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In this paper a model field theory is proposed especially for the study of general
covariance. A detailed analysis is given on the determination of physical states, the role of
coordinate conditions and the fundamental differences between a generally covariant theory
and a Lorentz covariant one.

1. Introduction

Consider a general four-dimensional space which is not assumed to possess a metric
but in which coordinate frames may be set up. Let 4,(u =0, 1, 2, 3) be a covariant vector
and £™** be the Levi-Civita symbol which is a tensor density of weight 1 [1]. Then

Etx"l(Ax,t - Ar,x) (Au,). - Al,u)o

is a scalar density of weight 1. We may therefore use this as a Lagrangian density to obtain
a variational principle

5[ #d*x =0, where ¥ = L™ A4, . —A,,) (A~ A1)
which leads to the covariant field equations
™4, 5 = 0. (1.1)

The general solutions are just four arbitrary functions since the left-hand side of (1.1)
is 1dentically zero, a fact which could have been anticipated because & may be written as
the divergence

(SIKZ”AK,-:A;L),).'

Hence we have a field with no genuine field equations in the usual sense. Still we shail
formally carry on with the Hamiltonian formulation [2] to see what sort of quantum
theory turns out at the end.
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2. Hamiltonian formulation

Define canonical momenta conjugate to 4, by

0%
P = = 260y, .

04,

One immediately obtains four primary constraints ¢” &~ 0 with
¢’ = P°,
¢ = PI-2%my,
The total Hamiltonian density is

Hyp = %4, 4,,+U,¢"

2,J

where U, are arbitrary functions of x". The constraints are all first class and there are no
further consistency conditions. The canonical equations of motion for 4, and P* give
A,o = U, which are left to be arbitrary, and P% = 26°¢°4,, ,,.

Again there are no genuine equations of motion, as expected. The integrated total
Hamiltonian is

Hy = [d&x# ;= [d’xU,¢" = 0.

We have dropped the first term in #  which does not contribute to the equations of motion
and is a perfect divergence. We may go on formally to discuss physical states of the field.
Consider an infinite constant x° surface S in the four-dimensional space. A specification
of the set of values of 4, and P* on § should define a physical state of the field on that
surface. However as we move away from this initial surface, the values of A, become
completely arbitrary. We must conclude that all the different sets of 4,, P* on another
constant x° surface S” correspond to the same physical state on that surface. We now
have the situation that completely arbitrary 4, correspond to the same physical state on §.
By reversing the procedure, one has the same situation on S. Therefore we consider that
only one physical state is possible for our model field theory.

3. Quantization {3]

We assume the existence of a linear vector space such that 4,, P* arc operators in
this space with commutation relations

[4,(x), P’(x')] = ihcbd(x—x"); [4,(x), A(x)] =0; [P¥x), P'(x)] = 0.
State vectors {¥) are those vectors which satisfy the subsidiary conditions
(1) () = 0. 3.1)

This procedure works since the first class nature of the constraints as operators is pre-
served in our case. (3.1) may be solved in the Schrédinger picture using the functional
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representation in which P*(x) is represented by —ihcd/0A4,(x) and |¥) becomes a functio-
nal of A4,(x). Then (3.1) becomes

(ihed[6A,+26% A, ,) |p) = 0,

with the solution

i .
|¥) = constant exp (c_h Jso’m"A A d’x )
This is rather a surprising result showing that there is only one physical state although
it agrees with the previous analysis in classical theory. We note that

Hl¥®> =0, (3.2)

which implies that [¥) is a time-independent state vector corresponding to a zero
eigenvalue of Hy. All this is most reasonable since we actually started with an “empty”
field.

4. Transformation properties

Consider an infinitesimal coordinate transformation from x*to x™ = x*+¢&". As
a result A,(x), P“(x) go to A,(x), P"(x). This transformation in classical theory is effected
by the generating functional

G = [ d®x6A4,(P*—2e" 4, ), 4.1
where
04, = A(x)—A(x) = 5A4,—A, ¢,

04, = A(x)—A,(x) = —A(xX)e" .

