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The 4-surface of stationary 4-volume embedded in a 5-dimensional pseudo-Euclidean
space is studied as a model field theory. This model field shares many essential features
with Einstein’s General Relativity. In particular it is generally covariant and intrinsically
nonlinear, yet it is much simpler and more manageable especially in quantum theory. It is
hoped that a study of such a simpler model will help towards a similar study of much more
complex theories such as General Relativity.

1. Introduction

Consider a 5-dimensional pseudo-Euclidean space with coordinates &* [1] and metric
nap=(, -1, =1, —1, —1). Any 4-dimensional surfacc may be fixed by specifying
the five coordinates &# as functions of 4 parameters x*. In general the 4-surface is a 4-dimen-
sional Riemannian space with a metric

guv(x) = r’ABéﬁ;éﬁ'

Let £ denote a column vector with components &4 and é denotes a row vector with compo-
nents £, = n,5E%. Then we have

o = €L
The Christoffel symbols of the first kind and second kind are
[tx, 4] = 3 (8eret Brre— 8o, ) = Eaxbn = £l
ri = g¥m, 1] = g% 8w = 8

where & = g*¢ .
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Note that £ is a scalar with respect to arbitrary coordinate transformations in the
4-surface.

Covariant derivatives are defined in the usual way:
¢, =&, since & is a4 scalar.

é;m = g,m—é,lrix =
= é,m“é,lglém =

Il
v

b

3T
The curvature tensors are given by
Rocau = §;Ar§:ux'~§:lx§:m’
Rx). = gt”leu'

Now consider those 4-surfaces whose metric satisfies the following conditions. The
metric g,, is nonsingular, i.e. g = det |g,,| # 0. Therefore the sign of g is the same through-
out the surface and it is an invariant. The contravariant metric tensor g exists such
that g¥g,, = &%

We consider only surfaces with g < 0 so that the pseudo-Euclidean Minkowski
flat surfaces are included as special cases. The volume of a domain x* € D of the 4-surface is

7= ;f)\/—_g d*x,

which is an invariant.

A 4-surface of stationary volume is defined to be a surface whose volume 7 is at
a stationary value with respect to small arbitrary deformation of the surface. The deforma-
tion is realized mathematically by variation of the coordinates &4. The variation §&* is
to be taken as zero at the boundary of the domain D. For a variation 8£* we have

ot = — jéfB(\/——g 8“'7,435,1),@4%

The requirement that dt vanishes for arbitrary 6&* leads to the set of defining equa-
tions for a 4-surface of stationary volume

=28"0. =0, (1.1)
which may be written in covariant form
g"E,, = 0. (1.2)

The above equations are not all independent and certain identities, the Bianchi identi-
ties [2], [3], exist among them. Rewriting (1.2) as

(1 _Sy.iél)gmé.m =0,
we see that the Bianchi identities are

Ea (05 —EAg"Ep g =0
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4, b2ing the four linearly independent null eigenvectors of (1—;@’1) Let n* be the
unit vector normal to &, ,, thatis,
nt = n'A/i”IAia nt = UABEBCDEFé,%g,Dlé,EZESv

where epcper 18 the 5-dimensional permutation symbol. Then the five field equations (1.2)
are equivalent to the single equation

g"anéjiK = 0.

We have now obtained a field theory with field variables ¢* and field equations (1.1).

2. Hamiltonian formulation and the constraints [4], [5], [6]
Take the Lagrangian density for the field to be
¢ =-0J=g.

where Q is a positive number of the dimensions of energy density. The minus sign is inserted
to give a positive Hamiltonian. Define canonical momenta conjugate to &4 by

0¥
= —F =% B g%,
A 55::) ﬂABf,ug
There are four primary constraints
Py R 0,

where @, = n'n,+ 0?4, ;= f”}n,{, 1t = n*fn,, 4% = gg®° = det gl

£ being a homogeneous function of éﬁ) of degree one implies a vanishing Hamiltonian
density. The total Hamiltonian density is therefore

‘#T = U”(pu,
where U* are arbitrary functions of x*. The constraints are all first class and there are no

further consistency conditions. The equation of motion of any functional of &4, 7, is
derived from the integrated total Hamiltonian in the usual way.

