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PHYSICAL INTERPRETATION OF A MANIFESTLY COVARIANT
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As a continuation of considerations concerning a covariant Hamiltonian formalism
previously proposed by the author, the FW-representation of the homogeneous Dirac equa~-
tion and the definitions of the “mean” position and spin operators have been reformulated
in a manifestly covariant way. Problems of a consistent physical interpretation of the displayed
mathematical scheme have been discussed and some of its controversional aspects explained.

1. Introduction

Possibilities and limitations of a consistent formulation of ‘relativistic quantum
mechanics” have bzen discussed from various points of view by many authors in recent
years. Although every such scheme possesses an approximate and limited character only (be-
ing e.g. restricted to those physical situations which guarantee that the number of particles
remains constant) it seems that an “autonomic” sense can be attributed to this problem,
rather than the sense of a “by-product” of more general field-theoretical considerations®.
The former point of view adopted in our considerations (and supported by some further
arguments) requires a more detailed analysis of whether, and under what conditions,
such a “particle description” can consistently be introduced. However, the problem is,
as yet, far from an ultimate solution. The main difficulties arise in consequence of the
non-unique way of generalizing into the relativistic domain the notions of position and
spin®. Currently, this problem occupies an important place in many publications on the
subject. Moreover, the distinctive role played in every quantum-mechanical formulation
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! In order to avoid a misunderstanding caused by different interpretations of the term “relativistic

quantum mechapics” in different contexts, the sense in which this term will be used in our paper ought to

be specified. By it we will denote every scheme based on the notion of “‘particle-observables”, including
that of position.

2 of a particle, or of the centre of mass for a system of particles, as shown many years ago by Pryce
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by the time variable, as compared to that of the space coordinates, is also the source of
considerable complication. Attempts to introduce a time (or proper time) operator are
as frequent as those trying to avoid this assumption. Our present considerations follow
the latter path, using the well known covariant distinction between the timelike and spacelike
directions in Minkowski space based on the notion of an arbitrary unit timelike vector
and of a three-dimensional manifold orthogonal to the former. In particular, a covariant
quantum-mechanical Hamiltonian formalism, previously proposed by us (Hanus [3], [4])
and applied to the special case of the Dirac particle (Hanus, Slominiski [5]) will be used
and further developed. A short recapitulation of our earlier results — which establish
the mathematical background for the present considerations — will be given in Chapter 2.
The formalism allows a further generalization to include the problems of the FW-represen-
tation of the Dirac equation (Foldy, Wouthuysen [6], see also Tani [7]) and of the “mean”
operators immediately related to that representation. Owing to the important role played
by these operators in the “particle-interpretation” of the Dirac equation, their formal
covariant generalization, proposed in Chapter 3, gives an advantageous starting point
for attempts at constructing a consistent scheme of physical interpretation refated to the
displayed mathematical formalism.

2. Cocariant Hamiltonian for the free Dirac particle

According to the proposed formalism (see {4]), the position and momentum observ-
ables x and p of a particle possessing a mass m # 0 and described by a covariant first-
-order homogeneous wave equation have been generalized into simple bivectors (plane
antisymmetrical pseudotensors of second rank) in the Minkowski space X,d and P,
respectively® defined in terms of the “formal” relativistic operators x, and p, fulfilling the
standard commutation relations

[X“, pv] = iouv' (1)

The “generalized particle-observables’ related to the position and momentum of the particle
have the form

N i
X = 'z_sxluvxuw Xnv = N,X,—NyXy, (2)
- i
Pxi. = '2_ Sx}.uvpuv’ Puv = "ul’v_"vp,n (3)

while

Xy = —inX, 4)

3 The notation introduced in {4] and [5] will be used in this paper. In particular, /i = ¢ = 1, the
Dirac symbols have their standard meaning, &,y stands for the completely antisymmetrical pseudotensor
of fourth rank (with &334 = 1), while an arbitrary unit timelike vector n, is defined by the conditions
nyy = =1, ny = ing, no > 0. The symbol “A” denotes dual tensors.