The involvement of velocity variables 4, ¢ is unavoidable because the transformation
law for A, contains such quantities explicitly. However there are in fact no real difficulties
in calculations as the 52,, are multiplied by the weakly vanishing constraints. The preser-
vation of the constraint equations may be readily verified.

In quantum theory the corresponding infinitesimal unitary transformation is effected by

U = (1+iG/h),

where G is formally the same as in(4.1) except that the variables occurring are
now operators. This generator G is Hermitian in the sense defined by Dirac [4]. We
see that the present theory confirms Dirac’s statement that physical vectors and operators
are invariants with respect to coordinate transformations. We observe that this is the
case even for a Lorentz transformation which is surprising since this is not true for the
usual Lorentz invariant field theory. For example the generators of time and space trans-
lations are the components of the energy-momentum vector, not scalars. The above
observation is not restricted to our present model only. A thorough examination of this
point will be given presently.
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5. Coordinate conditions

Since the solutions of the field equations consist of four arbitrary functions we are
free to impose four conditions on the field variables. One possibility would be the require-
ments

1% Ay ee = 0, (5.1)

where #*° = (1, —1, —1, —1) is the Minkowskian metric. The common practice is to
interpret such A4, as the field viewed by an observer in a particular type of coordinate
system. We can actually manufacture all sorts of arbitrary conditions leading to totally
different effective field equations. A paradoxical situation appears. An observer with condi-
tions (5.1) may treat the field as a zero mass vector meson field. It will then appear to him
that different physical states exist defined by the various plane wave solutions according
to the usual way of counting states. All this contradicts our previous conclusion that only
a single physical state is possible. However imposition of conditions (5.1) merely reduces
the completely arbitrary nature of the field variables. The fact that all the different field
variables compatible with (5.1) still represent the same physical state cannot be changed.
Let us go a step further to see why this must be the case and indeed to see exactly how the
paradox arises in the first place. In a generally covariant theory it is usually assumed that
all coordinate systems are equivalent for the description of the physical system concerned
and that field equations must be generally covariant. What is sometimes forgotten is
that the coordinate variables x* appearing in the covariant field equations cannot be identi-
fied with a particular observer’s coordinates until we impose further restrictions on the
field variables. In order to relate the x" appearing in the covariant equations to the actual
coordinates of a particular observer it is necessary to impose non-covariant coordinate
conditions.

Furthermore the number of such conditions must be such that they exclude all but
one coordinate system [5], [6], [7]. Only after all this has been done can we identify x*
as the actual coordinates of an observer. The observer may now proceed in the usual
way to define physical states for the system concerned. Two distinct solutions satisfying
all those conditions and the field equations will now mean two distinct physical states.
The conditions (5.1), though four in number, obviously do not satisfy the above require-
ments. These conditions only restrict coordinate systems to a special set related by Lorentz
transformations. Even at this stage it is still not permissible to identify the x* in (5.1) with
the actual coordinates of a member of the set. Hence two distinct solutions do not in general
represent two different states. In order to achieve a one-one relation between solutions
and states we have to impose further conditions (which may take the form of initial data
on the x° = 0 surface) in such a way as to exclude any Lorentz transformation. This
initial data will then lead to a unique solution to (5.1). Therefore we see that for a particular
observer there is indeed only one unique set of values for the field variables leading to
only a single physical state. Different solutions to (5.1) are now seen to correspond to the
same state as viewed by different observers. One must be very careful in handling coordinate
conditions and in the subsequent interpretation. It is not sufficient just to count the number
of coordinate conditions.
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A similar situation exists in quantum theory. One should not take (5.1) as field equa-
tions to carry out quantization and interpret the results in the usual manner. There
is nothing to prevent one from blindly quantizing the theory with arbitrary coordinate
conditions such as (5.1), but having done so one may have to identify physical states wich
subspaces rather than single vectors in the linear vector space. The vectors in the subspaces
are related by unitary transformations as allowed by the coordinate conditions.

