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In this paper nonlocal quantum electrodynamics is constructed satisfactorily. The
theory is free of ultraviolet infinities, its S-matrix is macrocausal, unitary on the mass shell
and fulfils gauge invariance.

It is known that the construction of quantum electrodynamics free of ultraviolet
divergences encounters serious difficulties. For instance, the nonlocal quantum electro-
dynamics suggested by [1] does not fulfil the gauge invariance requirement. The gravity-
-modified quantum electrodynamics of Salam et al. [2] is gauge-invariant, but also encoun-
ters a great difficulty connected with the so-called equivalence theorem.

Recently, Efimov [3] has outlined a variant of nonlocal electrodynamics. However,
some defects of this theory appear, for example, the regularization procedure of Pauli-
Villars is still used to suppress the divergence of the self-energy photon graph. Basically
this procedure is equivalent to renormalization. In this paper a new approach at building
nonlocal quantum electrodynamics is outlined. It will be shown that the S-matrix fulfils
all the physical requirements: convergence, macrocausality, unitarity on the mass shell
and gauge inavariance.

In paragraph 1 the way of introducting nonlocality is presented. Some basic problems,
such as convergence, macrocausality unitarity on the mass shell and gauge invariance are
considered in paragraph 2. In paragraph 3 the self-energy graphs of photon and electron
of second order are considered in detail. The general problems of quantum electrodynamics
and related topics are considered in paragraphs 4 and 5.

1

In papers [4-11] nonlocality was introduced by supposing that in the case of inter-
action the field operator ¢(x) is replaced as follows

@(x) » &(x) = [ d*yV(x—)ep(y) = V(O)@(x)
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here V(z) is defined by

V() = e"Dy(z) (1.1)
€“® is a generalized analytic function and u(z) has one of the following forms
) pO)= [ d*ea(e®)exp (ieodo+¢d) (12)
g-<
b)) = [ d*ea(e®)exp (eodo+igd). (1.3)
22< 2

However, in the case when this approach is applied to construct nonlocal electrodynamics,
we encounter either a divergence connected with the self-energy graph of the photon or
a violation of gauge invariance. Therefore, we need a new manner of building satisfactorily
nonlocal quantum electrodynamics.

Let us recall that the nonlocality introduced by [3] bases on the Lagrangian formalism.
In the case when there is no interaction the field operators participate locally in the La-
grangian. In an opposite case, that is when there is interaction, they participate nonlocally
‘in the Lagrangian by means of the above-mentioned procedure. From here one obtains
the interaction Lagrangian

2y = gUM([De(x))
and then the S-matrix is formally obtained as follows
S = Texp {ig | U(P)dx}.

In our opinion, this procedure certainly leads to nonlocal quantum electrodynamics, in
which we should encounter either divergences for some graphs or violation of gauge
invariance. Another procedure for introducing nonlocality is now discussed.

We also assume that if there is no interaction, then the field operators participate
locally in the Lagrangian. In the case when interaction exists, it is nonlocal and the non-
locality is introduced by starting from the S-matrix.

It is known that the S-matrix can be defined as a power series of the coupling con-
stant g

S:

n

s

§ &"Su(xy, X35 -ovy X, )dX;...dX,

and the main problem now is to define all the members S,(x;, X3, ..., X,;). In the case
when the interaction Lagrangian is given, we can define easily S,(x;, x;, ..., X,) by using
the Wick theorem. However, in our view, the more interesting problem is the following.

Let us indicate an algorithm for defining the S-matrix in each order of perturbation
theory. This can be realized by formulating the Feynman rule in momentum space for an
arbitrary graph of nth order, and the summation of all the matrix elements corresponding
to nth order graphs gives us the Fourier transform of S,(x;, x3, ..., x,) in momentum
space. The next problem is to prove that by means of such a procedure the S-matrix is
free of divergences, unitary on the mass, shell, macrocausal and also fuifils gauge invar-
jance.
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We assume that the Lagrangian of free fields is as usual
I - - —
¥ = 5 'P(?"a,‘-aﬂﬂ)w—m'l"l"' % avAnavAy

and the interaction of these fields is defined by an S-matrix of trilinear type in the sense
that at every vertex there are two electron lines and one photon line.

Now the new approach is formulated in terms of the Feynman rule in momentum
space for an arbitrary graph of n orders.

