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In a previous paper a generally covariant and intrinsically nonlinear model field, the
4-surface of stationary volume embedded in a S-dimensional pseudo-Euclidean space, was
introduced. In this paper two new methods are put forward to study the model. The first
one is an everywhere-slowly-varying field approach which is essentially perturbative. The
second one is a variational method which is able to lead to some finite results.

1. Introduction

In a previous paper [1] (hereafter referred to as 1), a model field theory, the 4-surface
of stationary volume embedded in a 5-dimensional pseudo-Euclidean space, was introdu-
ced. Any 4-dimensional surface immersed in a S5-dimensional flat space with coordinates
E4(A4=0, 1, 2, 3,4) and metric n,p=diag (1, — 1, — 1, —1, —1) may be fixed by specifying
&4 as functions of 4 parameters x* [2]. In general the surface is a 4-dimensional Riemannian
space with a metric

8uv = ﬂABfiéi-

We shall consider those surfaces whose metric is non-singular, i. e. g = detjg,,| # 0 and
in which g is negative. The volume of a domain x* € D of the 4-surface is

t = [V —gd'x, (1.1)
D

which is an invariant with respect to arbitrary coordinate transformations in the 4-surface.
A 4-surface of stationary volume is defined to be a surface whose volume 7 is at a stationary
value with respect to small arbitrary deformation of the surface, the deformation being
realized mathematically by the variation 6&* which is assumed to vanish at the boundary
of the domain D. The action integral (1.1) then leads directly to the set of defining equa-
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tions for a 4-surface of stationary volume

« —g g™, =0, (1.2)

or in covariant form
A
g, =0, (1.3)

where the semicolon denotes a covariant differentiation. In I a generally covariant quantiza-
tion scheme was carried through. Then a special set of coordinate conditions x* = &*
were chosen singling out a unique reference frame in which the field equation is

[ (1—n%E £~ 121, = 0, where & = &* with 4 = 4, (1.4

with the appropriate Lagrangian and Hamiltonian

L =[2dx,
H = Q [ ([1+(VE) ] [1+(cn/Q)*] " *d’x, 1.5
where & = — Q(1 ~119"§,L,§’a)‘/ 2 n = 0%/d¢ which is the canonical momentum density and

Q is a positive constant of the dimensions of energy density. A weak field perturbation
approach commonly used in general relativity was adopted to study the quantum behav-
iour of the fleld. However the usual divergence problem in quantum field theory arises.
In this paper two new treatments are introduced for the study of the field in this special
coordinate system. The first one is again essentially perturbative. The second one is a varia-
tional method which is able to lead to some finite results.

2. The theory of an everywhere-slowly-varying field

The weak field approximation common in the treatment of General Relativity is
a very restrictive one. It is more realistic to consider a field which is everywhere-slowly-
varying. By this we mean that the deviation of the four-surface from the tangent plane at
a nearby point on the surface is always small. In terms of canonical variables this is equiv-
alent to the assumption that VE, c¢n/Q be slowly varying function of x*. The problem
now is to obtain an approximation expansion of the Hamiltonian (1.5) in accord with
this assumption. Mathematically we want an approximate expression for an integral

1= ] dsFO,),

where 0,(x) are a set of slowly-varying real functions of a single variable x (we shall later
generalize our results to integrals over three spatial variables x). Let us introduce a set of
functions Ug,(x) defined by

Ugn(x) = \Ti ¢ _“<“me s
s -n
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27
where L is a numerical constant; K = T x {(zero or integers); n = zero or integers.

Ugn(x) is defined for all x from —co to +00. Some relevant properties of this set of functions
are listed in Appendix A. In particular we note that Ug,(x) are a complete orthonormal
set and |Ug,| has the absolute maximum at x, = nL. {Uy,| decreases as x moves away from
x, and becomes small compared with [Uy,(x,)] for |[x—x,| > L. To make use of this set
of functions we firstly adjust the value of L to be such that 0,(x) changes only slightly
over a dimension L. The slowly varying nature of 8,(x) means that L may be large. We
can write

0, = ¥ OuxaUna(), With Opx, = [ dxUi,,
K,n T®

Define
<0a>n = EdXUOnga/j deOn = Lvl/zaa()m
and

0:,"()(7) = oa(x)_ <8a>n'

{8,>, may be regarded as the average value of 8, in a neighbourhood of x = nL of a di-
mension of the order L. Then 8.,(x) is small in the neighbourhood. Now we are in a posi-
tion to state a Theorem:

If 6,(x) is a set of slowly-varying real functions of x, then

o0

1= § dxF(0,x)) = } [LF(0 )+ 7 (0°F|00,00,), 3 Ouxaliknls
K#0

where (02F/80,00,), = (0°F[00,00,) whith 0, = {0,>,, 0, = {#,>,, and summations over a,
b are implied.

