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Expansion of the Einstein canonical pseudotensor, gf,”, for the gravitational field
in the normal coordinate system in vacuum shows that the first generalized normal tensor,
Ety’ s, belonging to the gz,” contains the Bel-Robinson tensor. It is therefore possible to
connect some components of that tensor with the variations of the energy and momentum
of the free gravitational field.
1. The Bel-Robinson tensor
Bel [1 — 3] has discovered the tensor
— R B

Tﬁayd =R "vykauvd+Rﬁ“v6Rauv7_ % 5aRmm7Ruvq& (11)

o B, 7,0, uv,0=123,4,

which possesses very interesting properties [1 — 6]. Usually, this tensor is called the
Bel-Robinson tensor. The Bel-Robinson tensor is connected [7] with the Bianchi identities

VdRﬂ?ﬂV+VBR7¢nv+V7Raﬂpv =0 (1.2)
and with their consequences
V.R*,, =2V R’ 1.3)

in the same manner as the symmetric energy-momentum tensor, 7%, of the electromagnetic
field is connected with the system of the Maxwell equations:

VaFﬂy + VﬁF.’a + VyFaﬁ = 0,
V F* = 4nj?. 1.4

Here F,, = —F,, denotes the tensor of the electromagnetic field and J? the current;
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V denotes the covariant derivative. The physical meaning of the Bel-Robinson tensor
is rather obscure.

Bonazzola [8] has looked for a link between the component T4, of the Bel-Robinson
tensor and the differences of the gravitational energy.

Our attempt to interpret the Bel-Robinson tensor is different from that of Bonazzola:
it is based on the standard formalism of the general relativity. We start from the fact that
the first generalized normal tensor [9], [10], £,°,,, belonging to the Einstein canonical
pseudotensor, g#,”, contains the Bel-Robinson tensor. It is interesting that our construction
can be performed most easily for the canonical pseudotensor gz,".

2. The physical interpretation of the Bel-Robinson tensor

Einstein’s canonical pseudotensor for the gravitational field is defined by

o 6[( - g)*L] .

(-9, = (-9)'Ly,—¢* I

Q2.1

Here
1
L= ?GE guv[rﬁar:o_rgvr:a]s

G is the Newtonian gravitational constant; a comma denotes the ordinary derivative.

In the following we limit ourselves to the normal coordinate systems® [9], [10], [12],
[13]. In these coordinate systems a local, covariant analysis of the gravitational field is
possible [14]. It is known [9 — 13] that starting from the general coordinate sys-
tem, U, we can always geometrically construct the normal coordinate system, NCS(U; P),
which is geodesic in P. The point P is the origin of this coordinate system. This coordinate
system belongs to the general system U and the point P. If the coordinates U are trans-
formed into U’, we get a new normal coordinate system, NCS(U’; P), belonging to the
same point P. The transformation NCS(U; P) — NCS(U’; P) is a linear homogeneous
transformation with constant coefficients. Consequently, in the class of normal coordinate
systems, [NCS(U; P)], the formal integrals

g £la'doy, = P(Z) (2.2)

form a free vector. gt,” is the Einstein canonical pseudotensor. a, b, ¢, d., e, f, g, = 1,2, 3, 4
denote the tensor indices in a normal coordinate system, X is a sufficiently small® and fixed
space-like hypersurface in the neighbourhood of P.

We shall refer the free vector, P,(Z), to the point P and obtain the normal vector
P(Z;P). P(Z; P)can be considered as a vector P,(Z; P) in a general coordinate system
U [10]. Let us construct a normal coordinate system in every point P of the neighbourhood

1 Our normal coordinates are often called the “Riemann coordinates”, see Eisenhart [13]. The normal
coordinates of Eisenhart are our “orthogonal normal coordinates”.

2 The hypersurface & must lie entirely in the four-dimensiounal region in which normal coordinates
are defined.
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of ¥ and refer the integrals (2.2) calculated in every normal coordinate system to the
suitable P. In this way we obtain the vector field P,(Z). This is also the vector field P,(Z)
in the general coordinate system U [10]. Thus, in general relativity, we can connect locally
with the gravitational field a vector field P, (Z). Obviously, the same can be done for the
integrals

; T!do,

where T"' = T is the symmetric energy-momentum tensor of matter.