1. Factor due to every interior line of electron with 4-momentum p.

2. Factor JEn due to every interior photon line with 4-momentum k.
—ig

3. Factor iey, for every vertex.
€2

4. Factor (2n)"% — 22—
or (2m) 2\/@{

due to every exterior photon line with energy wg and polar-

ization A.
5. Factor (21n)"* #°(p) due to every exterior electron line with 4-momentum p and
spinor index s, leaving graph.

6. Factor (2n)~% w'(p) for every exterior electron line with 4-momentum p and
spinor index s, entering graph.

7. Factor (2n)* 5% p—p’+k) for every vertex corresponding to energy-momentum
conservation.

8. Factor (—1) for every closed loop of electron.

9. The expression so obtained is to be integrated over all the interior momenta.

10. Each integration with respect to the independent momentum contains the weight
function V(I*p?).

As an illustrative example, let us consider the well known graphs: self-energy and
vertex graphs.

We obtain easily

é? V(I*k*)dk p—k+m
2(2) — ao a o-’
@) (2n)“i§ & J Ktie | (p—kP-mitic’

e? p+m p—k+m
n2k) = V(?p*dpSp | y* Y
w (6) (2n)4ij (Fp7dpSp{y Pomitic (p—k)P—mi+ie

N N 2 2 - a -

e .| VifqgHdq , q+k+m | g+m

I'p; k) = — E "} 7 7 537
(2n)~i (p—g)y +ie” (q+k) —m qg“—m

a



314

and the approach given by [3-11] leads to the following expressions for Z(p), I1,,(k)

and I'y(p; k)
5@ V(k*)dk . p—k+m |
(p) VN 2 2 2 4
(2 )i k*+ie (p-—k) —m-+ig

p+m f)fc-i-m
ek dpSp (v 52 '
(k) = (2)fpp(’p2m+w (p—k)—m +ie

e e V[I*(p—q)°] , g+k—m | g+m dg
2myi (p—9)*+ie (q+k)2—mzy q*—m* )
q

These expressions for Z(p), I1,,(k) and I'(p; k) allow us to see clearly the difference between
two approaches.

r(p; k) =

2

In this paragraph some basic problems are considered. Namely, we shall prove that
S-matrix is convergent, macrocausal, unitary on the mass shell and fulfils gauge invariance.

Let us firstly consider the convergence of members of perturbation theory series.
In momentum space the matrix elements of a certain process in nth approximation of
perturbation theory has the following form

| 1
= .. V(12r?)dr, - ot — 2.1
J “I(r')r’llkiﬂellyllqm—m !
i Jj i m

here k; and g, are respectively 4-momenta corresponding to interior photon and electron
lines, r; are the 4-momenta, with respect to which one integrates.

It is easily seen that the above integral would be convergent in the case when the
weight function V(I?k2) were chosen to be the form factors given above.

Next, the macrocausality is proved to be valid. To do this, let us consider the following
expression

S S,
Clx,y) = M()(M(\)s > (2.2)

Expanding the S-matrix with respect to the coupling constant e?4rn one obtains

a series of the form
1 Fad
S = —'J Xy dX, Sy (X1, ooy %,) X
n!

n

X 1 Ax ) A P(X ) ) (X 4 ). X, 2.3)
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The Fourier transform S,(py, ..., p,) of Sy(x,, ..., X,) contains the expressions of the form
(2.1). Therefore, it is easily seen that in fact S,(x,, ..., x,) is built from the causal Green
functions D(x), S°(x) and the local generalized functions ¥([J,) D° (x—y), ¥((O,) S(x—y).

Substituting (2.3) into (2.2) and passing to N-product, the commutation function D*
and the anticommutation functions D* appear. Thereby, in the case when Sy(xy, ..., X,)
does not contain the function of the form V()D°, V([)S°, we obtain

0 o8 st 0 f <
— = or x < y.
5A4(x) \GA(») ¥

But with the aid of V{(z)-function given by (1.1), we have the macrocausality principle:

J N
— S ')=0
SA(x) \8A(Y)
G:x°>=3° (x—»)*>0
G: —P<(x—y? <P
Now the unitarity on the mass shell is proved. For simplicity, let us restrict ourselves
to the case of self-interaction of a certain scalar field @(x) and the weight function V(12k?)
is defined by (1.2) or (1.3).