The proof together with an examination of the approximation involved is given in
Appendix B. Extension to the 3-dimensional case is easily obtained by defining the com-
plete orthonormal set of functions

x! ;
i=1,2,3 "l —-—n
L

The Theorem takes exactly the same form with L in the first sum replaced by L3.
We can now use the Theorem to obtain an approximate expression for the Hamil-
tonian given by (1.5). As shown in Appendix C the result is

icK'gy’ . .
H =D S [(1+CVEY2) (1 +<en/@DD] 2+ & E O o (QkaPKn— Picnln) +
Ld g

J
sinn(E—nj>
Ug(x) = L2 exp (iK - x) _ 7

n

nK#0
, _OoriKk /.0 0k
I \/_g * QK K gx' 8 ji
+ % - ngo"f PknPKnt % E _M‘T‘_f;_ N 'goo" _g{’k Thnrnt
nK+0 " nK+0 " i

+ higher terms,
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where g™ is the metric tensor for the 4-surface;
Akn = _\.dst;(né’ Pkn = jds-xv;(,,ﬂ.

g™ may be expressed in terms of & ;, @ (see Appendix C). g, is then the value of g™ at
£ = LEDm T = Ty Note that (& >, {n>,, g, depend solely on go, and p,,. Now
define

W (g2g% — gl gd)K'K Q™" dtic (~2) e
" 4 (=g, S U R PR T Sl I
[(53' 0"~ gl g K] 2 4 g0IK
Wiy = , (2.1)

00
8

where repeated indices other than n imply a summation.
Then

H = QLY [(1+<VED) (14 Len/QOD] 1 +
+ Y hwg,akaax,+higher terms. (2.2)
nK#0
Note that if we write
(kkn)o = wkalc and (kg,); = —KJ,

then g¥(kgn)alkgn), = 0 (no summation over K, n).
This means that

(WKn/C, —K),

are the covariant components of a null vector with respect to the metric g}".

3. Quantization

The ficld is quantized by imposing the standard equal-time boson commutation rela-
tions on ¢ and n which in turn imply the commutation relations for gy, px, to be

[qu q}"n'] = ihéKK'énn'; {QKm qK’n'} = {me pl('n'} =0

The everywhere-slowly-varying nature of the field means that (¢ ;>,, {cn/@)>, may
be taken as unquantized c-numbers (see Appendix D for details). As a result, g;° may
also be similarly treated as c-numbers. To this approximation we see that ax,, ak, defined
in (2.1) obey the standard commutation rules for creation and annihilation operators, i. e.,

[al\'m aill(‘n'] = OgkOnws [aKm aK’n’] = [a}m a1l-(’n’] = 0.

Indeed with the Hamiltonian (2.2) we may regard ax,, ak, respectively as the annihilation
and creation operators for the quantum of energy hwg,. The situation is that we have
on the one hand the slowly-varying classical field g;* and on the other hand the quantized
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fizld with the Hamiltonian (2.2). The background metric g} depends on the classical
variables (£ ;>, and {cn/Q),so that it will vary slowly with time as these variables develop
in time according to the classical canonical equations generated by the Hamiltonian

QL ¥ [(1+VEY) (1 +LerQ2)] 2.

The quanta created by uk, from the vacuum state are mainly in the region n/ —L/2 <
< x; < n’'+Lj2, but there is some overlap with neighbouring regions. The total number
operator is N = Y N,, where N, = Za}},,aK,, and [N,, N,.] = 0.

n K

It is seen that we have essentially a free field thecry. To bring in interaction one may
proceed to higher order terms in the Taylor series. However the calculation becomes very
lengthy and the usual divergence problem remains. We are in a position now to compare
the present evervwhere-slowly-varying field theory and the weak field approach discussed
in the previous paper 1. It is clear that both methods are perturbative leading to free field
theories in the lowest order approximation. Higher order terms are obtained essentially
from a binomial expansion of the square root expression for the Hamiltonian density.
As one goes to a higher order, one has a higher order product of ¢ ;, n leading to a higher
order divergence in quantum theory. However, substantial differences also exist between
the two cases. While the weak field treatment in the lowest order leads exactly to a massless
real scalar meson field, the slowly-varying field theory gives a quantized field which is
superimposed on a classical background field. This background field also contributes to
the energy eigenvalues of the quanta. The use of Uy, functions leads to quanta which are
localized in domains of volume of the order L3. The appearance of the classical background
field is one of the most striking features of our intrinsically nonlinear field. We have also
noted that the background field may vary slowly with time. Hence the energy associated
with each quantum will depend on time as well as the spatial position of the cell in which
it is created. These properties appear to be in accord with the very concept of curved
space-time in which not all world points are equivalent as in the case of a flat space-time.

4. A variation treatment
4.1. The general idea

In order to check whether the divergences obtained are a spurious result of the pertur-
bation method used it is desirable to devise a non-perturbative approach. In this section
a variational procedure is adopted for the calculation of energy eigenvalues. The essential
idea lies in the approximation of the continuum field by a system of countable degrees of
freedom. Once this is done many of the usual techniques of quantum mechanics, in partic-
ular the variational method for the calculation of eigenvalues, may readily be employed
to study the system. There are a number of ways to achieve a discrete set of coordinates and
momenta. We shall adopt a method of approximation by finite differences [3], [4], [5].

To begin with, confine the field in a large yet finite cubic box of side L with the usual
periodic boundary conditions. Divide this spatial box into M = (2N+1)* small cubic



384

cells, each of side d = L/(2N+1), N being a positive integer. The centre of the n-th cell
is specified by x = x, = (n,, 1y, n3)d, where —N < n; < N. Then we may make the fol-
lowing approximations for the quantities in the n-th cell:

(1) the field variable {(x) & L (x) & &(x,), where x, = (ny, ny, riz)d,
(2) Ve (x) & Aén = ZZ (fnl'f'l; nz, n3~ f"l-l. n2, n3’ 5"1, n2+1, "3__6"1, nz—1, n3» énx, n2, m3417

‘—éng n2 n3—1)’
(3) the canonical momentum density n(x) ~ p,/d3, where p, is the momenfum conjugate

to &,
(4) the total Hamiltonian H~ Y H,, where H,~ Qd*([1+(4&,)?] [1+(cp,/Qd®)* ],

(5) the total linear momentum p = Y p,, where p,~ —p,4E,. 4.1)
n

The quantization may be effected by the usual procedure with the explicit representation
én - én; Pn _lha/aén

Note that [1+(4&,)*] commutes with [1+(cp,/Qd®)?]. Hence there is no ambiguity in the
expression for H,.

