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SCALAR-TENSOR THEORY AND SCALAR CHARGE

By K. A. BRONNIKOV
State Board of Standards, USSR Ministerial Council, Moscow*
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For a general class of scalar-tensor theories of gravitation the properties of exact static
spherically-symmetric vacuum and electrovac solution are discussed. On the other hand,
post-Newtonian perfect fluid metric for this class of theories is found and compared with
the exact vacuum solution. This comparison shows that the post-Newtonian approximation
employs a special value of the scalar charge-mass ratio. This limitation is removed if a term
involving scalar charge density is introduced explicitly into the initial Lagrangian. Obser-
vational consequences are discussed.

1. Introduction

Modern gravitational experiments concern mainly weak fields which faintly differ
from Newtonian ones. Thus it is of interest to analyse various theories of gravitation and
the ways of their comparison with experiment on post-Newtonian (PN) level.

In the papers by Thorne and Will[ 1, 2] the most general form of PN metic (parametrized
PN, or PPN approximation) is proposed, containing nine arbitrary parameters varying
from theory to theory. In the PPN formalism a theory of gravitation is supposed to be
a metric one, i. e. the matter equations of motion are of the form

VT =0, )

where V, denotes a covariant derivative and T, is the matter energy-momentum tensor
including all non-gravitational fields.

On the other hand, there exists a method of finding exact static spherically-symmetric
solutions for a broad class of scalar-tensor theories. In this paper a comparison of an
exact vacuum solution for this class of theories with the PN metric is carried out. It will
be shown that the PN approximation requires a special value for the source scalar charge-
-mass ratio, whereas in the exact solution the scalar charge C is an independent arbitrary
constant. It is clear that specific scalar charge (in respect to mass) different from the standard
one, may be discovered in nature. To describe this possibility in a consistent way one
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should introduce the scalar charge explicitly into the theory. We discuss some variants
and consequences of this innovation.

Possible behaviour of scalar-tensor vacuum and electrovac spherically-symmetric
solutions is discussed. To describe their properties in a compact way, we propose a classifi-
- cation of arbitrary spherically-symmetric metrics.

2. Field equations

Consider a class of scalar-tensor theories with the Lagrangian density
L = A(9)R+B(9)g” ¢ .5 —24(9) + 2k L ¥(9)g™, ..), @)

where ¢ is the scalar field which we assume to be real (see Appendix 1); L, is the matter
Lagrangian; ko = 87nc %G, is an initial gravitational constant, generally speaking, a non-
Einsteinian one; 4, B, A and ¥ are arbitrary functions; R = g""Ra,, is the scalar curvature
and R,, = Rj,, the Ricci tensor. The Riemann tensor R}, is defined by the formula

(Vuvv _VvVu)Ao' = R‘;uvAa

with an arbitrary vector 4,. The metric tensor g,, has the signature (+ — — —). Greek
indices range from O to 3, Latin ones from 1 to 3; ¢, = 0¢/0x"

Suppose that at spatial infinity the metric is flat and the ¢ field tends to some constant
value ¢,. 1t is useful to divide Lagrangian (2) by the (nonzero) constant A, = A(¢).
Denote 0

Alg) = AA5", B(g) = BA;', & =KoA;" = 8nGc™*, 3)
Obviously A(p) = 1.
0

The transformation [3, 4]

Buv = F('/))guv’ F(y) = [Z(‘P)]_l; )
dp o .., = _dA_
dy = AjAB+ 3 ALY, 4, = e’ sign (AB+ 3 A2) = n ®)
reduces equation (2) to the form
L = R+ng®y = 2F (9)A+2xF*(y)L(F~'¥g", ..) (6)

where a tilde marks quantitics obtained with the help of g,,. Noting that formula (5)
admits addition of an arbitrary constant to v, we put

w(gﬂ) =v= 0. (7

Then according to (4)
FO) = 1. (3)
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As the tensor T, is yielded by the variation

2 ) N
= 5 Lm \/—g d4x, d4x
v —gdgk

nv

dx%dx'dx*dx>, ©)

in theory (2) the equations of motion have the form (1) only if ¥ = const. A conformal
transformation of the type (4) allows us, however, to achieve this for any theory (2) [5]. Be-
sides, here we are dealing with distances small on cosmological scale and so it is reason-
able to put A = 0. Thus we consider theory (2) under assumptions

