-Z

= ¥y x (1 F0.63 x

. N-Z
k= 0.263 x (1+2x " )

), Vo = 53 MeV,




240

thesz +0.34 thg/2 8.04

— - L 3pe 755 . S =
3p1/2 -016 3p3/2 675
2d32 -15 3p32 -0.98
32 -18 A w2 228 2fy2 549
hivz -26 2d3/2 -325 2d 372 316
- 35wz -341 ?,f 2 “;gg
g2 ~41 Thitys ~4.56 1/2 1.
Sd5/2 46 2dss2 111
Thryz 150 2d5/2 -6.06 | A=-6.22
thisz 700 lgwz -6.32 g7z 101
2d 3/2 759 |A=-7585
3s1/2 -799 3
2d 32 1.38 N
;%72 iz :%5 ,5 3s51/2 144 @ 39
Tgvz -106 ] [Tg /2 2.4]
2p1/z2 -11.2 2ds/2 2.90
éq 9/2 —gg 19972 582
(2p1/2 ~12.5 | 2p1/2 6.38
2p3s2 129 @ @ .
a2 -138 2p3/2 -14.0 2p3s2 783
19972 ~14.9 1992 749 1572 -15.3 52 917
2p1/2 -16.9 2p12 944
2p32 -18.3 2p3/2 108
#s/2 -19.0 o2 -180 w2 128
1fss2 115
el o e i—— iy ooty b L e e e
~58.5 -474 8.1
al b) aj b)
Fig. 1 Fig. 2
Fig. 1. Single-particle level scheme for '2°Sn. a) proton and neutron particle levels, b) quasi-particle neutron
levels

Fig. 2. Single-particle proton level scheme for *#°Ce. a) particle levels, b) quasi-particle levels

The superconducting state appears in the neutron shell for Sn and in the proton
shell for Ba, Ce and Nd. The strength of the pairing forces G has been fitted to he con-
densation energy numerically [14]. The levels 1fs;, 2ps,, 2py),, lgs),, 2ds;,, 187, 351,
2ds;,, Vhuiy,, 2f5),, 3psy,, 1hs, were taken into account for the Sn isotopes and 1f7,,
1f5.,0 2p310 2Py, 189y, 187, 2ds),, 1hayy,, 35y, 2ds;, for Ba, Ce and Nd. In Fig. 3
the parameter G is plotted versus mass-number A4 for Sn isotopes. In the case of 1298n
the G value does not fit the curve, but has a considerably lower value. This is due to the
shell effect (closed 2dj3), level), so that the value G = 0.1752 resulting from interpolation
has been used. The parameters G, 1 and 4 for the nuclei under consideration are listed
in Table 1.

For excited state J* = 1+ calculations all the two-quasi-particle states in two neigh-
bouring shells have been taken into account. These are as follows:

a) **Ni: 1fs,-1fs, for neutrons and protons,



b)

1gs,,~1g+, for protons,
c) 13%Ba, '4°Ce, '*2Nd: 1g>,-1g+,, 187,-2ds,,, 2ds,-2ds.,. 3si,~2d, for protons and
1huy,~1hs,, for neutrons,
d) ?°8Pb: liws,,-lissy, for neutrons and lhs,~1hs;, for protons.
The configurations and corresponding energies for 2°Sn and '*°Ce are summarized in
Tables II and 11l (Fig. 1, 2).