To illustrate the variational method to be used for the study of the Hamiltonian
H =Y Qd® ([1+(4&)*] [1+(cp,/Qd*?]"2, let us consider the much simpler and well-

~defined case of the massless real Klein-Gordon field. In the finite difference approxima-
tion, the Hamiltonian is

d3
= “Qz— Z [(4¢,)* —(he]Qd®) 3% [07].

The eigenfunctionals of H in the functional representation in the continuum case are
explicitly known [6], [7]. The exact eigenfunctions of H in our present discrete case may
also be similarly established. The vacuum state is

Vo =Adexp[—o® Y weexp (ik - (m—m)d)mEm],
k,m,m’
where
o = Qd’|(2Mhc?);
A = normalization constant;

2n
k = _I-:(nly ni,, n3) and -~ N < n; < N;

Wy = 2 [(sin k,d)® +(sin k,d)?+(sin k,d)*]"2,

One can verify that

HTO = qulo, PTO == O,
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where E, = 4 ) hw, which is clearly seen to approach the well-known infinite zero point
>
energy 1) hkc in the continuum case as d = 0 and V' = Md> — c. For d — 0 keeping
k

the volume V = Md? large but finite we have

1 heV 1
Ey, = - E h o e dxdydz(sin® x +sin® y+sin? z)/% 4
0= 3 Wy — e 167'5{”Jv xdydz( n” y-sin® z)
k -

+0(hcV3d™?). (4.2)
The one-particle eigenstates ave of the form
¥, = BY exp (ik - md)¢, ¥,
m

with

HY, = E¥,; PY, = p¥Y,
where

1 Z h . .
E, = > hwy+hw,;, p= 1 (sin dk,, sin dk,, sin dk;).
g

These eigenvalues tend to the original continuum values as d approaches zero. All
other many-particle eigenstates may be similarly obtained. Now suppose we did not
know the exact eigenfunctions. We can use the variational technique to estimate the
eigenvalues now that we have a discrete system. Take the normalized trial wave function
for the vacuum to bz &, = [| ®,,, where &, = (162~ * exp (—£5/20%26%) and o?

n

is to be the variational parameter. The vacuum expectation value is then
(Po, HDo) = (Qd>M[2) (36*[4d” + d*[20%6?),

where o = Qd*/ch is dimensionless. Hence the estimated zero point energy is given by the
minimum of (@, Hd,):
(Do, HOo)min = (3/8)!/2(heV [d*). (4.3)

Thus our variational method gives a factor (3/8)" ~ 0.612 compared with the true
factor

1 ' .2 1.2 1.2 1/2
o dxdydz (sin® x+sin® y+sin® 2)"/° ~ 0.593+0.004.
T

The above integration was performed numerically. @, is seen to be a very good trial
wave function as far as the most singular contribution to E, is concerned, i. e. the term
proportional to ¥/d*. The natural trial wave function for a one-particle state would be

, = (2/Ma®)' Y exp (ik - md)E,, o,
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where (2/Ma?)” is the normalization constant and o2 is the variational parameter. Some
properties of @, are

(D1, o) = 0; (P, ) = 5k,k’§
(Po, £,P1) = 62M) "' exp (ik - x,); P& = pdy.
We have

@ H(D)_dsQM 302+1 d? +1d3Q a’ +31 . ¢’
BT \4d? T 2 0%62) T 2 0%c> ;=205 )

i 2
where Z, = g(cos 2dk, +cos 2dk,+cos 2dk,) and k = In (ny, ny, n3), —N < n; < N.

Observe that
1, d? 3 o2
(451‘,1'1‘1’1‘):(‘1’0,}1‘1’0)"‘5‘1 0 W+§(1_Zk)gi

and that
2 2

. | . d 3 o .
(P, H¢o)>§dQ E—2+§(1—Zk)? since M — o0,

Furthermore one finds that
1 d? 3 o>
&y, HO)— (9o, HP) in = | = 40| —5— + = (1—=Z) — =
[( k k) ( (4] 0)] |:2 Q<920_2 2( k) d2>}min

= (d°Q/p) [3(1—2Z,)/2]""* - hck as d — 0.

Hence an exact eigenvalue spacing is obtained. The conventional variational procedure
would be to minimize (P, HP,) giving the eigenvalue spacing as

. \/ 3 he
(P, HPpmin — (Do, HPo)min = [ — »
8 d
which has quite the wrong form, and indeed gives an infinite value in the small d limit
instead of the correct spacing hick. The reason is that for a fixed V, (@4, H®y) i, contains
terms in 1/d*, 1/d, ... while (@4, H®(),;, contains 1/d* only. On subtraction the 1/d* terms
cancel but we are left with 1/d which diverges as d — 0. Since we know that the correct
one-particle energy relative to the vacum is finite, viz., fick, we must conclude that more
sophisticated trial wave functions are needed to effect cancellation of the singular terms.
Such functions may readily be constructed for the massless real Klein-Gordon field, but
unfortunately these functions prove impracticable in the nonlinear case. We shall therefore
retain the same simple forms for @, and &, when we turn to the nonlinear field and shall
adopt the following rather questionable procedure. Instead of estimating the eigenvalue
spacing from (@, H®)pin —(Po, HPo)min we shall take [(Dy, HO) —(Po, HPo)min-
Since we are trying to estimate the finite difference between two indefinitely large energies
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it is not unrcasonable to use the same parameter ¢ in both @, and &,. On minimizing this
difference with respect to ¢ we find complete cancellation of all the singular terms, both
for the linear massless Klein-Gordon field above and also for the nonlinear case. As we
have already shown that this rather dubious procedure yields the correct answer #ick for
the energy of a massless Klein-Gordon particle of momentum 7k, we hope it will also
give reasonable results when applied to our nonlinear field.