6. General covariance versus Lorentz covariance
6.1. Classical theory

From the discussion in the previous section, a fundamental difference between a general-
1y covariant theory and a Lorentz covariant one emerges. In the latter case the equations
of motion are Lorentz covariant. The important point now is that the coordinate variables
x* appearing in the field equations in a Lorentz covariant theory are meant to be the
actual coordinates of an inertial observer (measured on standard metre sticks and clocks
at rest relative to himself). As a result, two distinct solutions to the field equations imply
two distinct physical states. In a Lorentz covariant theory this is not an arbitrary assump-
tion and the above conclusion may be tested by physical measurements made by the
observer.

A Lorentz covariant theory may be extended to become formally generally covariant
by the introduction of more variables such as the non-Minkowskian metric g,,. The best
know example is the extension of Maxwell’s theory of electromagnetic field to a formally
generally covariant theory [8], [9]. Let us examine the situation step by step in detail.
(1) The original Lorentz covariant theory of electromagnetic field:

The space-time is assumed flat. We have a group of inertial reference frames related
by Lorentz transformations and in which the metric tensor is g,, = 7,,,. The electromagnetic
field is described by the antisymmetric electromagnetic field tensor F,, with the field
equations

Fw(x),v =0,
-F;w(x),l-{_Flu(x),v+Fv).(x),,u = 0‘ (6'})

The x* are the actual coordinates of a particular inertial observer who can enumerate and
determine different physical states of the field from a knowledge of the distinct solutions
to (6.1). A Lorentz transformation from x* to x'* will lead to another set of field equations
with x* as coordinate variables. The new equations will be identical with (6.1) in form.
The new variables x'* are to be interpreted as the actual coordinates of another inertial
observer who may count physical states in exactly the same way as the first observer does.
1t is in this sense we say that all inertial observers are physically equivalent in this particular
context.
(2) Extension to a “formally™ covariant theory:

One can establish a new set of field equations which is generally covariant and which
reduces to (6.1) in an inertial frame. To do this we introduce arbitrary coordinate variables x*
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in terms of which the metric tensor g,, # 7,, in general even though the flat nature of the
space-time has not been changed. The electromagnetic field is described by an antisymme-
tric tensor F*'(x) which satisfies the generally covariant equations

F*(x)., = 0,

Fuv(x);2+F}.p(x);v'*_Fvl(x);p = 0 (62)

In this extended theory, we have brought in 10 new variables g,, which satisfy 20 equations
expressing the flatness of the space-time

Raﬂuv = O, (6.3)

where R,g,, is the Riemann curvature tensor. Since we are given that the original Lorentz
covariant theory is the correct one, the extension leads to nothing physically new at
all. There can be no ambiguity in fixing various physical states as we can refer things
back to an inertial observer. It should be clear from our previous analysis that the arbitrary
coordinate variables x* in (6.2) cannot be identified with the actual coordinates of a parti-
cular (non-inertial) observer for the purpose of state determination. In this extended theory
a whole set of different solutions to (6.2) may correspond to the same physical state.

(3) Reduction of the extended theory to the original Lorentz covariant theory:

The reduction process is trivial. All we need to do is to impose the coordinate con-
ditions g, = .

(4) A fundamental question:

Consider a completely new situation. Suppose we do not know the original Lorentz
covariant theory of electromagnetic field, and suppose we are given a theory formulated
in terms of arbitrary coordinate variables x* in a generally covariant manner with the
field described by an antisymmetric tensor F*'(x) satisfying equations (6.2) while the g,,
satisfy equations (6.3). Now how does one count and determine physical states? The
analysis given in the previous section tells us that there is no unique answer to this question
as it stands. One can attempt to answer the question 1n one of the following two ways.