3. Covariant quantization

The Dirac covariant quantization [6], [7] scheme may be applied to the present
field. The &4, n, become operators satisfying the standard boson commutation rules
and the constraints become subsidiary conditions

P> =0,

on physical vectors |¥)>. Somewhat lengthy calculation shows that the first class nature
of the constraints as operators is preserved. Therefore we conclude that this quantization
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scheme can indeed be consistently carried out, a nontrivial result in contrast to the case of
General Relativity [8]. Let us examine the subsidiary conditions

Ema ¥y =0, 3.1
(n'm +0Q%4°) ¥ =0, (3.2)

in greater detail. From the general formulation of covariant field theories we may expect
the constraints to be the generators for infinitesimal canonical transformations which cor-
respond to arbitrary deformation of the constant x° surface. Three of them should be the
generators for tangential surface deformation while the remaining one should be the
generator for deformation normal to the surface. Suppose ¢; = éjn,, are the three
generators for tangential surface deformation, then the subsidiary conditions (3.1) express
that |¥) must be invariant under arbitrary tangential surface deformation. This is equiv-
alent to the requirement that |¥) be invariant under 3-dimensional coordinate trans-
formation x/ —» x7 = function (x!, x¥2, x*). Using the functional representation

¢,
ny— —ihcd/6E4,

we can indeed show explicitly that is the case. Hence (3.1) may be solved without much
trouble. The solutions will be invariants in 3-dimensional tensor analysis. An example is

¥ = ¢(§ deCABC(‘:D)JABC),
where {gc are arbitrary functions of &2,
€4 85 &5
1= e e &
&5 &2 &

and @ is an arbitrary function of the integral.

The subsidiary condition (3.2) presents difficulties however. As will be seen later it
essentially expresses the requirement that |¥) be invariant under arbitrary normal defor-
mation. One needs to compare the values of '¥> at different constant x© surfaces, so to
obtain the solutions of (3.2) is as difficult as solving the equations of motion.

4. Transformation properties

A

On a coordinate transformation x* — x* = x*+¢*, the scalar field &* transforms

according to
8¢t = EU0) - E1x) = — &Lt
A

& € may be decomposed [5] into their respective normal components cf’i, &, and their
respective tangential components <‘f”i, g, resulting in

o8t = — (e, &1 +e[iED),
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where
-1/2 A OuxA -
00) 1/ , é_[_ =g uf’u(gOO) 1/2, 8'|-| — 8’—80g0r/g00.

Then one can readily verify that the classical infinitesimal canonical transformation
which corresponds to the above coordinate transformation is effected by the generating
functional

g, = (g

G=—[de, 9, +&,2,),
where
@, = —(mapn'n®+Q24°)20(-4°%)'"? ~ 0,
@, = Einy ~ 0.

This justifies our previous interpretation of the significance of the constraints. With the
help of the canonical equations of motion we can carry out the transformation by the
generating functional

G = — [x(Hr+p)).
In quantum theory the corresponding infinitesimal unitary transformation is eflected by
U = exp (i%/h) = (1+i%9/h),
where ¢ is Hermitian [7].

Hence a covariant quantum theory for our model field is established. The general
features of generally covariant quantum theory manifest themselves explicitly. A detailed
physical analysis of these general characteristics is given elsewhere [9].

5. A special coordinate system

The fundamental reason for working in a specific coordinate frame is a subject of
great controversy. We shall not go into such a controversial subject here. The choice of
a specific frame is somewhat arbitrary in general. For the rest of this paper we shall work
in a particular coordinate system uniquely defined by the set of coordinate conditions

&= x4 (5.1

that is, we just choose the first four of the original 5-dimensional pseudo-Euclidean
coordinates as our coordinates in the four-surface. Note that we take as our coordinates
four scalars. In this special coordinate system we have

2y = Muy— ¢ €, where ¢ denotes & with 4 = 4;
2" = 0"+ (L DIA—1E L )

g = det (guv) = —(1—’7905,95,6)-
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The field equation is
gﬁ‘vi’uv — 0,

which may be written as
[ (1 —=1*"E £ )" 1?0 = 0. (5.2)

The appropriate Lagrangian and Hamiltonian densities are
£ = —Q(l—'ngaé,gé,o-)l/zﬁ
H = QLL+(VE’] [1+(en/Q)* D', (5.3)

where
n = 0L[6¢ = (Q¢[c®) (L—n*E £ ) /?

is the canonical momentum density. There is no longer any constraint. A general solution
to the highly nonlinear equation (5.2) is not available. However many exact particular
solutions may be found. The most interesting ones in this latter class are those of the
form

& = @g(x) = Aexp (iK,x")+ A exp (—iK,x"), 54
where A, K, are constants and K|, satisfies
n°K,K, = 0.