Returning now to the nonlinear field, we have to ascertain the meaning of the square
root in (4.1) first. We define the operator

(1-76%3y%)", y being a numerical constant,
by

1 . ~ N
(1—y2*[0y*)' Py(y, 1) = N3 J (1 +yk»)' Py(k, 1) exp (iky),

where P(k, t) is the Fourier transform of w(y, 1).

Au anambiguous meaning for the nonlinear Hamiltonian (4.1) is therefore established
for the subset of wave functions for which all relevant integrals of the above type exist.
We are now in a position to attempt a variation treatment.

42. The vacuum state

In view of the similarity of our model field and the massless Klein-Gordon field as
seen in the weak field treatment we again take

(DO = I—I @011’ where d)()n = (naz)—liz SXp ('_6?/262)’

as the trial wave function for the vacuum state. Since

o

t 7 P, 5\ exp (in.8a)
Py, = \72—7[ J dﬂn““P(“iU nn)W)
we have
1 l 2.2 3 v \2731/2
Hnd)On = E d’?n ogCXpl — ia Ha Qd [1+(A§") 3 {1+
v -x
exp (in,&,)
+(chn,/Qd®)*]'/2 - = az)T/T}

The vacuum expectation value may bz calculated exactly in terms of modified Bessel
functions of the second kind K,(z) [8].
The result is

(®o, HDy) = [Q*d"M|({/2 nch)] exp (A4 B)K (B) [Ko(D) + K (D], (4.4)
where B = d%a?; 0 = Qd*ch; L = 0/2p.
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The minimization of (4.4) gives (Appendix E)
(Do, HP)in = /2 heV[nd*. 4.5)

This is a significant result. Comparing this with (4.2), (4.3) we see that the present
zero point energy and the vacuum energy of the Klein-Gordon field diverges in exactly
the same manner. In contrast if we apply this variational method to estimate the vacuum
energy of the Hamiltonian obtained in the weak field approach in the previous paper 1
a much higher order of divergence is obtained, showing that some of the divergences of the
perturbation approach are spurious. One might then hope for a similar behaviour of the
one-particle states.

4.3. One-particle states

In general we talk about a one-particle state in a nonliner theory only in the context
of a perturbation approach. The situation is however different in the present case. Our
nonlinear field equation admits individual plane wave solutions [1]. Moreover the Hamil-
tonian and the linear momentum take on a linear form if we confine ourselves to a plane
wave solution. Hence we may be able to formulate one-particle states in an exact man-
ner. Indeed this can be done as will be seen in the next section. Therefore in our varia-
tional treatment it is reasonable to use the trial wave function

&, = (2/Mc*)'* ¥ exp (ik - md)¢, D,
hoping that it would at least give a qualitatively correct result.

After some calculation, whose details are available in Appendix F, the energy ex-
pectation value is found to be

(Dy, HP,) = (¢, HP,) +(Q%d" [ /2 mch) exp (A+ ) [A+ B],

where
A = K,(B) [2K,(1) — (Ko(D) + K1 (D)Z,] > O,
B = 2B(1-Z,) [Ko(B)— K1(B)] [Ko(D+ K (D] < O,
Z, = } [cos 2k,d +cos 2k d+cos 2k,d].
Let

CHY* = (04, HO,) — (Do, Hy).

For reasons specified previously we shall take (HY*. as our estimate for the energy
of the one-particle state concerned. Appendix F gives

CHY . ~ (8)31)' P hek.

Observe that (8/37)” ~ 0.9 which, under the circumstances, may be regarded as
a good approximation to unity. This means that CHY®, s approximately the same as the
corresponding value of the one-particle state in the massless Klein-Gordon field case.
This result appears very reasonable. Since the theory ought to be Lorentz invariant one
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would expect that the energy of something which resembles a free and massless particle
should be hick in order to give a Lorentz energy-momentum 4-vector with momentum hk.
In conclusion we note that if we attempt to estimate the one-particle energy by

(¢k’ H¢k)min_(¢0’ Hdso)mins
we again are faced with a divergent result. The same applies to the expression
[(¢k9 H¢k)_(¢0a Hdso)]o'o
where both expectation values are evaluated at the parameter value ¢ = 6, which opti-
mizes (Do, HD,).
4.4, Two-particle states, 1

Considerable difficulties begin to emerge as we try to construct states resembling
those two-particle states of linear theories. The inevitably approximate or even precarious
nature of the idea of two-particle states in a nonlinear theory which allows strong inter-
action is obvious. In our present case however we expect, from the knowledge of plane
wave solutions (I 5.4) that well-defined two-particle states may be formulated at least for
two particles moving in the same direction. There should be no interaction between these
particles. The idea can be formulated in an exact fashion. Let us confine the field in a box
V with the usual periodic boundary conditions. Let

Pk = V_I/Z exXp (inkgxe)9

where k; = (2n/L) x integer; ko = |k| = k;n = integer; kk® = n’k,k, = 0. Then (no
summation over n)

énk = Anq):xk+A:(Pnk = An(p—nk+A;¢:nk’ (46)

is a real solution to our nonlinear equation (1.4). The general solution representing a
wave travelling in the direction specified by a k is (we assume that the three integers Lk/2n
have no common factors so that we need not consider submultiples of k)

&= Y lu (4.7

n>0
Hence

Ty = (Qék/’c) (1—'196@,@5/(,0)_1/2 = Qék/cz,
(emi/Q)* = (V&Y.