241

Sn: lgs,~lgs,, 2ds,-1gs,, 2ds,~2ds,, 3si,-2ds,, lhi,—lhs, for neutrons and

TABLE 1
The parameters G, .1 and 2
Nucleus G % 4 A Nucleus G 4 A
(MeV) | (MeV) | (MeV) (MeV) (MeV) | (MeV)
2 ‘ |
1148n 0.180 i 1.375 |, —8.783 122Gn 0.1725 1.446 | —7.298
t1e8n 0.179 | 1.266 —8.362 1248n 0.1685 1.358 —6.992
11880 0.1775 ' 1.471 —7.933 1388, 0.1590 0.957 —7.055
1208n 0.169 ‘ - — 140Ce 0.1690 1.107 —6.219
0.1752 | 1.478 | —7.587 142Nd 0.1752 1.188 —5.333
TABLE 1I
Two-quasi-particle configurations in 29Sn.
Quasi-particle ey v, . Quasi-particle ey vs u 2gp excitation
state {1] I (MeV) state [2] (MeV) 2 energy (MeV)
S : . : : L
lgssz 7,51 0.995 0.099 lgr2 -~ 246 0949 [ 0317 9.97
2ds;; . 295 1 0.966 | 0.260 1g7:2 246 1 0.949 1 0.317 5.41
2ds)2 P 295 0.966  0.260 2d3;, 1.48 10.709 0.705 443
3512 . 1.53 .0.795 | 0.606 2dy;; 1.48 | 0.709 | 0.705 3.01
1402 1.59 | 0.562 | 0.827 | lhs), v 8.06 . 0.092 | 0.996 9.65
1ge,2° ‘—~10.61 © 1,000 |0000 : 1g1:2* I —4.11 10.000 ;1,000 6.50
2 proton states.
TABLE III
Two-quasi-particle configurations in *°Ce
Quasi-particle e v " Quasi-particle €, | " 2gp cxcitation
state {1] : (MeV) ! ! state [2] (MeV) | 2 t energy (MeV)
1€9/2 592 | 0.996 | 0.094 1ga/2 1.11 [ 0.738 | 0.675 7.03
1872 1.11 10.738 | 0.675 2ds;, 1.12 1 0.656 | 0.755 | 2.23
2ds;, 1.12 1 0.656 | 0.755 2ds;, 3.17 10178  0.984 . 4.29
35,2 3.02 | 0.187 {0.982 245}, 3.17 i 0.178 . 0.984 6.19
Thyy,® —10.44 | 1.000 | 0.000 lhgz ~—3.68 | 0.000 : 1.000 | 6.76
b

neutron states.
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The residual potential used for calculating P and R has the form [15]:
o(riz) = Vo exp (—r12/1®) [ao+a, x (a(1) - 6(2)) +a, x (x(1) - w(2)) +
a5 X (a(1) - 0(2)) x (x(1) - «(2))] (1)

with parameters Vy = —40 MeV, pu = 1.67fm, gy = 0 and a, = 0.
The parameters g, and a, are those that gave the best fit to the magnetic moments of
59Co and 2°7Pb (ground state) [16] and the energy of excited states J* = 1+ in lead [17].

0.160
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Mass number A

A GLMeV]

14 0.180*%

116 0.179

18 0.1775
0.169

120 0.1752*

122 0.1725

124 0.1685

Fig. 2. Strength of pairing forces G versus mass number A for tin isotopes.* — Values resulting
from interpolation

Polarization effects leading to a renormalization of magnetic moment were developed
in the perturbation theory. In the first case it was assumed that single-particle movement
induces core polarization by virtual excitations of lp-1h pairs on the orbits resulting
from spin-orbit splitting when J* = 1* in the pair. In the second case it was adopted
that residual interaction leads to collective states J™ = 1*. Coupling of these collective
states to orbital single-particle motion results in renormalization of single-particle magnetic
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moment. Both approaches give approximately the same results. The magnetic moment
fit leaves us with several sets of parameters, as core polarization effects are Jinear with
a, and a,,. Fitting to the energy of excited states J* = 1* in lead allows us to fix the
values of —0.1 and —0.2 to the parameters a, and da,,.

TABLE IV
Structure and r%‘h 1+ widths of excited states J™ = 1* in *°Ni and 2°%Pb
Mt M1+ nn pp
Nucleus Energy | Fio* -+ | To* i+ 72— 1fsp2 72— 1152
(MeV) V) (W.u)
Xx103 Yx10® | Xxx10® | Yx10?
RPA 7.19 0.2 0.03 824 132 592 110
8.90 68.3 4.68 —582 —32 816 66
56Ni
TDA 7.62 0.6 0.06 832 555
8.99 80.9 5.37 —555 832
nn pp
11'13/2‘11.11/2 1h1172—1h9[2
RPA 6.74 1.5 0.24 617 85 797 960
7.82 79.8 8.05 793 51 —622 —28
ZOBPb -
TDA 6.96 2.6 0.37 591 807
7.87 90.3 8.92 807 —591

The single-particle energy of 2°8Pb is taken from the experimental work [13].

* I’f,‘ﬁﬂv in W. u. is defined as I’(l;d+1_,1+/1’€v“, where I’\;Bf,Il =2.072x10-% E;, I’\I;:;Il is in eV and
E, in MeV.