The above solution defines a space-time and one may easily verify that the “straight”
line generated by x* = K"U, where U is some parameter, is a null geodesic in the above
space-time. Hence solution (5.4) has the form of a wave propagating along this geodesic.
Slightly more general solutions may be obtained by superimposing all waves travelling
in the same direction. However linear superposition of waves travelling in exactly opposite
directions does not lead to another solution, nor does linear superposition of waves moving
in different directions. The nonlinear interference effects show up for waves not propagating
in the same direction.

6. Perturbation approach

Working in the special reference frame defined by (5.1) we are no longer troubled
by constraints. Quantization of the field may be effected in the usual way by imposing
the standard boson commutation relations on &, n. All this is encouraging but the real
problem is how one can extract physical information from the intrinsically nonlinear
field. The easiest attempt would be a perturbation approach of some kind.

6.1. Weak-field theory

In analogy to the linearized treatment of General Relativity let us consider the case
where the field is everywhere-weak, that is, £ ; and cn/Q are of the order od * <1 for
all x*. The exact numerical value of 1 is a physical assumption. We may now carry out
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a binomial expansion of the Hamiltonian density (5.3) regarding 1 to be of the order A°,
(VE?, (en/Q)? to be of the order A and so on. Therefore to the second order we have
H = Ko+ H;, where

Ho = 0+ + OL(VE’ +(cn/Q)], (6.1)
Hy = —(Q8) [(VO* +(cn/Q)* —2VE)*(cn/Q)*]. 6.2

The additive Q in #, may be ignored. In the usual perturbation approach 4 is regarded
as representing the free field while .#, is considered as a smail perturbation. The free
field is seen to resemble the Klein-Gordon field for scalar mesons except that there is no
mass term in our present case. The name real massless scalar meson field would be appro-
priate for it. The free field equation is

%78 e = 0.
The perturbed equations of motion are
¢ = (*7/Q) (1+ 3 [(VO)* ~(cn/@)*]),

i = QVE+ 3 QV - (VE¢[(en/Q)* —(VE*)).

Eliminating n, we obtain the perturbed field equation
NPE gt 3 (M7E g C o8 o+ 17 E[N7C €0 ) = O, (6.3)

which may be derived from the Lagrangian density

&L= =0+ F Q¢ L+ § QE 80"

Many exact solutions to the field equation (6.3) may be found. Observe that solution
(5.4) to the exact field equation (5.2) is also a solution of (6.3). Furthermore solutions
which resemble interference effects between these plane wave solutions may be obtained
by perturbation.

6.2. Quantization in the Schrodinger picture
The standard method may be applied here. Decompose £, n by Fourier integrals:
&x) = Q) Y [ d*Kqgexp (iK - x);  n(x) = 2n) % [ d*Kpgexp (iK - x).
Define ag, ak by
g = (flc2f2wKQ)”2(aK+af_K); pk = i(Qhwg[2¢*) *(ak—a_g),

where wy = ¢|K|. Then the commutation relations for & n imply that ag, ak will obey
the standard commutation relations for boson creation and annihilation operators. All
this is independent of the Hamiltonian. In perturbation theory the unperturbed Hamilto-
nian is

HO = §d3x-%o = jd3KhW’Ka1I-(aK.
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Hence we can construct and give particle interpretation to the various eigenstates of
H, in the usual way. The problem now is to calculate the perturbation energy AEg
of a one-particle state | K> due to the interaction Hamiltonian

Hy = | &x#,. (6.4)

This is achieved using the time-independent perturbation theory (see Appendix A
for details). H; has to be expressed in terms of ag, ak. As will be seen presently, only terms
with factoers

a;(aK’al?al_('» dgdy agdi,

have nonvanishing contribution to the relevant matrix elements. Therefore only these
terms nced to be worked out explicitly. The result is

Hy=§ KPP K PP KA°K' Qupez[6(K+ K'+ K+ K')agagagag —
—48(— K+ K’ +K+K')akag.agag ] +irrelevant terms, (6.5)
where

h?