Suppose we have a certain Feynman graph with n exterior lines.
Then the amplitude corresponding to this graph is described by the following integral

_ varknak, | | 2 @.4)
Dk | e :
i J

here k;-Euclidean 4-momentum, corresponding to the given line in the graph. The inte-
gration (2.4) is taken over the Euclidean momentum space of four dimensions and kj-4-mo-
mentum of integration. We shall prove the following property of amplitude (2.4). Suppose
the graph, corresponding to the amplitude F, can be divided into two blocks F; and Fy
to be connected with each other by n interior lines. We have then

ﬂ V2K 1
j J 3 Ak F(q), k) ——— 12+ m? 5 Fulq), k)

here ¢;(j = 1,2, ...,ny) and q;(j = 1, 2, ..., ny) are the exterior momenta corresponding
to the blocks I and IE respectively. The following equalities are realized: ¢ = ¢y +... +¢,, =
= —(q,+...+q,) (n=n,+n,) and k, = q—k,—...~k,_;. The above-mentioned
expression for F can be rewritten in terms of F; and F; that describe the blocks I and 11

as follows
v(l2k2
dkl -dk Fl(qp z)

x Fy(q), k)d* (q—kl—---“-k,) (2.3)

beside the regions
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Here

Vi(12k?) = V,(PK?) = ... = V,_ (k) = V(PkP)
and

V(I*kY = 1.

Then we have the following equality

AF(2) = iQny H V{—m?) | dk,... | dk,x

X H G(Evo)a(kf +"12)54(§_E1 e —Er)Fl(qj’ Ei)Fu(q}, E;) (2.6)
v=1
here AF(z) is the dlSCOl’lthIIy of F(z) across the cut in the complex z-plane, z = —g?

and k; is the vector (k k;) so that &} = k2 —k3. Tt is necessary to understand that
K(q;, Ei) and FH(q;-, k;) are analync continuations of the starting functions with respect
to corresponding values of scalar arguments (g;k;) and (g;k)).
As it is known, the above-mentioned property is called the Cutkosky rule [12].
Equality (2.6) shall be proved in two stages. Firstly, it is proved for the case of two
intermediate interior lines, where we have

* V(lzkz) ,
= } dky ——— kz !(‘1;: k "%m} Fn(‘]j§ ky)
\_ﬂ\?‘__‘ b, . 9,
] T : I ——>qj
CZ)‘/ ks -

92

or

\ C L VKD Va(PkD)
= | dk, { dk © 5 0 g—k—k
J 1J 2 iem? kiem? (ki —ka)x

x Fi(q;: ky, kz)Fu(‘I;'i ki, k),

here ¥V, = V and V, = 1. We sce that this form of F is totally identical to that of [13],
therefore the equality is proved for this case.

Now we consider the case when I ard II are connected to each other by r+1 inter-
mediate interior lines. It is easily seen that the situation is similar to the first case, that
is the amplitude F can be also written in the following form

. dk, .V, ((Pk7 4 1) : vy
- J‘A“‘?rz; Lt mzﬁ¥‘* dkp(qj’ 45 krvys k)c)“(q —kper - k)




here
|'| v lzk2
P(qjs q;; kr+l9 k) = J\dkldkr kZ( ) x
X 54(k_‘k1 ‘”---*kr)Fl(QjQ ki)Fll(Q}; k)
in which
Vl = = I/r = V
and
Viey = 1
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The mentioned expression for Fis also totally identical to that of [13], therefore the equality

(2.6) is proved for the second case.

Hence, in our theory the Cutkosky rule is proved entirely. By using an approach similar
to that of [14] the unitarity property of S-matrix on the mass shell is proved in high appro-

ximation of perturbation theory.

Now let us return to the case when V(I?k?) is defined by (1.1). It is easily seen that
for this case the unitarity property of S-matrix on the mass shell is still valid for the reason
that the forms of V{(I2k?) given respectively by (1.1) and (1.2) or (1.3) are only different

from each other by a real factor exp w.

Finally the Ward identity is proved. The basis for proving is the following relation

¢ { i 1
A~ == ‘yu ~
¢p, p—m p—m p—

It is easily seen that in the second order of perturbation theory, the Ward identity is valid.