Let us make a Legendre expansion of Vgexp (—ri,/u?),

o]

Vo exp (—r3,/p’) = Z 5_47[— vy, 12) (Yi(ry) - Yi(72)). (22)
xL+1
L=0

In the numerical computation higher order terms are neglected. Terms with L. = 0, 2 and 4
are retained in the case of Ni and Pb, whereas for the other nuclei terms with L = 0, and 2.
For all the nuclei in question but Sn isotopes, the contribution of odd L is excluded by
selection rules. In the case of Sn the odd-multipole admixture is due to exchange terms
of the coupling of 1/11,~1hs, to the other configurations. This admixture is very small [19].

In our calculation radial integrals F* derived for 116Sn have been used in the !14Sn
case and F* derived for 12°Sn in the 18Sn and !228n cases. We can do this because the
radial wave function varies very slowly with mass number A4, as one can deduce by compar-
ing Tables VI and XI.



244

TABLE V
Structure and 1’3{1_’” widths of excited states J* = {+in 114 116 1188y pobtained in RPA
T i |
’ M1 | M1 nn g nn nn ; pp
Nucl 1 Energy 0F a1t ‘FO*-.O*‘ lgoj2—1ga2 | 2dsja—2dspz | 1hyyj2—hopa | 1gasz—1ga:
ucleus - (Mev) €V) | (W.u) | 1 : :
! Xx103Yx 103 X% 103|Y x 103 X x 103,Y>< 103iX>< 1035Y>< 103
I 439 0.7 042 | —54: 18 997 42 -1l 8§ 8 32
11ag 8.22 19.8 1.72 —513 | —22 i 38 | —30 -32 - —12 ’~863 . —92
9.02 36.1 2.37 856 20 861 S —69 ¢ I —3506 | —31
12.43 14.5 0.37 43 6 19 8 997 | 3 —60 6
4.32 0.7 042 | 41 —14 |—997 | —43 16, —11 ; —82 ! =33
116y 8.19 322 2.83 5#273 —17 62 —26 ! —67 ; —14 1 —963 | —98
9.27 15.8 0.96 —959 -3 | —60 —7 89 -3 263 10
11.49 18.2 0.58 67 6 27 10 994 5 —86 6
| 4.73 0.6 0.28 32 —10 |—997 | —28 24 -8 | —82 | -30
nsg 8.28 35.8 3.05 —114 | —12 70 | —23 |—112 ~15 |—986 | —97
9.98 4.7 0.23 —960 -7+ —34 -5 255 15 109 i
10.97 35.7 1.30 = 238 —11 43 6 960 7 --140 6
TABLE VI

M1 . . . . .
Structure and I'g+_ 1+ widths of excited states J® = 1+ in 120:122. 1248y obtained in RPA