T 3202m% (wxwewgwg) 2[(1-K° - K% (1-K° - K'9] <0,

Qxrx =

K° = K/ K.
The perturbation calculation on the nondegenerate vacuum state |0) gives

2
d*K,d°K,d*K3d°K, [,,1{; O+ K+ Kot K)parond

4! ~fe(K;+K,+K5+K,)

AE, = AEJ = j , (6.6)

where ) means summation over all the perturbations of K;, K, K3, K. This expression
pl234

contains the square of a d-function which appears originally in H,. Hence it is not very
meaningful as it stands. However, as remarked in Appendix A, this difficulty may be by-
passed. The usefulness of AE, as given by (6.6) will be seen in connection with the expression
for AEy later.

Let us now consider the perturbation on a one-particle state [k). The energy eigenvalue
associated with k) is degenerate. However this presents no difficulty (see Appendix A).
Using the appropriate formulae (Al), (A2), we obtain after some lengthy calculation

AE, = AEY = A+B+C,
where
“ Y QkK;KgK;)zé(Kl +K,+K;—k)

i (PK,PK K, 5
31 he(k—K,—K,—K3)

*
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2
5 Jd3K1d3sz3K3d3K4 L%, Prmmrdliyt Kot Ko+ )]
4! *hC(K1+K2+K3+K4) ’
Q 25(k+ K, +K,+K
_ d3K1d3K2d3K3 (pk%:& kaKng) ( 1 2 3)
3! ~he(k+ K+ K, +K3)

As pointed in Appendix A we should regard
AE® = AEP —AEP = A+C

as the true perturbed energy of the original one-particle state |k). Hence terms involving
the square of the é-function arising from H; are cancelled out and cause no trouble. The
real trouble comes from the actual structure of H;. The integral A may be shown to diverge
towards negative infinity at least like

- @K, &’K,K K,.
B diverges similarly.

All this is expected from the form of H; which involves the derivatives of the field
variable. As one goes to a higher order in the perturbation calculation, one gets higher
order products of the derivatives. Hence more divergent factors wy turn up in the numerators
leading to a higher order divergence. Therefore the perturbation treatment of our present
model field theory is again plagued by infinite quantities.

6.3. The problem of scattering in the interaction picture

The usual S-matrix approach will be used and the Interaction picture will be employed
throughout this section.

6.3.1. The first order S-matrix processes
The first order S-matrix is given by
o
S = —1 ‘[ H,dt
T ih =
-0
A number of processes can happen, notably what we may call the “shower process”,
that is, an incoming particle is annihilated and three outgoing particles are created. However
we shall consider a more conventional two-particle scattering process. The initial state
will be |i>=k,k’) withk # k'. The transition to final states of the form | f)>=|K, K'> will
now be studied. Let us consider the simplest case in which k+&" = 0. In other words we
have a head-on collision of two quanta. This is not such a restricted case as it may appear
because any two-particle collision would appear to be head-on one in the centre-of-momen-
tum frame of reference. Using the usual formula we obtain the total scattering cross-
-section

_en?
7= 2he

\T,:128(K+ K')0(E; — E)d*Kd* K,
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where
Ty = 8 Quukn+ Qxwr + Qxwx] and K = —k.

The integration may be explicitly worked out giving
o = TES[10rQ*(he)*, E, = hck.

To estimate o6, we take Q to be of the order of the energy density of the universe which lies
in the range 108 to 10~% ergs cm™3, say, take

Q0 =10"7 ergs cm™® = ¢ ~ 10"°Ef cm?,

where E; is to be expressed in the CGS units. One can put in some typical energies for
“gravitons” to work out ¢. A typical graviton associated with the gravitational wave which
may conceivably be generated in a laboratory as envisaged by Weber [10] would have
an energy of the order of 10-1% ergs. The total scattering cross-section is then ¢ = 10-3% cm?,
‘This is very small. But it might just be measurable since in some experiments on neutrinos
a cross-section well below 10-4° cm? is not unknown [11].

Let us now consider a typical graviton associated with interstellar gravitational
radiation. According to J. Wheeler the density of such gravitational radiation could be
as high as 103 ergs cm™3 and that its wavelength 2 would be of the order of 10%* cm [12].
The energy associated with a graviton may then be taken as fic/A = 10-%° ergs.