Indeed, by differentiating Z@(p) we have

é e? z : ¢ [V(*q>dq 1
P 2(2}(1’) = 4. gaa J\ ')"a AR 7
0Py @r)i ép,) q’+ie p—q—m-ie

JP(lzqz)dq , 1 . 1
(27:)4 Z , g% +ie p—c}wm—}—isy 1’3—¢}—~m+isy

= r:f”(l’; K)i=o-

G

g

Now this identity is proved for a compact self-energy graph of electron of arbitrary
order. It is easily seen that we can always choose the interior momentum variable for
which the matrix elements corresponding to a certain self-energy graph is of the following

form

A—A—i-in
SM(p) = E VI‘ F(p, poary °d
w (P) (7 Vi (Fq*)E(p, 9)° —ar -t 4
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here F(p, q) is the function characterizing the matrix element corresponding to the re-
maining part of the graph. Form here we have

0 e?
Z_ym =_ﬂE 7\ V(I*’q*)F(p, q)d
o, w (D) Gnyti g f (I°q°)F(p, ¢)dq x

1 1

N F o = T D(p k) o 2.7
7 p—-q——m+i£7 p—q~m+i£? w (P Nik=0 o)

If we now differentiate all the self-energy graphs of electron X{(p) with respect to p,

we should obtain a set of vertex functions I 8’: Y(p; k) corresponding to all the possibilities

of attaching the photon line to the self-energy electron graphs. Therefore, from the fact
that the summation of all the X¢(p) gives us the compact self-energy electron function
of nth order,

Z™(p) = ¥ 20(p)

w
we deduce that

I (s k) = Y, I8 (p; k)

w

gives us the compact vertex function of (n+ 1)th order. Using (2.7) we have then the Ward
identity for nth approximation of the perturbation theory

a
6_p~ X )(P) = Ff; H)(P; k)|k=0'

u

Hence the Ward identity is proved entirely. Next, gauge invariance is considered.
The S-matrix can be expanded as follows

AT r
S = Z —fdkl... fdknjdpi... fdp,,,j dg,... qu,x
minlll
m,n,l

XFu;...u,.(kla reey knr pl, rres pm; ‘11, LA ] ql) . Aul(kl)'/)(pl);p_(ql) .
Gauge invariance means that

k,F

FTanll  SRRRS £ 00N | %Y = 0,

kuikquﬂl...u[...uj...un = 0’ (2'8)

and so on for every k,. Each of the above conditions is fulfilled in the case when the
remaining momenta, on which F depends, belong to mass shell,
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The proof of gauge invariance under the form (2.8) is rather simple and is based on
the following equality

1 1 1
ky <= 7 = = = - =
py—m  p,—m po—m  py—m
if k=pi—p2.
To summarize, in this paragraph we have proved that our nonlocal quantum electro-

dynamics fulfils all the imposed conditions: it is free of ultraviolet infinities, macrocausal,
unitary on the mass shell and gauge invariant in each order of perturbation theory.

3

The self-energy graphs for electron and photon of second order are considered in
this paragraphs.

Firstly, let us study the vacuum polarization described by the diagram 2.

Its matrix element is given as:

,(q9 = j V(?p*d*pSp (v,‘

p+g+m ptm\ _
(ptay-m? " pP—m?)

1

- 2.2 7P+ q+m)y,(p+m)
- sz j V(p')dpSp [(p+q2)* +4°(z—2)—-m**~

0
Let us notice that for p? » 1 we can write
V(I (p+k)*) = V(I*p?)
and for p? <€ 1
V(I*p?) ~ 1.

Then by the change of variable p — p—gz the expression for IT,,(q) can be rewritten
as

1

P+ q(1—2)—m)y(p—qz—m)
Twl) = j & .[ VR Sy e [;12 +4*(z—2%) —P m%i B

1 -(2 v Epv 2 1-z)— v P—m?
4 f iz j V(P pdp (24,9 [qi;zq-)j£)+;2_'gn zgiq m?)

0o

From gauge invariance

,(qq =0
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we deduce that

2 2 1,2 2
_p (Z._.z )....iq +rn

V(i’q*)d* — =0
J' ( q) q [q2+p2(z_zz)_m2_l2

and therefore the expression for IT,(q) finally takes the form

Huv(q) = (qu.q.v - guqu)n(qz)

where
! 2.2
V({I“p*)dp
(g* = —8 | dzz(1— .
@) j 7t Z)J [P+ a°G—2)—m ]
4]
If
2 aH 2
H(q ) = H(0)+ T q +...
oq ]q2=0
then