has appeared to play the role of a “c-number timelike variable” and

Py = _inppl,n (5)

owing to the mass relation p,p, = —m?, has been expressed in terms of the “spacelike
quantities” P,; and reinterpreted as the covariant Hamiltonian operator

Hy = —ipy(Pesr m), (6)

leading to the Schrodinger equation

—dyy = Hyy, dy= —inu;—. N
xﬂ

This equation plays the role of a subsidiary condition imposed on the solutions of the
basic wave equation and selects the subspace of “particle states” w(X,,xy). Additional
constraints and commutation rules obeyed by X,, and P,; have been deduced in [41,
but they do not need to be quoted here. The division into “strong” and “weak” relations
follows the idea of Dirac [8]. Similar, although somewhat more complicated formulae
defining the covariant counterparts of the orbital, spin and total angular momenta of the
Dirac particle I, s = 46 amd j = [+s, successively, deduced in [5], read

i‘K}. = 5 sxluvLuva Luv = nul;_nvl;v (8)
, i
lv = - i 8vgta)lmn<m lgr = x@pt_xrpw (9)
W 1. i 1 o
le = EZKA = 2_ gxluvs;tv’ Suv = 2-va = nusv_nvsu’ (10)
, i | 1
Sy, = — 5 EyorwSetws Sor 25 Ope = a (ye’))r'—y{yq)’ (11)
jnl = i‘x).+‘§xl' (12)
The characteristic result
Iy=—ml, =0, sy=—ins, =0, jy=Iy+sy=0 (13)

shows that, in contradistinction to the polar three-vectors, the axial vectors do not possess
any timelike scalars as a relativistic supplements within the proposed formalism.
The covariant Dirac Hamiltonian has been expressed in the form

H'y = omm+ 0Oy, (14)
where

om = Yy = —inY, 01 = —%Yss Vs = V1V2V3V4 Ou = —i0mo (15)
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the ¢, thus being covariant generalizations of the well known Dirac operators gs, 04, 0,
while

O = SuPrz = 3 ZaPuss (16)

Oy =1 PP, =P, P=(F)7 (17)

IN = @N(@i’)_l/z = %v > (18)

Ey = ()Y = Vm*+ P, (19)

Ay = Hy(HR)? = fgf = sign #y. (20)
N

A

Oy, P, zy, Ey and 7y are, obviously, covariant analogues of ¢ p,p,x = (¢ p)/p,

E = Vm+ p?and 4 = sign J, respectively (for details see [3] and [5]). A close connection
existing between @y and the Bargmann-Wigner pseudovector w, is worth mentionning.
It is given by
. . i 1
Oy = 2wy, wy = —inw,, W, = ﬂ)—auvg,pv:—zaw. 2D

The formula quoted in (1)-(20) correspond to the conventional interpretation of the
Dirac equation, with x and x = a in the roles of the position and velocity observables,
respectively. (The explicit formula for a covariant generalization of the latter operator
has been deduced in [5], but it will not be used in our further considerations).

3. The covariant FW-representation

The well known FW-representation of the Dirac equation immediately relates two
important problems to one another: one of separating positive and negative energy states
of the particle, and one of defining and interpreting the “‘mean” operators of its position
and spin®. General ideas concerning the problem of localizability of relativistic elementary
systems (hence, in particular of the Dirac particle) introduced by Newton and Wigner [9]
have been extended by Wightman [10]. All these works imply the essentially non-
-covariant character of the mean-operators which give the localization in space at a given
time, but not the space-time localization. The same point of view is represented in the
papers of Matthews and Sankaranarayanan ([11], [12], [13]) where the distinctive physical
meaning of the FW-mean-operators, as compared to other possible definitions, has been
stressedS. This lack of covariance gives rise to the fact that instead of the mean-operators
other candidates for position and spin observables, in particular the covariant operators

4 These operators, introduced earlier by Pryce (in [1] and [2]) are, alternatively, denoted in the
literature as ““Pryce’s operators case ¢ or “‘local operators of Newton and Wigner”, or “mean-operators
of Foldy, Wouthuysen and Tani”. We shall use the term “mean-operatois” closely related to their physical
interpretation.