i M1 ' M1 kil nn Hn : pp
Nucleus | Energy [[lo+.1+ : To+.q+ Ulgep—1g7:2  2ds;2—2d3p; | Va2 —1hgss | 1892 — 18712
(MeV) V) i (W. u) | | | ; : ; | :
' I ;Xx lO’E)’x 103;Xx 103[Y>< 1032X>< 103‘Yx ]03ij 1035Yx {0®
491 o5 | oz -2 6 97 2| -25] 131 7| 2
1206, . 831 338 | 284 !-109 17 67 | —22 —174 | —22 982 | —97
! 10.26 6.3 028 . —677 { —19 6 4 735 7 —55 0
i 10.66 407 ' 162 =729 0 —29  —51 10 —656 14 . 192 -5
L5509 0.4 0.15 = 23 6 997 16 --36 9 74 25
1226 8.34 29.8 2.48 ‘ 65 81 —59 19 242 | 271 972 97
10.03 37.4 1.79 285 11| —43 ] —3[-935 | —23 | 210 2
11.00 21.6 0.78 '—9s56 1! —41 | —5 261 4] 126 —5
5.21 0.3 0.10 20 —4 |—997 | —12 ¢ 32, —13 | —67 —22
123g 8.35 23.0 .91  —49 | —11 49 | —20 |—334 | 34 |—946 | —97
9.74 58.4 3.05 137 | —4| —49 ] —71-936 ! —23 | 321 8
11.28 11.0 037 | 989 20 29, 4i 13 10! -8 4
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TABLE VII
Structure and 1‘3" +1_, 1+ widths of excited states J* = 1t in '3%Ba, '#°Ce and '“*Nd obtained in RPA
M1 M1 PP PP n
Nucl Energy |Io+.1+ |To+.1+ 139/2—16’7/2 2ds/z_za':a/z lhu/z'“lhg/z
ucleus MeV) €v) | W.u)
Xx103 | Yx10® | Xx10%| Yx10° | Xx10°| Yx 10
4.88 0.5 0.22 91 | =21 | =995 | —17 @ —46 | —17
1388, 1.75 2.4 0.25 - 888 —-59 —63 —30 —466 —68
8.97 77.8 5.21 —456 1 —82 1 889 65
4.82 0.7 0.31 81 —21 —996 —21 —56 —20
140Ce 7.75 0.6 0.06 —~876 —43 —47 —29 —488 —68
8.80 67.3 4,77 —478 4 —87 2 876 67
4.67 0.9 0.42 66 —20 —997 -27 —65 —24
42Nd 7.83 0.5 0.05 —811 —30 —18 —28 —590 —74
8.64 56.7 4.24 --582 4 —89 1 811 61
TABLE VIII
Structure and FS‘L 1+ widths of excited states J® = 1* in !14116:1188y gbtained in TDA
M1 M1 nn nn nn po
Nucleus Energy | I'o+ .1+ | To+,1+ 1goj2—1g72 | 2ds;a—2d32 | 1hysja —Thoj2 | 1g9j2—184)2
(MeV) €V) (W.u)
Xx103 Xx10° X x10% Xx10°
4.42 0.8 0.43 —61 996 - 14 64
11ag, 8.38 214 1.75 568 —18 22 822
9.04 44.3 2.89 - 820 -85 70 562
12.43 14.2 0.36 —44 —20 —997 v 57
4.36 0.8 0.44 46 —996 9 | —65
116gy 8.36 39.9 3.29 ~--285 438 — 59 —956
9,28 17.7 1.07 —955 -6l 90 276
11.49 17.9 0.57 —69 —28 —994 81
4.75 0.6 0.28 34 --997 26 —66
1sg 8.44 45.0 3.61 143 -~57 106 982
i 9.98 4.7 0.23 961 34 —252 —111
¢ 10.98 34.7 1.27 235 43 962 —135
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TABLE IX
Structure and Fﬁl_.ﬁ widths of excited states J™ = 1+ in 120:122:124Qn gbtained in TDA
M1 M1 nn nn nn op
Nucleus 3}?\% P?;\_;)n 1(”\,; ; 1)+ lgs;,—1g7y, | 2ds;,—2ds;, | 1hiy,—1hs, | 1go;,—1g7),
Xx10% Xx10° Xx103 Xx10®
4.93 0.5 0.20 29 —997 30 —64
120 8.49 43.1 3.40 —98 55 —165 ~980
Sn
10.27 7.0 0.31 —660 7 749 —60
10.68 40.1 1.59 744 52 641 —179
5.11 0.4 0.14 24 —997 40 —60
122 8.51 38.1 2.98 63 —48 235 969
Sn
10.04 38.6 1.84 —283 43 936 —206
11.01 20.7 0.75 —957 —41 —260 123
522 0.3 0.10 21 —998 37 —54
1245, 8.53 29.7 231 43 —38 329 943
9.75 61.7 3.21 —140 50 936 —319
11.28 11.1 0.37 —989 —30 —118 85
TABLE X
Structure and 1’%1_,“ widths of excited states J™ = 1* in '3%Ba, 4%Ce, and '4?Nd obtained in TDA
nergy ot -yt ot -1t 1g9;,—1g7), 2ds;, —2ds), 1hsy, —1hs,
Nucleus MeV) V) W. 1)
Xx10% Xx10% Xx10%
4.90 0.6 0.24 —102 994 36
138B, 7.88 4.1 0.41 —911 —79 —404
9.05 85.6 5.58 —399 —74 914
4.84 0.8 0.32 91 —995 —44
140Ce 7.86 14 0.14 907 64 416
8.88 75.0 5.17 —411 —178 908
4.68 0.9 0.44 73 —996 —51
142Nd 7.93 0.01 0.01 862 37 505
8.71 65.1 4.75 —501 —81 862
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TABLE XI
Structure and I’:{L” widths of excited states J" = I* in '**Sn obtained in RPA. Calculation was
made using '2°Sn radial integrals

nn nn nn P
1goj2—1g72 | 2ds;2—2d3p2 1hy1j2~1hop2 1g9j2— 1872

Energy (0% .1+ o ays
(MeV) €V) | (W.u) t

| iXx}O3 Yx10% ] Xx10° | ¥x10° | Xx10° | Yx10® | Xx10% | Yx10°

5.22 03 013 ' 20 | -5 | -997 -12 41 —-8 | —66 -22
835 | 231 ! 1.8 : 40 6 | —46 18 1 332 35 947 97
979 | 577 | 296 179 L0 —ss P2 | —931 —27 316 8
1131 | 141 | 050 | 983 | o | -32 4 ! 155 —4 —-94 | 5