1

V(I*p))dp 4 { v(I*p»dp
o) = —8jdz(z— )J 2}2 - EJ‘[pz—-—mﬂz’

1

oIl(q* V(*p*d 8 (V(*p*)d
(Z) = 16 | dz(z—22)? (2 P )qu _8 (2 P )2p3.
7 R [p*—m"]" 15 ) [p*—m"]

0
It is clear that for I - 0, V — 1, II(0) diverges logarithmically and P (g% con-
q

verges. Therefore, for sufficiently small /, II(0) can take the following form

4 1 2
o)y ~ — glogl 5 +0(*m?)
on .
and because — converges for / — 0, we can write
aqz 420
oIl(g>) _ 8 i’

09> |p—o 152m°
here p characterizes the nonlocal factor taking part in the integral. Finally, we have

1 T,
+ — + ...
15m2 P4 }

2 2. 2 i
Hﬂv(q ) = 4n I(Q;}QV'—gﬂvq ) - g In iz—‘r;l'z’
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from where we obtain the renormalized current density
sey =l Fm ]
X) = —In 5— X

R 3 Pm? |

and the effective potential for electron as a result of vacuum polarization is equal to

a&@%=ﬁ—l;i2f a*(x).

For a point charge we have the effective potential for the electron

- - - 3 4nd )

(r 4 15nm (r))

It is possible that this expression allows us to check the nonlocal effect by evaluating
the influence of the vacuum polarization on the energy ievel of the hydrogen atom.

Let us consider the self-energy graph of the electron. As was mentioned earlier, its
matrix element is of the following form

2 P22 = I
5O(p) = e ” V({I“k*)dk > p—k+m »
iQ2m)* K+ 7 (p—kP?—m*+ie

n

or

i(p+k)+2m
[K2+Q2pk+p*+m2—2P)x+ A7

() = — (hf f de dkV(I2k?

In order to evaluate the correction to the electron mass, let us expand Z®(p) in terms
of (p+m)

Z3(p) = —i{A°+B%(p+m)+...}.

Then using some simple transformations we obtain

_ 2.2 2(x+1)x .
T @ )“J JV(I e 24 x%m? —ig)? dk.

As V(I*p®) is regular in the whole p?-plane we can pass to Euclidean metric by means of
the rotation ko — €™%k,, which gives us

1 + 0
2_2
o €Fx 5, o 2x(1+x)zdz
= —— | d: V(I%z) ——"ss
a@ﬂ[‘j 9 e
s o

where z = p>.
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As I -5 0, ¥V — | this integral is logarithmically divergent. Hence, for a sufficiently
small value of 7 we can write

1672 Pm

0 e 1 22
dm = A" = m{ln 55— +0("m°) }.

4

In this paragraph the equations and properties of propagators and vertex function
are considered.
It is usual to define propagators for the electron and photon as follows

Geh(x—y) = <O T(H(x)ps(¥)i0D
Gl (x—) = O T(A,(x)A(»)i0>

here O denotes the operator in the Heisenberg picture. Passing to the interaction picture,
the propagators are written as

Gop(x — ) = O T(yu(x)ps(»)S)I0) (4.12)

Gi(x—y) = (0IT(4,(x)A,(y)S)|0). (4.1b)

Let Z and I1,, be the self-energy functions of electron and photon respectively, we
can the easily obtain the following equations for propagators G* and G” by means of (4.1)

G (x—y) = 8(x—y)+ [ 8~ x)Z( ~ y)8(y' - y)ax'dy’
Gl =) = Dip(x =)+ § Dpa(x = xMI,o(x" = y)DZ(y" — y)dx'dy’
where
Sip(x—y) = OIT(px)ps(»)i0>
Di(x—y) = (OIT(4,(x)A,(»))I0).
In momentum space these equations take the form
G(p) = 5°(p)+S(PZ(D)5(p)
G'(k) = D(k)+ D(k)I1(k)D*(k).

In analogy with the ordinary quantum electrodynamics the mass and polarization operators
M(p) and P(k) are defined by the following equalities

G(p)™" = §(p)" ' +iM(p)

G'(k)" ' = D)™ +iP(k).
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We now introduce the compact self-energy parts of electron and photon, Z* and IT*.
They are connected with the mass and polarization operators M(p) and P(k) as follows

Z*(p) = —iM(p),
m*k) = —iP(k).