Alp) =0; ¥Y(p) = 1. (10)

As in (2) a transformation of ¢ field is possible

@@= @), (1n

where @(@) is an arbitrary function, for a given concrete choice of gravitation theory the
form of the coefficients 4 and B is not unique. Under assumptions (10) such a choice
should be set by means of one function, e. g. @(p) in Nordtvedt notation [6]

A(g) = @, B(g) = o(p)/¢. (12)

It is often more convenient to set a theory by means of the function F(y) which is
invariant under transformation (11).
Taking into account (10) we get the field equations from transformed the Lagran-
gian (6):
Guv = Rxw—‘ ’% g;wR = —EF(W)Tuv_ngpv(w); (13)

o~ dF _
20p+nF —«kT =0, (14
dy

where O = g,,V,V, and the tensor

Suv(w) = Yu¥y— % éuvéaﬁw,aw,ﬂ' (15)
The matter tensor T, is here untransformed and T = g”’T,,,,.

3. The post-Newtonian approximation

The PN metric is known to be a solution of the field equations in the form of an
expansion in powers of reciprocal velocity of light c. In this expansion the components gqq,
goi and gy, should be found with an accuracy of O(c*), O(c—3) and O(c?) respectively.

Let us find such a solution of equations (13), (14). Following Chandrasekhar [7]
and Will [2], assume that the tensor T, describes a perfect fluid:

Tpv = (8+p)uuuv—guvp (16)

where p is the pressure, u, is the unity-normalized fourvelocity and ¢ is the energy density
from which the rest mass density o is distinguished:

g = o(c*+1II). (17)
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Now the quantities in equations (13) and (14) are presented as series

€y = Nyt hys  hy = f"”+§‘”+”"

p=yptypt+..;
1 2
7 ~f7 74 dF 77 d2F
F(y) = 1+ Fop+ 2 Foy*+...; Fo=-—(0); Fg=-—(0); .. (18)
dy dy

where 7, = diag (1, —1, —1, —1) 1s the Minkowski metric and the indices below denote
orders in ¢

The metric to be found g,, will be determined with the required accuracy if one finds
€., with the same accuracy and also  to within O(c™*).

As k = O(c*) and

Ty = Ty+..., (19

in equation (14) = y+y+... Hence the tensor §,(y) begins at the fourth order.
2 4

Together with (19) this gives right to put

hoo = hoot+hoo+...3
2 a

ho; = hoi+...;
3
hie = —0(1=hoo) + ... (20)
The first two orders of equation (14) are of the form
6""21 = 4nGnFhoc”?; 3]
Oup— o0y +hooduy = 4nGne[c™ Fo(lT—=3p[e) +c*(F5’ +Fo)yl, 22

where 8, = 0/0x* (Note that 9, = 9/cdt adds a unity to the order.) Equations (13) are
solved similarly to paper [7]. Equation (21) and the (g0) component of (13) give in the
senior order Newton’s law, I. e.

200 = F(¥)800 = 1—2¢72U = 1—2¢72Gl,

. X', t
I(x, ) = Id3x’ I@Sx ..,)‘ ,  dx = dx'dx*dx’, (23)
xX—x
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where U is the Newtonian gravitational potential. The Newtonian constant of gravita-
tions is
G = G(l+m), n=4nFg. (24)

Solving then equation (22) and the (o;) and (o) components of (13) in the third and fourth
or derrespectively and using the gauge condition determining the choice of coordinates in
the third order

Giho; = 3 (3=n)dohoo, (25)
we get finally
800 = 1—2¢72U +c7*(2B,U* —4G9),

goi = Gc (G 4, Vi+ § 4, W),

gu = —0u(1+2¢™?y,U), (26)
where . .
. x', Do'(x’, t
Vix, 1) = | &’ L)_E,_) ;
ix—x|
- X, DN, D) (x = x") (xF =X
Wi = [ SO DG (ot
[x—x'|
- X', Ox(x', t
O(x, 1) = fdsx' M——)
[X—X|
% =B’ +BU+ 1B+ 3 Baplo;
2 i

v?2 = o' o' is the fluid three-velocity. The constants

1+2n4+4 1—n—n>=A
0:“("1?:;])7; 2=T:F§ Bs=4,=1;
1 T—n 1—n
ﬁ1=i‘+—r}§ A1=7(1—+'7); [34=Vo=i:_;: 27
with
n=3nFg; A=3nFy (28)

are the concrete values of Will’s PPN parameters [2] for the theories with Lagrangian (2)
(with changes in notation: y — y,, ff = Bo). Two parameters from [2], X and { here
equal zero due to gauge (25). Transformation formulae to another gauge are given in [2].