Note that no summation over the subscript k is meant for all expressions in the Section.
One finds easily that

Hr = QL +(VEN T [1+(em/Q)*]'? =
= Q[1+(VEYY] = O+  [(VE)* +(cm/ Q)] (4.8)

We end up with a Hamiltonian which is linear in the sense that the energy contribu-
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tions from different n-values are additive. Rewrite (4.7) as

z he \'/? ..
ék = <2an> (ank(pnk + ank(pnk)~

n>0

Expressing the Hamiltonian and the momentum associated with the field in terms of
., dy, We obtain

H, = [ &x#) = Eq+ Y hcnkayay,, (4.9)
n>0
where Eq = QV+31Y henk,
n>0
P, = [ &®x(=VEIm, = Y hnkayayu+ % Y hnk. (4.10)
n>0 n>0

We now postulate that each plane wave solution becomes in the quantum theory
a quantized harmonic oscillator in the same way as in linear field theories, that is, a}, du

are regarded as creation and annihilation operators with the usual boson commutation
rules

[ank’ an’k] = [aIka aI’k] = Oa [ank’ a:’k] = 5nn"

H,, P, are now operators. We see that if we confine ourselves to the field excitation
which is formed by plane waves travelling in the same direction, we can perform the
quantization which leads to the exact solution of various problems about the particular
field excitation. The procedure may be applied to any specific k. Observe that the present
results agree with the corresponding ones obtained by the variational method. Indeed
the two theories reinforce each other.

A general picture in the quantum theory begins to emerge after we carry out the
above quantization procedure for all k values.

In an adequate quantum theory of the nonlinear field we would expect that the linear
vector space of all quantum states should contain special subspaces, the subspace asso-
ciated with k being spanned by basis vectors al|0 >, a:lkaIZkIO > aLk“LWLkW)

In such subspaces the field behaves like a free field consisting of noninteracting particles
moving along the same direction. The next step is to explore the “unknown” region
outside those “known” subspaces and this presents great difficulties.

4.5. Two-particle states, II

When two particles are travelling in the same direction, there is no interaction. Hence
we only have to consider two particles moving at angle with each other, i. e. ky # positive
constant x k, where k,, k, are the two k-vectors specifying the states of the two particles
concerned. With such &, k, we can always effect a Lorentz transformation to the centre-
-of-momentum frame of reference where the two vectors will be seen to be equal in magnitude
but exactly opposite in direction. Therefore it is sufficient to investigate two-particle states
with k,+k, = 0 without loss of generality. A trial wave function which readily comes
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into one’s mind is

2
T (M(M=2)0?)"" Z exp [i(n; —n,) - kd1Z,.&,,Po.

ny#ny

i,k

This function is orthogonal to @4, @, and is a null eigenvector of the linear momentum
operator and it also gives the correct two-particle energy for the massless Klein-Gordon
field. However this trial wave function is not satisfactory because calculation shows that
it does not lead to any interaction between the two particles., We have to try some other
trial wave functions. Since the state involved is of momentum zero it is not unreasonable
to combine the two null momentum eigenvectors @, and @, _, to form a new trial wave
function

@Y = a¢o+b@k’_k, (4.11)

where a, b are constants to be regarded as two independent variational parameters in addi-
tion to the original ¢ in @, and @, _,. The optimization of

E = (¢, Hp)/(¢, ¢),

with respect to a, b leads to the eigenequation

<(<p0, Hoy) . (o, HDy 1) ) <a> - E (a)

(Po, HOy 1) (Pp, -k HPy, 1) )\ b b)’

where use has been made of the orthonormality property of @, and @, _. The eigenval-
ues are

E* =} {[(®o, HPo) +( Py, 1 HPy,-1)]
+ ([(Ph - HPs - ) = (Do, HOG)] +4| (Do, HPy, -0 ?},
E*—E™ = {[(®s,— 1, HPs, 1) — (Do, HDo)]> +4{(Po, HEy, - )I*}'/2.
The corresponding trial wave functions @*, ¢~ are orthogonal to each other. We then

regard E~ as an estimate for the vacuum energy and Et+as an estimate of the energy of the
two-particle state with linear momentum zero. Then

AE = E* —E~ > (P4 1 HP; 1) — (Do, HDy),

will serve as an estimate of the two-particle energy relative to the vacuum which may well
bring in nonvanishing interaction energy. There is still an unspecified parameter ¢ to be
determined. The obvious choice which is in harmony with the procedure adopted in section
4.3 is to employ the ¢ which optimizes 4E. Appendix G gives

(4E)pin = /2 he[nd,

which diverges as d = 0. Some other choices of ¢ are tried without avail in Appendix G.
However there is reason to believe that again it is the trial wave function which is at fault.
To see this we can apply the trial wave function (4.11) to the massless Klein-Gordon field.
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We find that the corresponding expression is (see Appendix G for details)
AExg = Exg—Exg > (@i, -1, HxoPr, -1 — (o, HPy),

leading to a spurious interaction energy which also diverges like 1/d. Under these circum-
stances we cannot reach any definite conclusion about the interaction between two particles.

5. Concluding remarks

The variational approach we studied so far has been able to lead to some positive
results for one-particle states. The exact reason for its failure in the two-particle case is
an open question. Some variants of the two-particle trial wave functions and of the varia-
tional procedures have been studied without much success. It is quite possible that we
have just not hit upon a sufficiently good trial wave function. The appearance of a divergent
spurious interaction energy of order 1/d between two massless Klein-Gordon particles
lends support to this view — the trial wave functions are just not good enough to give
complete cancellation of all the divergent terms. In the linear case it is certainly true that
a more sophisticated trial wave function will effect such cancellation and yield the correct
result. However the situation may not be so simple in the nonlinear case. It may well
be that there are no such things as two-particle states and we are quite wrong in attempting
to simulate such a state by our choice of trial wave function. Further work is needed to
resolve this problem. Although the variational method in its present form has only limited
success for our model field, there is no reason why the method cannot be further developed
into a general theory applicable for other field theories, especially those of more conven-
tional types. Obviously there is much scope for further development.