(a) Although we are not given any preferred coordinate systems, we may still make
the assumption that there are preferred reference frames defined by certain coordinate
conditions, say, g, = Hu-

Furthermore one assumes that after the imposition of the coordinate conditions the
coordinate variables x* in the field equations may be identified with the actval coordinates
of a particular observer who can then count physical states in the usual way. It is in this
sense these reference frames are termed “preferred™. It is not beacause that the field equa-
tions become simpler using them. An important observation must be emphatically pointed
out here, that is, the above are new physical assumptions not contained in the original
theory. These assumptions imply that the theory given is only formally generally covariant
and is extended from a Lorentz covariant theory.

(b) One considers the given theory as a ‘“‘genuinely” generally covariant theory
despite the fact that field equations become simpler in a certain set of coordinate frames.
There are therefore no preferred set of reference frames in the above sense. One has to
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impose sufficient number of coordinate conditions (e.g. more than g,, = 71,,) to single
out a unique coordinate frame and only in such a unique frame can we start to distinguish
physical states in the conventional way. Note that one is again making new physical
assumptions here.

We see clearly now that additional physical assumptions are necessary to answer
the fundamental question raised. There is nothing in the given theory which tells us defini-
tely what is the correct answer. The final test must lie in the actual physical measurements
for the determination of states. By comparing experimental results with the predictions
of (a) and (b) respectively we can find out which of them is the correct one.

More examples may be given. An extreme one would be to consider the relationship
between our model field and the Lorentz covariant vector meson field theory. The above
arguments may be repeated step by step leading to the same conclusion.

6.2. Quantum theory

In quantum theory a similar situation exists. In a “genuinely” generally covariant
theory, physical states are described only by physical vectors which are invariant with
respect to arbitrary transformations of the coordinate variables x*, in particular Lorentz
transformations. Vectors which are not Lorentz invariant cannot be used to describe
states. It is therefore clear that two such vectors related by a Lorentz transformation
cannot be regarded as representing two physical states. All this is fundamentally different
from a Lorentz covariant quantum theory (or a “formally” generally covariant quantum
theory). Another striking feature of a “genuinely” generally covariant quantum theory
is that the physical system concerned seems to be “‘dead” [7] in that the state vectors
in Schrédinger picture are “time”-independent on account of the weakly vanishing nature
of the Hamiltonian. We can resolve this paradox with the help of our present analysis.
To illustrate the situation more vividly, let us consider the parametric formulation of
classical mechanics [ 10]. In such theory the time ¢ is promoted to the status of an additional
canonical variable g, while another variable 7 is introduced to act as the independent
variable. The original variational principle is

dg;

S§L(gys s Gu 13 41y -.» 4,)dt = 0, where ¢, = I

In the parametric formulation the variational principle becomes
5 j gld‘r = 0,
where

q; an\ , dq
Ly, = L(‘h, voes Qpy 610;’,1, ,—,> o> q, = —*  and w=0,1,..,n
do do dt

The canonical momentum conjugate to ¢, may be defined and the Hamiltonian formulation
set up in the usual way. &, being homogeneous in the velocity variables q; of degreee
one implies a vanishing Hamiltonian for the system. There will certainly be one primary
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constraint due to the introduction of an additional variable. Let it be

(f(qh oo py dos pl’ <ee3 Pns pO) = 0
Assuming there are no more consistency equations nor constraints, the total Hamiltonian is
Hy=Up =0,

U being an arbitrary coefficient. With this Hamiltonian, equations of motion of various
canonical variables may be obtained. Among other things this parametric formulation
is highly valued for iis consistency with the spirit of special relativity in that spatial coordi-
nates and the time are treated on an equal footing. Instead of the variable ¢ which is the
actual time coordinate of an observer (measured by his clock), an unspecified variable 1
is introduced to act as the independent variable of the theory. The 7, being unspecified,
can no longer be identified with the actual time coordinate of an observer. Now one may
go one step further to quantize the parametric theory. The constraint will become the
subsidiary condition imposed on physical vectors. As a result, physical vectors in the
Schrédinger picture are “time”-independent, that is,

d
o |¥> =0, Hp¥)=0. 6.4)

Let us illustrate the situation with a concrete one-dimensional example of a particle
in an external potential ¥. The Lagrangian is

L=} mdf- V(qy).