Note that for any values of # and A parameters (27) satisfy all the constraints [§]
characterizing an asymptotically Lorentz-invariant theory containing PN conservation
laws for energy, momentum and angular momentum. Thus the theory (2) possesses all
these properties.
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The expressions for # and 4 in terms of the initial functions A(g) and B(g) and their
derivatives values at ¢ = ¢ are:
0

n = AJ24B+342)7";
A=n’A,°*[3AYAB+ A})+ A*(4,B,—2BA,,)]. (29)

These formulae are insensitive to muitiplying (2) by a constant and hence are valid as
well without the assumption A(g) = 1.
0

In Nordtvedt’s notation (12) formula (29) look especially simple:
n=QRw+3)"";
A= Qw+3)’Quw+3+w0,p). (30)
o

Expressions (27) generalize the result of paper [6] where the PN metric for point masses
is obtained.

4. An exact spherically-symmetric solution
In the Lagrangian (2) we take a concrete L,,:
Ly =~ 5 F'F, G1)

where F,g is the electromagnetic field tensor. Again we make use of transformation (4), (5).
Due to conformal inwariance of (31) the transformed equations (13) and (14) take the
form

Gy = —k[—F“F + 4 6,F"F,;1—nS)(y), (32)
Oy =0, (33)
where F** = g*g"F,;. To these one should add the Maxwell equations
vV, F* = 0. (34)
The set of equations (32)-(34) is solved in Ref. [9] and more completely in [10, 11]
under the assumption that the field is spherically-symmetric and static,
ds® = gedx*dx? = e;(z)(dxo)?'—e;(z)dzz—eE(z)dQZ; (3%)
Foy = Fy; (z) = —Fyo; the rest F,, = 0;
v = y(2),

where dQ? = (dx?)?-+sin? x2(dx>)%. Let us use the simplest method [11]. So we choose
the coordinate z so that

a(2) = 2B(z)+7%(2). (36)
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Then the solution of equations (33) and (34) has the form
Y(2) = Cz;
FLO = g, 37

where we have put z = 0 at spatial infinity and taken into account the condition (7). The
integration constant g has the meaning of electric charge and C may be similarly called
“scalar charge”.

Under the assumptions (35) among the equations (32) there are two independent
ones. Using (37) they may be written in the form

F(GL+GY) = L (' +7) -7 = 0;
FGL = — L LB +7)7—77] = L nC?— Q% (38)

where a prime denotes d/dz and Q? = xq?/2.
Integrating (38), we finally get for the metric g,,:

ds? = eF(dx%)? — e Dz — fHIQ? = (39)

_, (dx%? s*(h, z4+z) [ dz*
=F 2 -Q? +dQ* |}, 40
) {Q s*(h, z+1z,) s'(k, z) | s*(k, z) (40)

where the function
a'sinh ax for a >0,
S(a, x) = { x for a = 0, (41)
a!sin ax for a < 0;
and the integration constants A and k are connected by the correlation

k2 sign k = h%sign h+1in C2. 42)

For an arbitrary metric (39) the boundary condition that the space-time is flat at
infinity is formulated as

>0 BT )

when z tends to some z,,. For the metric (40) z,, = 0 and the condition (43) is fulfilled
completely if

e—=1; ¢

s¥h,z,) = Q2 (44)
(remember that F(0) =1). With no loss of generality we may regard the coordinate z defini-
tion domain to be

0<z<z (45)
where z,., depends on which of the functions F(vy), s(h, z+z,) or s(k, z) will be the first
to go to zero or infinity or, symbolically,