Through A, we express the matrix elements corresponding to the compact vertex graphs
and the vertex function is defined as follows

r,=y,+4,
Now basing on the skeleton graphs of the following forms

Z*

ST |
.~ 2 At
we can write down the equations for IT*, £* and I',
2
@n*
2

. 1
(k) = (;) 3 5P J 1.GP) (D, p—k; K)G(p— KV (I pP)dp,

X(p) = fque(p =KL (p, p~k; )G (K)V(I*k*)dk

from where we obtain two integral equations connecting three functions G°, G” and I',

2

G(p) = S+

S4p) fque(p —K)I(p, p—k; k) x

2ny*
x G(p)G2(k)V (Ik?)dk, (4.22)
G'(k) = Dk)+ ——— 30 D(k)G'(k)Sp JVnGe(P) X
x I (p, p—k; K)G(p—k)V(I*p*)dp. (4.2b)

In this paragraph we consider also the asymptotic behaviour of propagators and the
vertex function. As it is known, for / — 0 the perturbation theory series is divergent from
the second order. Therefore, it is clear that the real parameters of decomposition of pertur-
bation theory must depend on e and /2. It is easily seen that for the vertex function, if, say,
we have the following decomposition

I(py, P23 k) = ZO a, A"

where

and a, are the functions of p?/m?, p2/m?, k?*/m? and €.
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A discussion similar to that of [15] leads to the following expression for I':
I'(py, pa; k) = Z’O Zo ap (e (e*2)"
pey

here the a,, are the functions of p}/m?, p5/m*® and k?*/m?. The series for I', contains two
parameters, e and e?4, therefore the condition for applying the perturbation theory is
the following

e <1 and ezln———l— <1
*m? ’

The second condition shows that the value of 1 cannot be too small, for example, if

-1 ~ 100-- 1000 GeV

then

1
Pm?

11
T3

e*In R
2

The perturbation series for propagators can be obtained similarly
G(p) = s(P)S°(p)
G'(k) = d(k)D (k)

where
o€

s(p) = ¥ sule?)(€D)"

nr=0
d) = 3 duley iy
in which s,, and d,, depend only on k%/m>. If we represent S€ and D° by the expressions
8(p) = &P)S(p)
D(k) = n(k)D(k)

then it is easily seen that {(p) and 5(k) could be represented by the power series of / as
follows

) = T &l

w0 = ¥ naky

here £, =15, = | and &, n, are constants. Finally we obtain
G = Y sulule®) (€' p")"S(p),
mun,r=0

)= S o (@27 D).

mar=0
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For (k?; » m? the functions s(k) and d(k) do not depend asymptotically upon m, they

have the forms
1 n
s(k) = Z s2(e*) (e2 In lTkz_l)

n,r

1 n
d{k) = Z d°(e?) (e2 In 7 k2|>,

n,r

where 52 and d° are constants.
For the vertex function we obtain an analogous asymptotic expression.

5

Now let us try to find the equation, basing on which we can determine the weight
function ¥(I?p?). To do this, we propose that the form factor V, similar to the other
functions of quantum electrodynamics, is not given a priori. It will be defined by the struc-
ture of nonlocal quantum electrodynamics. Thus our opinion is different from that of
Efimov and other authors who believe that the form factor ¥(I2p?) needs to be introduced
a priori in nonlocal quantum electrodynamics [1], [3-11], [16-22]. We first consider
the following transformations

G -Gy =2Z{'G, G -Gh=2"'@,
FoTg=2,T, & —ei=2Ze
Vo V=V, .1

leaving invariant the matrix elements of a certain process. These transformations constitute
a group called the renormalization group. Because the divergences do not appear in our
theory, the concept on renormalization need not be imposed. However, formally, the
preceding transformations are called renormalization ones and it is interesting to study
this problem. As it is well known, basing on (5.1) we can obtain the functional equations
for propagators and vertex function [23], for instance, for propagators of electron and
photon the following equations are known

s(x, y, €%)s (i, 3;— , ehd(t, y, ez)) = s(t, y, €%) x
X
s (7 , % , 2d(t, y, e2)> , (5.2)

ed(x, y, e?) = €*d(1, y, €*)d (3;— , % ,eld(t, y, 82)) . (5.3)

Owing to [24] these equations do not give us uniquely any solutions, namely their
general solutions are defined up to arbitrary functions of two arguments.
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It is expected that the solutions could be defined uniquely if we had some restricted
requirements added to the preceding equations. In that spirit, let us study the possible
transformations leaving the matrix elements invariant. It is easily seen that these are the
following

p__)a—lp, Ge_)a-lGe,
VoaV, G -a'G,
e »ae’, I'—al, 549

which have the structure of scale transformation. Let us now seek the functional equation
for the form factor V basing on (5.4). It has been mentioned above that this function is
defined by the structure itself of nonlocal quantum electrodynamics. Hence, in principle
it is a function of the mass and the charge of electron, that is, it has the following form

V = V(I?p?, I°m?, &).