5 for some generalization of these results see Hanus and others [14] and Janyszek, Rakowski {15].
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(Pryce’s case “‘d”’; see also Hilgevoord, Wouthuysen [16]) are often preferred in relativistic
considerations, despite the rather unsatisfactory algebraic properties of the latter operators®.
The opinion that no covariant meaning can be atiributed to the mean-operators is
not generally accepted. Indeed, there is still one possibility, which does not contradict
the previously quoted results: to try to define the mean-operators using the notion of
localization on an arbitrary spacelike hyperplane (or, more generally, on a hypersurface).
An interesting formalism following this idea has been developed in the years 1963-1970 by
Fleming ([18]-[25]). In [18] and [19] the notion of an arbitrary spacelike hyperplane has
zen used, for the first time, in order to generalize investigations concerning position as
a dynamical variable in relativistic quantum theory. Various possible definitions of this
variable have been analysed, successively, by this author, in accordance with his opinion
that there is no priviledged, “true” position observable, but that its different definitions
are related to different dynamical properties of the described particle (the mean-position
operator representing the centre of spin), and that all these definitions, if appropriately
interpreted, remain consistent with the postulaies of relativity. 1n [20]-[25] these results
have bzen progressively extended into a wide quantum scheme comprising — besides the
covariant description of dynamical variables defined on spacelike hyperplanes — also
the general theory of the scalar field. It is worth mentionning that this is a scheme reaching
far outside the scope of conventional field-theoretical formulations, as the seven-dimensional
continuous manifold of the points (x,, n;) has been used for a geometrical basis and the
formalism has bzcome equivalent to a non-local version of quantized field theory.

Our considerations, although inspired, to some extent, by the papers of Fleming,
have followed a different path: they have remained within the traditional geometrical
scheme of the Minkowski space. Moreover, they have been limited from the outset to
the treatment of relativistic quantum-mechanical problems. The latter restriction alone
strongly implies the necessity of using a formalism which gives a covariant distinction
between the timelike and spacelike directions, These remarks explain in more detail the
main purpose of our present considerations. The extension of the covariant Hamiltonian
formalism (summarized in Chapter 2) from the traditional to the new, modified method
of describing the Dirac particle in the FW-representation and in terms of the mean operators,
completes our earlier results in a natural way. Simultaneously, the incorporation of the
fundamental problem of relativistic position and spin observables into our formalism gives
the best test for verifying to what extent this mathematical scheme allows a consistent
physical interpretation.

There are no formal obstacles against formulating in a manifestly covariant way the
FW-transformation and the transformed Dirac observables. Similarly, as the non-covar-
iant Dirac Hamiltonian

H = gsm+09,6°p, (22)
transformed by the unitary FW-transformation

is 1 p
U=2¢% S =-p,yarctg— (23)
2 m

¢ This path has been followed e. g. in the paper of Suttorp and de Groot 17}
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assumes the form
A = UAH U = o;E, (24)

its covariant counterpart (14) transormed by

s 1 P
Uy=¢e", Sy= 5 QuXn arctg ;n (25)

gives
Hy = U}v«yfx\vUz;1 = omEx- (26)

(It is obvious that, owing to the close correspondence between (14) and (22) this form of
the Dirac Hamiltonian is more suitable for our considerations than that containing a
and B.) The explicit form of other non-covariant FW-transformed observables is well
known’. We have expressed them, however, in a form somewhat different from the stand-
ard one, but more suitable for our further covariant generalization. Using two formulae
(which can easily bz verified)

px(oxp) = p*c—(a- p)p, en
oxp = (ol P~ P} = - [0, P)] 28)
we obtain
P =p, (29
L [o’,(aﬂ;} c (o pp
T EErm) % {EE‘ 2E2(E+m)} ’ 9
5 .
, , . pe—(c-p)p i [o,(0p)]
I'=(xxp)y =1+ T2EE+m) 025 TTHg (3D
2 ., : .
golgly_pe-epp  iloe Pl (32)
2 2 2E(E+m) 2 2E
j=U+s = I+s=j, (33
(6-p) =o,p, (34)
E' = E, (33)
V= oy (36)