APPENDIX A
Properties of Ug,(x)
(A) Fourier transform:
Ugak) = 2m)™* [ dxUy,(x) exp (—ikx) =

(L/27)" exp (—iknL) if K—n|L < k < K+7/L,
={ (Y ,)(L[2n)" exp (—iknL)if k = K+n/L,
0 otherwise.

(B) Orthogonality: [ dxUg(x)Usp(X) = SxgGpy-
(C) Completeness: Y. Ugyfx)Ugy(x") = 8(x—x').
K,n

Uk, (-n""
iKUg,+ —_—
Ox YK L(m—n)

(D)

Km-*

m#¥n

(E) 1;:"-,1( = j dXU:)pU*KnUK’n"
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Case I: K'—K=0.

Iy = 3/4L fp=n=uwn,
1 ,

S S— O if p = '
277 JL (=) (1=(=1"") if p=n+#n,
___lp+n+n’ —1y -1 ___ln'

=()2_{<)’ o, e }ifp“#n,.
22 JL l(p—n)(p—n") (n—p)(n—n’)  (n'—p)(n'—n)

Case II: K'—K = 2n/L.
et =18 /L if p=n=n
(=" -1 (="

= - + - if p= ,
477 JL(p—n)’ " 4nyL(p—1) tp=n#n

_(—1)*’*"*"’{ GV G S G }
(

4n* JL (p—m)(p—n) (n—p)y(n—n) (0'—p)(n'—n)
if p#tn#n.
Case 111:
Inw® = 0 in all other cases apart from those obtainable by the symmetry properties

of the expression I %.

Symmetry properties of I ":
X—-K’ K'—K

(a) ]pnn'K = (Ipnn’ )*

(b) The order of the indices prr’ is irrelevant to the value of

K- K

]prm’ > €8,

K'-K _ [K'-K _ JK'-K

Ipnw” = Ly~ = Iyp,” and so on,
K'-K _ jK'-K

Iy = I;pp, and so on.

Our present set of functions have certain similarities with the Bloch functions expressed
in terms of the Wannier functions in solid state physics [9]. But they are in fact quite
different.

APPENDIX B

The theorem

oo

I = | dxF(0,(x) = LF@)IazF 76‘6
- j X (a(-"))"“ Z( (< a>n +§<69a60b)n / aKn bKn>'

- n K#

[=]

Proof:

Expanding the number 1 in terms of the complete orthonormal set Uy, we obtain

1= /LY Ugx);
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SO
I = [dxF(0x) = LY, | d*xUe,F(0) = ¥ I,

I, = L | dxU,,F(8,).

We assume 6, to be slowly varying functions of x so that the main contribution to I,
comes from the values of 0, near x, = nL in which region 0, = 0,(x)—<0,>, < I.
Let F(8,) = F({0,>,+0.,), then a Taylor cxpansion gives (no summation over n)

F(0,) = F({8,))+ il . OF 0.0+
al ™ a’n 590 ., an 2 89a60b ; an“bn sy

I, = LF({0,>)+L oF AU 6..d +1\/‘1: o'F dxU, 0.0, +
n a’n \/ aea nJ onVandX E 69,,601, i XU o0nVanUppt ...

Now our assumption that I, depends mainly on the values of 6, near x, = nL will
mean that the same applies to each integral over a Taylor series term. Let 0,,(x) be of the
order of, say 2 < 1, for x near x,, = nL, then we canroughly estimate that | dxU,,0,,0,,0.,
is smaller than | dxU,,0,,6,, by a factor A. In this way we are able to establish a series
approximation to I,.

Now the proof of the theorem rests on a

Lemma: If f, is a slowly varying real function of », then

\/T‘ an j UOnB‘rznO;mdx ~ Z fn();Kn()bKn'

nK#0
Proof:
\/z an J. UOneagbdx = Z’ \/_I:}}IGZKnUbK’n' j deOpU;(nUK’n"

p.n,n,
K.X’

The property (E) of Uy, as given in Appendix A is used to evaluate the right-hand
expression which gives

RHS = ;\/E [(H+@+)+@+)],
where (no summation over K)

m= Y filz Onknlsin+ + 9:Kn0hk+2n/Ln+ + 0oknBk = 2270)

p=n=n’

1 ( l)n—n’ * 1 ( l)n-", l( 1)"-_"' *
2) = E e 0 O + | — 4 )
2 I { 2n¥(n—n')? aknbKn [ 4n*(n—n')* 4n(n— n’)} akn X

p=n#n’

1__(_1)n~n’ I-(__l)n—n' .
X Opk 4 20/ 1w + [— OaknOok - 2010 ¢ 5

4% (n—n')>  4dn(n—n')
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1-(=D"" i 1—(=D"™" (=)™ .
(3) an {271: (n n) OaKnebKn"l_ |:_ 47'52(71"‘”,)2 - 47t(n—n')] BaKnx

p=n'#n
1__(_1)n—n’ i(_l)n—n’ .
XGbK+21r/Ln’+|:_ A (n—n'y’ +47r(n—n') OaknOok - 207107 ( 5
1-(=1)"" I-(=1"7" (=1 .
4) = —————9 0 — — 0
@ Zf"{zn —m® +[ axp—n)’  an(p—m) | "
n=n"#p

e el
X Opx s 2mint | — ar?(p—n)? +47r(p—n) O aknlok - 27/Lm ¢ -

Since f, is slowly-varying with p we may make the assumption

1 —(—1)" 1-(=1" 2
Zf” oonp T ooz 2"

p#n

— 1y —1yP

> sy S0
p—n p—n

p¥n

pP¥n

Hence the f,, in (3) may be replaced by f, and
(4) an[‘t HaKnebKn 0:Kn0bK+2n/Ln_ % HZKanK-Zn/Ln]‘