Owing to (5.4) this function contains an arbitrary factor. We can carry this arbitrary
factor attached to V into its arguments. Then it is possible to consider that / becomes
now a variable and we can impose the normalized condition on V

V=1 for p?=(>»"
For a certain infinitesimal transformation

p—(+ey'px(l-gp

we have

é
V(lgpz’ limz’ e%)——Zsprz Ar12 2+ V(lfmz’ Ifmza e%) =

o(1p®)
= (1+e)V(Iip*, Bm?, €}). (5.5
Putting p? = /7% and using the normalized condition one obtains
oa
128t — = (142)a
0X {y=y
where
x=8Bp% t=1/5
and

a = V(x, im?, }).

From here ¢ is obtained

o
il

(I ~a)a+2bt)? (5.6)
where
_ da

OX |x=¢
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Consequently we obtain the following expression for e3

€2 = (1+2bt) (a+2b)~*e2. (5.7
Substituting (5.6) into (5.5) we obtain the functional equation for V

v B , % , @bt +1) (V(t, v, e2)+2bt)-1e2] _

—2(1— V(t’ s e2)) (V(ts Vs e2)+2bt)_1bx =
= (14+2b1) (V(t, y, €)+2b0) ' V(x, y, &%), (5-8)
in which y = [2, m? and the value of b may be given a priori.
Thus we have obtained the functional equation for the form factor which together
with the analytic condition can allow us to define V.
The functional equations for propagators and vertex function can be found in a similar
manner. For instance, the equation for photon propagator is the following

d B , % , (1+2¢t) (d(t, y, e2)+2ct)"1e2] -

= 2(1—d(t, y, €%)) (d(t, y, €*)+2ct) " tex +

+(1+2ct) (d(t, y, €)+2ct) (d(x, y, €2)) (5.9)
where
Gl (k) = (k.k,— g,,k?)d(k)

i (¢, y, €%
C=_— » Vs €

3¢ et
(5.9) together with (5.8) can allow us to find uniquely the propagator d(k).

In resuming, in this paragraph the functional equations for propagators and vertex
function were obtained, and with the aid of these equations we were able to evaluate
exactly these fundamental functions of nonlocal quantum electrodynamics. In particular,
the functional equation for the form factor ¥ is also obtained. Although these equations
still cannot give us uniquely the form of ¥V, this reveals a great perspective in defining
this unknown function.

o

To end, let us discuss the obtained results. In this paper we have made an effort to
build a variant of nonlocal quantum electrodynamics. The main idea is that nonlocality
is not attached to field operators, or alternatively, to propagators as usual. The nonlocality
is attached to the S-matrix itself. To do this, we utilized the Feynman graph technique
to give us the algorithm for finding each term of the S-matrix in the frame of the perturbation
theory.

The obtained nonlocal S-matrix fulfils all the necessary physical requirements: it
is free of divergence, macrocausal, unitary on the mass shell and gauge invariant.
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The corrections to the mass and the charge of electron are calculated. The general
equations for propagators and vertex function are established. From the asymptotic
decomposition of propagators and vertex function it is shown that the quantity / having
the sense of fundamental length is limited by the following condition

2 1
e lnl—i—n?< 1.

Finally, basing on the assumption that the form factor characterizing the nonlocality,
in reality, is also defined by the structure itself of quantum electrodynamics and on the
group structure of the matrix elements, we found one functional equation for this form
factor. Although this equation is rather complicated, it may allow us to study some
properties of the form factor and it is very interesting that this equation together with
the analytic condition, imposed on the form factor, can give us uniquely the solution.
In addition, the equations for propagators and vertex function are also obtained outside
the equation of renormalization group.

In our opinion, an interesting question is raised : whether we are able to define uniquely
the fundamental functions of quantum electrodynamics and the form factor with the
aid of the equations (5.2)-(5.9).
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