Zmax = Min {00; o(F); zero(F); zero[s(k, z)]; zero[s(h, z+2z,)1}. (46)

max

The letters a, b, ¢, d, e mark the corresponding variants of the solution. Evidently for
special values of the integration constants the quantities in the curly brackets in (46) may
coincide. For these variants we use double or triple notations, e. g. ¢d or cde.
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In the case g = 0 (vacuum) the equations (38) under the condition (43) yield

] . . ~2h2d o eth dZ2 dQZ
@ = F(p) Jem2#ax®) ;2@:2_)52—(52—)+ ]} o))

The definition domain for z is again given by (45) and (46) but obviously in (46) the “e”
possibility is absent.

Solution (47) contains three arbitrary constants h, C and ¢. The latter is involved
in F(y) in an indirect form. 0

In order to have a convenient description of possible properties of the metrics (40) and
(47), we introduce a classification or arbitrary spherically-symmetric metrics basing on the
behaviour of the functions ¢#® and e”?; ¢ has an invariant meaning of the area of the
sphere z = const (divided by 4n) and e’ is an invariant (within the given physically prefer-
able reference frame) time slowing-down factor in respect to distant points where the
space-time may be trcated as flat. The convergence or divergence of the integral

j e(d"‘/)/zdz (48)

when the radial coordinate z tends to the end z of its definition domain, is also of interest.
If the integral (48) converges, then (in the evident meaning) the points at z = z are
observable.

We shall denote the behaviour of the metric (39) by means of two figures, the first one
corresponding to the behaviour of e” when z — Z and the second one to that of ef. Namely
we write 1, 2 or 3 if the function tends to zero, infinity or a finite value, respectively. Be-
sides, we denote the convergence or divergence of integral (48) by a plus or minus sign.
E. g. the Schwarzschild metric belongs to class 13_because when the spherical radius r tends
to the gravitational radius r,, e — 0, #® = r? — const. and the sphere r = r, is in-
visible for an observer at rest.

Let us give a brief characteristic of the obtained classes.

11, 21, 31. The three-space includes the center. Moreover, in class 31 there are sin-
gularity-free metrics. This is so if the local euclidity conditions are fulfilled: for z — z

e’ — const., 3 = 0, (z—2z)%"F > 1. (49)

12, 22, 32. The three-space has a “‘neck” that means that ¢/® has a minimum. In case
32 z = Z corresponds to another spatial infinity (not always flat) rather than to a singu-
larity. A two-dimensional analog of such geometry is a hyperboloid of one sheet.

13, 23. To study the geometry completely it is necessary to convert to another refer-
ence frame perhaps allowing to continue the metric further than z = z.

33. The coordinate z should be changed to a more licky one (z — z'(2)) allowing to
penetrate further than z = Zz by analytic continuation. One will naturally find one of the
rest eight classes.

The proposed classification allows us to describe the solutions (40) and (47) in
a compact way, see Table I. The table shows that classes 13 and 23 containing Schwarz-
schild-type singularities may appear only for special values of the constants, whatever
the function F(y) is.
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Of certain interest are the solutions of class 32_ which occur for general values of
the constants only for n = —1. It is easily assured that at z — z,,, the 32_ metrics (40)
and (47) become flat but the time has in general another rate than at z = 0. One may try
to apply such metrics to describe topologies of the kind of Wheeler handles [12] but,
unlike the familiar Schwarzschild and Reissner-Nordstrém metrics, these ones are singu-
larity-free. It may be shown that under natural assumptions on the orders of the
quantities involved in (40) and (47), the “necks” dimensions, i. e. ¢!min'2 are of the order
of gravitational radii 2GM ¢=2 for corresponding masses.