_f" n-—n’ *
(‘5) o Z T A=(=1D)""") (BagnOskn —

n¥n’

Similarly

* 1 *
- % gaKnebK+2n/Ln’ -2 eaKnObK-Zn/Ln')'

Adding up we obtain finally
\/Z an 5 deOnOaGb ~ KanQZKnobKn'

Some remarks on the above approximation are worth mentioning. Let y(x) be a func-
tion of x, then we can readily show

) L<6y(x)> Z Gw (—i_)—

~2 2 ln n’
(B) I <an§c)> = — (( _)) < >n],

n#n
where

On = (L) 2 [ y(x)Ug,dx.
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Therefore our approximation used in proving the Lemma is equivalent to the aproxi-
mation
(OF(x)/6x), ~ 0 and (3’ F(x)/0x*), = 0,
where
F(x) =Y UG

Now to apply the Lemma to prove the Theorem we have

\/I—J an j deOne;ngl,m = \/I‘ an(j []Ongagbdx'm\/Z <6a>n<9b>n) ~

Q

Z fnGZKngbKn’ by the Lemma.

n,K#0

Applying this result to
I= | dxF(0,(x) = I,

we immediately obtain the Theorem.

APPENDIX C
Evaluation of the Hamiltonian
H = [ d*xs#, where s = Q([1+(VE)*][1+(cn/Q)* V2.

Firstly approximation may be made for the derivatives of &.

(_l)mll_ml
. = m iKlU m x + T U mllm2m3 =
5,1 :>: dk [ Kk X) L(m,l__ml) K

Km m’t£ml
= Z qulUKm(x)a
Km
where

m’l—m!

= iK! + ._]), §

dKkm1 = 1 9Km " 1 GKm ' m2m3-
(m'" —m")
m'tEml

SINnce Ggmimems 18 assumed to be slowly-varying with m'?, the second sum in the above
expression is very small and may be neglected in order to be consistent with the approxi-
mations made in Appendix B. Now apply the Theorem to evaluate H:

~ 3 2 ; N2y 172 _1_ 62‘% *
H =~ Z L ([1+<V€>n] [1 +_<C7[/Q/n]) + 7 Z <50a(70b . OaKneth

n n K#0

where 0, = (£ 1, €5, & 3, cn/Q).

0°#|06,00, may be expressed in terms of the metric tensors g, and g™.
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2 H)on2 = (H Q1+ (VETA[1 +(cn/ Q2] = 2V —g/(Qe®);
Q2 [andE ; = (P& ;10) ([1+(VET [1+(en/Q)?D ™2 = —cg®/g%;

2 108 32 = 1_t<:zr/Q>2]”2< - k) -
0 /f/ag,jai,k—Q[ T (ve? O 14+(ve)?)

B Q i nggOk
)

z: 71§:g3’"c - _
H =~ QLs([l +<V6>ﬁ] [] +<CT[/Q>5])1/~+ 5 goo (q;(anJpKn—p}anjqKn)+

n,j
K#0

1 J-¢
n +
+ ~ pKnpKn+
22 0 @’ Z

n K+0

1 (-0 (gVg ;
*t3 ? NETY (“—gao— — g KK gknlixms
ed N T Bn n

n,j,k K+0
K+#0

where g:rK = [g“c]n:=<1:>,15 é,j = <£,j>n'

APPENDIX D
The approximately classical nature of gy

Two assumptions are made in relation to the everywhere-slowly-varying nature of
the field.

(1) 0,,(x) = 0,(x)—<0,>, < 0,(x) and 0,,(x) <1 in a neighbourhood of x = nL
of dimensions of the order L. Note that 8, stand for the dimensionless quantities ¢ ;, cn/Q
so that above inequalities are independent of the units employed.

(2) Lcan be large, or more precisely, we require that he/QL* < 1, where he/QL* isa
dimensionless quantity. In CGS units with @ = 10~7 erg cm3 ~ the mean energy
density of the universe, we get L > he/Q)* ~ 107%° cm.

Firstly these assumptions enable us to count the orders of smallness of a quantity
(see Appendix B). Secondly they lead to the result that g, may be regarded as c-numbers.
This results is seen in the following analysis based on a finite difference method:

E() = (G +L, x2, x?)—E(x! L, x?, x*))/2L.
Hence <¢ 150~ 1(don, —doa 2L, Where n+ = (n'+1,7% 1), n— = (u'—1,n, n);
<CTC/Q>W = CPOM’/QLBI/Z'

The commutator

< 0w enfQy] = (he[2QL2) (i8,,1 =0, ) = O as he/QL — 0.
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Since <{E ;>,, {cn/Q), also commute with all the other operators appearing in the
theory, we conclude that (£ ;>, {cn/Q>, can be treated as c-numbers. The set of quantities
g depends solely on <& ;>,, {cn/Q>,. Hence they may be similarly taken as c-numbers.

APPENDIX E
The vacuum expectation value
(1) RY = (Pon [14(cP,/Qd*)?]' 2 Dy,) = (6Qd*[2 (/7 ch) exp (2) [Ko(D)+ K ()]

by, = (7r0'2)_1/4 exp (—5,2,/202).