The corresponding scattering cross-section is ¢ &~ 10-1%* cm?  which is far too small
to be measurable.

6.3.2. The second order S-matrix

The first order S-matrix elements are all finite. We may go on to examine the second
order S-matrix elements. However the results are not rewarding. The calculation is very
tedious leading to divergences. Therefore we shall not pursue it any further.

7. Some remarks

The treatment of curved space-time using such an embedding technique may be ex-
tended to other Riemannian spaces. It is known [13] that various Riemannian spaces
commonly occurring in general relativity are immersible in pseudo-Euclidean spaces of
appropriate dimension. As an example consider those vacuum solutions in general rela-
tivity, that is, solutions which give a vanishing Ricci tensor R,,. We know that all vacuum
solutions are immersible in a ten-dimensional flat space, while on the other hand, many
vacuum solutions of physical significance are immersible in a six-dimensional flat space.
All vacuum solutions embedded in a five-dimensional flat space are trivial, leading to
Minkowskian space-times only {14]. Therefore one can formulate theories for the above
non-trivial space-times in a way similar to the treatment of our present model theory.
The field equations will be

R,, =0, (7.1)
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where the Ricci tensor R, is expressed in terms of the coordinates A4 =0,1,2, ... N:
5 <C N < 9) and their derivatives of the particular embadding flat space concerned. One
may then proceed to set up a Lagrangian formulation for the theory, bearing in mind that
in the variational principle the variation is effected by 6&*. After this the Hamiltonian
formulation may be established and various quantization schemes can then be attempted.
In view of the complexity of the field equations (7.1) various technical difficulties may
arise in actually carrying out the above programme. There is obviously room for much
further work on this.

APPENDIX A

A perturbation theory in quantum field theory

If we do not confine the field in a finite box, H, will have a continuous eigenvalue
spectrum, apart from the zero eigenvalue of [0) which may be considered as a discrete
eigenvalue especially for a massive field. Then it is not difficult to show that the appropriate
expressions for the calculation of perturbation energy are:

(1) for the vacuum state

AE, = AE® + AEP + ..., where

O|H |H0
AEQ = COIH,0);  AE = Z< i) ED? g

n#0

Z denotes a summation (and an integration) over all the unperturbed cigenstates ex-
n#0

cept 0> ;
(2) for the one-particle state k).

The unperturbed energy E, is degenerate. But in many practical cases, including our
present case, we have E, = E, = {n|H;|k> = 0. We shall confine ourselves to such cases.
Then the degeneracy of E, causes no trouble. We have AE, = AEV +4E® +..., where

AEVS(k—K) = <K|H/lk); (A1)
AE(Z)é(k—K) — Z <K!H11n> <n‘HIlk> (A2)
E,—E,

and Y is a sum over all the unperturbed eigenstates except the one-particle states and those
n

cigenstates with E, = Ej.

Some remarks

(1) The essential difference batween these formulae and those for the case of a discrete
spectrum is the appearance of the d-function. The necessity of the J-function is most
clearly seen by considering a somewhat trivial example in which H; = H¢. Our first order
expression then leads then leads to the exact result.
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(2) In many practical cases, H; contains a d-function. Then 4E§’ may involve the
square of the é-function as in our present £-field theory. This means that the expression
for AES itself is not a meaningful quantity as it stands. However this difficulty may be
bypassed. Let us consider the present ¢-field theory. Firstly one can confine the field in
a finite yet large box of volume V perform the perturbation calculation. For a large V'
we obtain

| 2 Qkukaraxd 0K + K, + K3+ K,)

AED — J‘d K,&K, d3K 3Ky 55,

—he(K;{+K,+K;+K,)

Now if we regard the result given in equation (6.6) as the limiting case of large ¥, we may
interpret 3%(K,+ K,+ K3+ K,) appearing in (6.6) as the limiting case of (V/8n%)
d(K,+ K,+ K3+ K,). This procedure therefore gives some meaning to (6.6). Secondly,
one observes that

AEQ = AEQ + AEE?,

where 4E{* does not involve the square of a d-function. Hence we may consider AE{®
as the genuine perturbed energy [15], of the original one-particle state. The difficulty
caused by a (§-function)? therefore disappears at least as far as our &-field is concerned.
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