Note that for the solution (40) the complete electromagnetic field energy in the
outer region of an arbitrary sphere z = z* may be found:

- 4z dz 4n[s’ !
J‘Tg\/—g &Px = 7Lz(h,—z—+21) - ?[; (h, z,)— S; (h, z*+zl):|. (50)
0

The integral (50) taken over the whole space (z* = z,,,) is finite for all variants of z
given in (46) but those containing e.

max

TABLE 1
Possible behaviour of the metrics (40) and (47)
Solution (40) Solution (47)
Variants .
by (46) Behaviour n=1,n=1|n=—ljn=—Lln=1o0rn= —1, n=—1,
A>0 | h<O0 | k>0 | h<0 R= [ClIvZ | |A| < |ClivZ
a *) + - + - + —
b 22, + + + + + +
¢ 11, + + + + + +
d 32_ — — — + - +
e 21, + + + + - -
bd 22_ — — — + — +
cd **)- - — — + — +
be ¢ + + + + - -
ce (**%), + + + + — -
de 23, — — — + - —
bde 22, — — — + - -
cde (***), - — - + — —

Comments: In the six right-hand columns the “+* sign means that there exist
F(yp) for which the metric behaves correspondingly. Otherwise the ““—" sign is written.

(*) is any of the nine classes depending on the integration constants values and the
form of F(y). Classes 13, 23, 31, 32 may occur only for special choices of the constants
and class 33, moreover, for special F(y).

(**) means classes 11, 12 or 13

(%) classes 21, 22 or 23 depending on the function F(w).

(***) classes 11, 21 or 31
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5. The exact solution and the post-Newtonian metric

Static spherically-symmetric PN metric out of the gravitational field sources, as well
as vacuum metric (47) in the asymptotic region, may be presented as a series in inverse
powers of the so-called isotropic radius r:

ds® (1+ 3 + é +.. )(a‘xo)z—— (1- h +...)(dr2+r2d§22)A (51)
r

Moreover, in the PN expansion the factors &,, ..., 7, ... are in their turn power series

in ¢
2GM, e ; G*M? e
§o= =g +0( ) G = 2h0— 4 +0();
GM, —a

Mm = 2yo—5 +0(c™7) (52)

where

M, = 4n fo(r')r'2dr'.
For exact solution (47) &;, &, and n, are combinations of the integration constants:

& = lim [—¢gy'e®f "] = —2h+CFy;

Z2Zo

62 _ _5_ lim {e(3ﬂ_a)/2[8},’+e(ﬁ*¢)/2(y1l%y,2+ %ﬁ’?"— %ar?r)]} —

= 3 [CU(Fg ~F)+(2h—CFo)’;
n = lim {2[2—(f1e¥ "]} = 2h+CF, 53)

where ¢ = sign f’ at z > z_,. After the first equality sign the expressions for &,, &€, and
n, are given for arbitrary metric (39) satisfying the boundary condition (43).
Comparing (52) and (53), we obtain the constants 4 and C as expansions in ¢ ':

GM,

-4

T 2+ TO;
C = —nF, Mo 0{c™) (54
o 2(1+ )+ (C . )

In the PN approximation only the senior terms of these series are taken into considera-
tion. (The third integration constant of the solution (47), (p is the same as in the PN
approximation.)

Thus in the solution (47) the constant & is related to the active gravitational mass which
in accordance with (54) is mainly determined by the rest mass M, if the PN expansion
is applicable. As for the independent constant C, it is forcedly connected with the mass
in the PN metric.
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6. Discussion

The results of Section 5 may be interpreted as imputing a special value to the ratio
of the scalar charge density and the rest mass density in theory (2). If this ratio differs
from its standard value dictated by (54), it should effect observable phenomena. Thus
we conclude that it is desirable to introduce the scalar charge explicitly into the theory,
writing in the Lagrangian (2) an additional term of the form, say,

S(@)j(x), (55

where S(¢) is a certain function and j(x) is independent of ¢ and plays the role of charge
density which naturally should be related to some matter parameters. Such a term de-
scribes direct scalar field — matter interaction and its appearance does not look unex-
pected.