In the fixed normai coordinate system NCS(U; P) let us consider a small four-dimen-
sional region Q defined by two 3-dimensional regions ¥, and ¥, which are located on two
space-like hypersurfaces Z, and X, respectively and by 3-dimensional space-like walls I'.
Using Gauss’ theorem we have:

APa(Vl’ VO; P) = jl Etnbdob_ j Etabdab = = j.Etade-ba (2'3)
Vi Yo r
because [(—g)}zt], = 0.
Let X4 and Z; be given by the equations y* = 0 and y* = 7 respectively and let V,, ¥,
be the spheres of the same radius r (see Fig. 1), where r = [(¥1)*+(»*)2 +(»%)?]3.
We then have

APa(Vh VOa P) = j Eta4dsv_ j Eta4dsv’ (24)
Vi

Vo

where d3v = (—g)idy'dy*dy°.

Fig. 1

Let us consider the case when r is infinitesimal and 7 is very small. Then, with good
accuracy

0
APa(VI’ VO; P) - 5I)a(I/b VO; P) = %(Eza‘i,drd-(d’r)z_*_

0 [4] 0 0
+ et adr+ g1, = gt W = 3 pt,* 44477V, (2.5)
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0 0
because gf,* =0, g1, 4 = 0. 0P, (Vy, Vo; P) means the difference P,(V,; P)—P,(Vo; P)
of the energy-momentum of the free gravitational field between instants y* = trand y* = 0
for the infinitesimal 3-region ¥ which equals ¥, for y* = 0 and equals V, for y* = 1. The

integral [ dv differs from the integral fd% by terms of fourth order in the normal
Vi Vo

coordinates y°. Consequently, in our approximation in which only quadratic terms

are preserved, we may write [d% = | d* 2 V. We have incorporated this in (2.5).
Vi o
At is a small interval defined by the equation y* = 7. The index “0” above a quantity

denotes its value at the point P. Obviously, the differences 6P, form a vector with respect
to the group of transformations of the normal coordinate system NCS(U; P). It is easy
to obtain the first, nonvanishing in P, term of the expansion of the canonical pseudo-
tensor gt,° in the neighbourhood of P. In vacuum it has the form

10 1 12 0
- tnbc c.d = -z Tbac Tba
SE eaV'y 167:G29[ at 1 ga—
b oefa 0 oefy 0 c. d
- % 5«(R cRegfd+R dRegfc)]y Y- (2'6)

Here T*,.; denotes the Bel-Robinson tensor and T?,; the tensor
RbefcRdejn+Rbedecefa— % 52Ref6cRefgd' (2'7)

The tensor (2.7) differs from the Bel-Robinson tensor by the position of the indices a

and d in the first term and by the position of the indices @ and ¢ in the second term.
o

Et,,"‘,_.,, (P) is the generalized normal tensor belonging to the canonical pseudotensor
and to the point P. By means of the above-mentioned procedure [10] we can obtain the
field of the generalized normal tensor Et,,",c,,. In the general coordinate system U this
field has the form

v 1 v v
Etn @ = I—E;G— § [T uea+T neoe
— 3 R Ryppo+ RV R, 5 )] (2.9)

This tensor field describes, in a covariant manner, the variations energy and momentum
density in the free gravitation from point to point.

Let us calculate the differences (2.5) in the orthogonal normal coordinate system,
ONCS(U; P), i.e., in NCS(U; P) for which

8ab = 29

OO
oo~ O
i
[T o A )
-0 O O



in this particular normal coordinate system

-04 04
T 44 = T 04a
and, consequently
0 1 4 o () 0
ttaa = —— = [T aa— 3 6.°R R, ;4]
Ela ,44 167G 9[ 44— % 4 egf4]

On introducing this into (2.5) we get:

1 20, 2
oP, = 167G : § T 44(40)°V,
1 20
oP, = 167G ) 9 T4244(AT)2 v,
. 1 20
oP, = T T*,,(40)%V,

1 2 L 1 oefg : 2
0P, = 162G 9 T 44— ﬁR aRegsa | (AD)°V.
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(2.10)

(2.11)

(2.12)

We see that the differences 6P, (V,, Vy; P) of the normal vector of the energy-momentum
°

of the free gravitation are to a good approximation proportional to the components T4,
of the Bel-Robinson tensor. This fact affords a possible interpretation of these components.
The author would like to thank Dr A. Staruszkiewicz for many useful discussions.
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