Q) A = (Do, VI+(AE) Do) = ([T Pom V1+(4E)? T] Bom) =

m#n m#n

= (\/2[m d|o) exp (DK (B)-
(3) (@0, H,Po) = Qd* ARG =
= (Q*d"[/2 mch) exp (A+PK(B) [Ko(A) + K1 (D)].
(4) Minimization of (®,, H,®,) in the limit of vanishing d.

There are only 5 possibilities for the behaviour of the optimum A and fasd - 0:
A—=o, >0, 10,50, 150, f— ©;
A — finite and non-zero, f§ —» 0; 4 — 0, § — finite and non-zero.

Using the known asymptotic behaviour of the relevant Bessel functions one can
verify that a consistent minimization is possible only for the case A, — 0, B,, — 0. From
numerical computation we also know that (®,, H, @,) possesses a minimum for small d.
Hence we conclude that as d - 0, the minimum occurs with Zopt = 0, Bope = 0 and we have

Qd'M (2 2+21n(l/e)
(D,qu min ~ = | 3 E— e}
(Do 0) 2 ahe\@? 0 + )
APPENDIX F

One-particle states

(D) R = (&aPon [1+(cPo] Q> 1#E,0,) = (0°Qd*(2/T ch) exp (DK,(2).
@) 43 = EnPor V1+(AE)* EmPo) =
(do[6/27) exp (A)2B(Ko(A— Ky (B)+TK(B)] ~ if m = m' €SP,
~(da]6/27) exp (B[2B(Ko(B) ~ K (BN +Ku(B)]  if m, m’ € PY,
(do] \/2m) exp (BK () if m=meSP,
0 otherwise,

where S™ is the following set

(ny 1, na, 03); (g, ny k1, n3); (14, ny, nyx1),
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and P( is the following set of pairs
(ny+1,n3,n3), (1, — 1, 1z, n3); (ny— 1, np, m3), (ny + 1, na, n3); (g, mp+ 1, m3), (g, n,— 1, n3);
(ny, ny+1,m3), (ny, ny—1, n3); (ny, na, ny+ 1), (ny, ny, ng—1); (ny, na, n3—1),(nq, 1, n3+ 1),
Let A = 4%, with me S,

AP = AP, with m, m e P{.

Then
A+ AT = 2n)”2do exp (K (B) = o7 4o[2.
() (Px, H,Pp) = (2/M02)mzm?xp (i[m' —m] - kd)($nPo, H Do) =
= (2Qd3/M:2)[6R041 +6RoA, Z+R,45—-T6%44Ro[2] =
= (g, H, Do) +(Q3d7| \J/2n ch M) exp (A+ B} A+ B),
where
A = Ki(P2K, (D)~ (Ko(A)+ K (A)Z,] > 0,
B = 2B(1 = Z)[ Ko(B) — K\(B][Ko(D) + K, (1] < 0.
(4) The minimization of
CHY! = (@4, HD)—(Po, HD,),

in the limit of vanishing d may be carried out in the same way as for the case of the vacuum
expectation value. A consistent minimization is possible only if 4., — o, B, = 0. Using
the known asymptotic properties of the relevant Bessel functions we obtain

CHYY ~ (2n)"2Qd*(1]0%0 +4k?0/3).
Hence (H)%. ~ (8/3m)%hck.

APPENDIX G
Two-particle states I

The trial wave function a®o+6P, _;,
gives
E* = 3 {[(Dy,—p, Hy 1) +(Do, HDo)] £

([ Ps, s, HO; — 1) —(Po, HP)]” +4{(Po, Hq’k,—k)iz)uz},
AE = E"+E” = ([(Dg,—x, HOy, 1) — (Do, HP)]* +4(Po, HP —)i%)' 2.
{1) The nonlinear field
(D, i, HO ) = 2Py, HOp) (D, HD);

(Do HBy—) = (M[(M— 1) 120> RSP AL Z, /0% ~ 120d° RGP ATV Z, [0,
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Clearly
AE ~ ACHY +1(@, HOy )17 2 2(HY,

hence (AE)uin = 2(8/3n)%hck.
To actually estimate (4E,;,) let
Yo =1-2, - 2d*k*/3+0(d*) as d— 0.
Now
<H>k = (2Qd3/‘72) [6R0A1+6R0A1iZk+Rle“(7/2)G'ZAoR0] =
= (20d*/c”) [(Rl—U2Ro/2)Ao“6YkR041t]-
The rather tedious procedure of minimization of AE may be carried out as before.
The only consistent minimization occurs when
2opt = 05 Pope = 0 as d - 0.
The result is
(4E)pin =~ \/f he/nd,  which diverges as d — 0.
Two other assignments of the value of AE are also considered. The first alternative

is to take AF calculated with the value of ¢ which minimizes E~. Obviously this also leads

to a divergent energy since AE > (4E),,;,. The other alternative is to consider
AE = E;in_E—

min*

This again may readily be shown to be bigger than (4E),,., and hence divergent.
(2) The massless Klein-Gordon field

Let us apply the above trial wave function to the real massless Klein-Gordon field
to estimate the corresponding two-particle energy. Then
AEgg = ([(P4,-k, HioPu,-1) ~ (Do, HxoPo)]* +4i(Po, HicoPr,-)iH)'".
Calculation gives

(@, Hyo®p, 1) = _3Qd022k/4,
and
(AExG)min = /3 held,

which gives a spurious and divergent interaction energy. The other two choices of the
value of ¢ in AE only lead to values bigger than this one.
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