However, if the term (55) is present, theory (2} is no more a metric one. On the right
side of equation of motion (1) there emerges and expression proportional to Sj,. Never-
theless, if the quantity j is proportional to the energy — momentum tensor trace of to the
matter density, then the senior order of ¢~ expansion similar to Section 3, gives Newton’s
law for the interaction of point particles. The PN metric and the PN equations of motion
are got in a rather cumbersome manner in this case and we will not give them here. The
whole situation is rather well illustrated by the following simple formal modification of
the theory. In equation (14) for the transformed scalar field v in the second term (which
plays the role of scalar charge density) write an indefinite factor o, leaving equations (13)
for the metric field unchanged. Then, carrying out the expansion in ¢, it is easily
assured that for ¢ = const., in the senior order Newton’s law with the constant

G =G+ LonFy (56)

is valid and the PN metric again takes form (26) with PPN parameters (27) where instead
of n and A there stand

nt=on; A= o’ 7

This metric accords with exact solution (47) with arbitrary C and k. (Note that inclusion
of terms of the type (55) does not alter the form of the exterior vacuum solution.) Intro-
duction of ¢ increases the uncertainty in interpreting the results of PN effects measure-
ments. In fact, if such measurements are in agreement with (27), then they establish within
this “‘g formalism” only the values of #+ and A* with unknown o. (For expressions for
concrete effects using the PPN parameters see e.g. in paper [8].) More details may be
obtained only by studying effects out of the PN frames, e. g. time variation of the
gravitational constant due to the Universe expansion.

In the notation (12) the local constant of gravitation and its variation due to variation
of ¢ are given in the ¢ formalism by the formulae generalizing those given by Nordtvedt
(Ref. [6], Appendix):

Gqu 2w+3+0 G, (4 — Zow, ¢ P
¢ 220+3 G Qow+3)QRu+3+0)| ¢

(58)
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However one should be careful in comparing this kind of formulae with observations
using cosmological solutions for ¢ because perhaps scalar fields local from the cosmo-
logical viewpoint (e. g. that of Galaxy) may mask possible changes of the cosmological
background.

Note that, besides scalar-tensor theories, variable gravitational coupling was considered
by Staniukovich [13].

Up to now we have been using the assumption that in the senior order of the ¢!
expansion, Newton’s law should be fulfilled. However it seems physically more plausible
to introduce scalar charge as an elementary particle characteristic, e. g. as a function of the
particle rest mass. Then one obtains different values of the constant G for different sub-
stances. There is experimental evidence that this effect really exists, e. g. [14] and this is
perhaps the strongest argument in favour of explicit inclusion of the scalar charge into
the theory. Further consequences of this hypothesis are under study.

The author is grateful to Professor K. P. Staniukovich and Drs S. Kolesnikov, V.
Melnikov and V. Shatalov for useful discussions.

APPENDIX 1
Complex scalar field

There is no evident reason to consider the scalar field ¢ in scalar-tensor theories
to be real a priori. The complexity of ¢ may play some role in cosmological (see [15]) or
other problems where it yields an additional degree of freedom. However we will convince
ourselves that changing of A(¢), B(¢) and ¢ ¢, in the Lagrangian (2) for A(|¢}), B(l¢))
and ¢,z respectively, does not alter the metrics obtained in Sections 3 and 4.

Denote

x=|g|; y=argg. (A1)

The transformation (4), (5) (where instead of ¢ and » we write x and X) brings the initial
equations to the form

G,, = —kF(®)T,,—nS,(x)—BFx*S,(»), (A2)
~ dF _ d _ .
2n0Ox+F —x T— —=(BFx )g“ﬂyayﬂ =0, (A3)
dx dx e
n 2~ d T 2\ ~af >
BFx O y+ F(BFx )g¥x,ys =10 (Ad)
X

with the notations (3) and (15) under the assumptions (10). From a PPN expansion for
the equation (A4) similar to Section 3 it follows:

y = y = const. (AS)
0
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and hence Sm(y) = 0, and thus y does not enter the further calculations. Thus the
formulae (27) for the PPN parameters remain unchanged but in (29) the index ¢ should be
changed for x.

A static spherically-symmetric solution with the electric field may be found using the

transformation
. dx x AB *
guv = A lguv; s == —_~<T-—_5'::i> (A6)
which leads to the field equations
Sy - rva ¥ e * ~yy ¥ v~ap ¥
GM = _K[_F Fua+ ?1 5uFaﬂFaB]~nD(1pw) [g YuWa— —21' 5ug ﬁw,uw,ﬁl (A7)
~ d ~ap
Oyp+ v (In D)g¥y .y, =0, (A8)
with the Maxwell equations (34) added, where

v =% nD(yy) = Bx*/(A%>); n = sign B. (A9)

Under the assumptions (35), (36) the cquation (A8) is reduced to
11 d 12
v+ —(n D)y~ = 0. (A10)
dy

Divinding this equation by v’ and adding its complex-conjugate, we obtain an exact differ-
ential equation which gives:

D(ypy)y'y’ = C* = const., (A11)

and the further calculation repeats exactly that for the real field.