In the parametric formulation we introduce two new variables g, = 7 and 1;

ISNCAN ,
£y = im =1 —V(4q1) | g0
9o

The primary constraint is

2

Py
@ = Po+ - +V{g,) = 0.
2m

The equations of motion are obtained from the total Hamiltonian
Hy=Ugp = 0,
U being an arbitrary function of ¢, and g,. To quantize we have
Py —» —ihd/dqy; P, — —ihd/oq,.

The constraint equation now takes the form

LY
0‘1"?”1‘“*'1/(%) ¥y =0,
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or
2 12 9*
ih — ¥(qo, 91, 7) =| — 7= =5 +V(q,) | Yo, 41, 7).
cq4 2m 8q;i
The Schrédinger cquation of motion 1is

ih s w = HW =0,
ot

Thus the wave function ¥ is actually independent of the parameter t while its go-
dependence is given by the standard Schrédinger equation. We have the apparent paradox
showing up clearly now. However in the present case we know with certainty that the
physical system as viewed by an individual observer is not changeless — the wave function
does indeed depend on his actual time coordinate ¢,. This example shows that expressions
like (3.2), (6.4) cannot be interpreted literally and that they do not imply a changeless
situation. In general x° and 7 in these expressions cannot be identified with clock readings
of physical observers, nor can H or Hy be interpreted as a physical energy.

7. Harmonic coordinates in general relativity

Fock [9] has suggested that the harmonic coordinate conditions
{\/:é g"v},u =0,

together with certain conditions at infinity lead to a preferred set of coordinate systems.
In particular, he has shown, though not with complete mathematical rigour, that in the
case of an isolated system of masses the harmonic conditions together with some proper
supplementary conditions determine the coordinate system uniquely apart from Lorentz
transformations. We shall not go into the philosophical argument as to what preferred
coordinate systems mean in this context. Instead we set ourselves the following definite
question. Is it possible to tell by physical means whether General Relativity is “genuinely”
generally covariant or whether it is just “formally” generally covariant and is extended
from a theory covariant to a more restricted set of coordinate transformations such as
the set of harmonic coordinates? According to our previous analysis the answer should
be affirmative. In the case of harmonic coordinates we can do one of the two things.
We can identify the coordinate variables with the actual coordinates of an “harmonic”
observer for the purposes of determining physical states as Fock apparently did. The
results can then be put to a physical test. An experimental confirmation on one way or

the other will solve our problem which may not be conclusively answercd by theoretical
argument alone.

8. Concluding remarks

One can express the ideas of the previous sections in the language of group representa-
tion theory. In ordinary Lorentz invariant field theory, if we have two inertial observers S’
and S whose coordinates are related by 1% = ij"+a'1, then the relation between their
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quantum state vectors is of the form
|¥>" = D(L, a) |¥>. (8.1)

Here D(L, a) is a unitary representation of the Poincaré group in the Hilbert space of
state vectors. The generators of infinitesimal translations and infinitesimal l.orentz trans-
formations are the energy-momentum vector and the angular momentum tensor respective-
ly, which satisfy the standard commutation relations. The observables of the theory are
tensor operators belonging to representations of the Poincaré group. In contrast, if we
have a genuinely fully covariant quantum field theory, a change of coordinates x* —» x™*
must be regarded as a mere “gauge transformation” which leaves the physical vector
unchanged, ie. |¥)" = |{¥). Thus in this case the only admissible representation of the
Einstein group is the identity representation and all the generators are represented by zero.
All observables must be scalars. One wonders whether this severe requirement might
not be too restrictive for the quantization of the gravitational field. Perhaps one should
instead have a relation of the form (8.1) with the Poincaré group replaced by some “physical”
group which describes the relation between a preferred set of observers. Fock has in fact
conjected that his “harmonic” coordinate systems transform among themselves according
to a group isomorphic to the Poincaré group [11].
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