5. Results and discussion

The calculations were performed in RPA and TDA. A few excited J™ = 1+ states
in the energy region 2.3~12.4 MeV were obtained for each nucleus in question. A charac-
teristic quantity for such a state is the reduced probability B(M1) for transition to the
ground state or the width I’ ML .+ Energies E, wave functions X, Y and widths I g
are presented in Tables IV-XI. The excited states J* = 1* in Sn isotopes and in Ba, Ce

and Nd can be divided into two groups:

1. 2.3-7.0 MeV region

The states from this energy region are almost pure two-quasi-particle configurations.
Their energies slightly differ from those of unperturbated two-quasi-particle states (Fig. 4).
Their widths 'L ,. are small. Comparatively large values of I'ge-, s+ (0.10-0.42 W.u.)
are a feature of the states originating from levels which differ by the spin direction only
(2ds;,-2d>,,). The other states of this group are two-quasi-particle excitations, 3s1,-2ds,
and 2ds;,-1g7,, and their widths are of the order of 10~%-10-° W.u.

2. 7.0-12.4 MeV region

There are three such states in Sn isotopes and two in Ba, Ce and Nd. First, let us
consider the states at energies between 8.5 and 9.0 MeV. Their energies are considerably
shifted as compared with those of unperturbated two-quasi-particle states. Electromagnetic
transition widths of these states range from 20 eV to 36eV for Sn isotopes and have
values 78, 67, 57 eV for Ba, Ce and Nd, respectively; they are several times greater than
the corresponding single-particle widths. The value of the ratio I' M T :f,fg‘ is 5.05 for
12085 and 13.2 for 14%Ce.

1 I’x,}, stands for effective single-particle electromagnetic transition width calculated for each

excited state J® = 1* according to the formula
2 XOr6
M1 . ¢

wr = TSm
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Fig. 4. Excited states J* = I*. Dot-and-dash line shows the energy of unperturbated two-quasi-particle
levels. Solid and dashed lines indicate the energy of states J® = 1+ in RPA and TDA, respectively. The

transition widths I'os_, 1 + are marked if I'ov_q+> 0.01 W. u.

Some of the states in the second group can be considered as collective states. Their
widths g, . are relatively large and range from 0.96 to 3.05 W.u. They are the 9.02,
9.27, 10.97, 10.66, 10,03, 9.74 MeV states in Sn isotopes for 4 == 114, 116, 118, 120, 122,
124, respectively. Let us point out that the states of the second group consist of configura-
tions generated by spin-orbit interaction.

In 298Pb and *SNi there are two excited states J™ = 1*. As a rule the higher states
are collective states. They consist of configurations due to spin-orbit splitting. Particu-
larly strong is the 7.82 MeV state in 2°8Pb, with I'M:, .. = 80 ¢V (8.05 W.u.) and
B(M1)/B,, (M1) = 7.5%. Following our results we can see that states of width larger
than a tenth of one W.u. are either pure two-quasi-particle configurations generated by

2 pM1 : M1
By, is calculated in the same way as I’mv.
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spin-orbit interaction or a combination of such configurations. The main part (84 7,-99 %)
of the electromagnetic M1 transition strength is concentrated on the states of energy
within 7.75 to 11.1 MeV. These states should manifest themselves in (N, 7), (7, N), (N, N’'),
(e, ¢') and other reactions.

In tin isotopes and in barium, cerium and neodymium there is a region (4.25-5.25 MeV)
which concentrates 2%,-9 % of the electromagnetic M1 transition strength. It is interesting
to point out that such two energy regions are shwn by Gabrakov [7] for deformed nuclei.

Investigation of such states gives us precious information concerning residual spin-
-spin interaction in atomic nuclei. This knowlcdge is particularly relevant to the study
of many effects generated by this residual interzaciion.

Comparing the results obtained by RPA and TDA one can see that differences
between the two methods are small. This is a genercl feature of realistic forces [9].
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