APPENDIX 2

Some particular cases

We point out some particular cases of gravitation theories described by Lagrangian
(2) under assumptions (10).
1. General relativity:

Alp)=1;B(p)=0;F() =1;n=24=0. (A12)
2. The Brans-Dicke theory [16]:
A(p) = ¢; B(p) = w/p; w = const. # —~3/2;

F(y) = exp [—w/\/:w+3/2!];n = QRw+3)1; 4 = Qw+3)2 (A13)
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The PPN parameters calculated from here using (27) coincide with those given in
paper [2].
3. The Zaitsev-Kolesnikov theory with a conformally covariant scalar field [3, 10, 17]:

A(p) = 1+%¢*; B(g) = —1;

_cos® [(p+v0)//6] . . -
F(y) = TN Po/+/6 = arctan (¢/,/6);
n=—1s95 A= - 1559 (1= 39" = Fn(l+3n). (A14)
o ] Y

4. This scheme includes also the case of material conformally covariant scalar field
in general relativity which has been studied in paper [11]:

A(@) = 1— L kop?;  B(p) = 2x,,

with Einstein value of the constant x,;

_ cosh® [( +0)/+/6] .
FO) = =5 (wol /)

For this F(y) solutions (40) and (47) completely coincide with the corresponding solutions
in [11] if one changes the notation in the following way:

Yoly/6 = tanh™! (Vico[3 9). (A15)
[}

Kk — k cosh? zg; ‘-—C-E—»z; _'@9:_,20; \/—Eﬁ—) : ﬁ—)k;
V6 V6 iCi icl
C? - 2x|C|? cosh* z,,. (A16)

The properties of metrics (40) _and (47) for the concrete cases 2, 3 and 4 are given
in Table 2. In case 4 at h = |C|/ JG these metrics belong to class 33, and their further
study takes place in the transformed coordinates:

¥ = coth (|Clz/\/6)  for v, # 0; (A17)
r=@+y) JC6  for y, =0,
in which the metric takes the form

ExO)Z _ 1 2 (y+Y1)
(y+y)* 6 y*

ds? = (1—ro/N)X(dx°)* —(1 —ro/r)~ 2dr* — r?dQ* for y, = 0. (A18)

ds® = (y+y0)2{ (dy2+y2d92)} for y, # 0,

where

Yo = tanh (if)o/\/g); o {coth (!C}zl/\/é) for solution (40), (A19)

ro=yIClIVE: Pt for solution (47).
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TABLE II
Properties of the solutions (40) and (47) in some particular cases
Example 2. Brans-Dicke theory
w > —3/2 [ w < —32
? T -
Constants h<0 or| hz 0, h < 1Ciyv2 L R ClNVZ, 2z >0

(and) ] or (and) !

..;<0‘Z| 0 2 <0 |h<ho | h=ho| h>ho
Variants by (46) e ! a d { ¢ de a ‘ a ! a
Behaviour 200 1 11 1 k% J0 ST DR S & SR V- S N WS §
Example 3. Zaitsev-Kolesnikov theory
T - T 7_—'_"—”” Ty T |~—"|r 7 1{ Y
Variations by (46) c d ! e cd | ce | de cde
Behaviour D | PO T~ BT N LR | 3. 23, ¢ 3L,

| i ! I R
Example 4. Conformally covariant scalar field in general relativity
- : — e : —
B> ICIVE | k<0 lo<h<|CivE|]  h=i(ClIVE 2z >0
Constants | } or (and) f -
! z; >0 f z2; <0 ]’ 2 >0 Yo >0 Yo=0 | yo<0
- | s

Variations by (46) a a a a
Behaviour 12+ 21+ 21, 32_ 13 11,

ho = 11CI (jo+3/27 2+ 2lw+3/2/"2)

Comment: Variants of the behaviour of solution (40) are given in the table. To
get variants for (47) one should reject those involving e.
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