A

Remembezring that x, p, I and ¢ have bzen generalized into the covariant quantities X,;,
P, L, and £, respectively, and taking into account that in this situation the expres-
sions (27) and (28) also possess their covariant analogues, namely

PZG'—(G' "pp Pzzx)." OnP. (37

7 see [6], [7), or anyone of numerous monographs on this subject.
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—; [0.(c - p)] > ; [5.. ©4], (38)

we can obtain, without difficulty, the manifestly covariant transcription of the FW-trans-
formed observables (29)-(36). They read®

Allc}. = Px}.’ (39)
. o i [2.,0 b oyP
X =X,— - M " Zxd o _ __z__’,"__ , (40)
2 2E(Ex+m) 2Ey  2EjEy+m)
. . PE . —0,P, i [2.,,0
lx). = LK).+ —N_i +Qll ~ [_‘_2____?\'_3 s (41)
2E(Ey+m) 2 2Ey
. 1. 1. PS,—64P, i [2..,0
St = 18 = 3 B o O 1 e O 42)
2 2 2EMEx+m) 2 2Ey
j:d = A,k).+g;cﬁ. = 2‘1().+‘§x}. = ij (43)
O = Oy, (44)
Ex’V = EN’ (45)
N = Qw (46)

The way toward an analogous covariant generalization of the mean position and spin
operators is now straightforward: in the non-covariant formulation they have bzen defined
as operators which become identical with x and s = } g, respectively, in the FW-represen-
tation. In other words, their explicit form in the traditional “Dirac representation” results
after applying to x and 46 the inverse FW-transformation. Analogous reasoning now
leads to the necessity of expressing these two mean operators as simple bivectors (denoted
by the symbols ):(,1,c and :§,d == ;%—3?,‘,1, respectively). We have

~

X:;c). = Xx).; XKA = UIJIXKZUN =

N i [Ze O b OxP
=X - ! --LLZ‘l —on {_i - chnll. . 47
2 2EN(Ex+m) 2Ey  2EMExn+m))
3 §;A =314 3 fxl = Ug'EaUy =
1. PE,-0,P, i [0
=_5 - N o — [_LJ‘L] . (48)
2 2E(Ey+m) 2 2Ey

The mean operators i,d and ju = Ii,(,-_+§” = J,, can easily bz calculated from (47) and

8 The notation assumed is consistent owing to the fact that the operators Pyj, iz, B, Exy and Oy com-
mute with cach other, except for X ; with each other with ®y. (They all also commute with g5, oy, o)
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(48), while for the mean-velocity operator ¥, we obtain

~

2 2 I PK
VK)' = idNXKl = _i[XKJ.’ ‘%N] == iN 4 Y (49)
Ey
Z Pk/l
V., = 50
ki = Om E, (50)

In this way all essential results characterizing the FW-representation for the Dirac particle
have been reformulated in a manifestly covariant way, in terms of the generalized particle
observables.

It is possible to deduce (25), (26) and (39)-(48) (here obtained by arguments using
(27) and (28)) in a more systematic way. A step by step covariant generalization of the
original considerations of Foldy, Wouthuysen and Tani is necessary for this purpose.
The explicit and rather lenghty calculations will be given separately (Rakowski [26]).

4. Physical interpretation of the displayved covariant formalism

The formulae (1)-(50) represent, so far, a purely formal scheme, allowing one to
express in a manifestly covariant way the quantum-mechanical description of a particle
which, in particular, has been assumed to be the Dirac particle. The problem of construc-
ting a meaningful and internally consistent scheme of physical interpretation on this
mathematical basis is, however, not straightforward, as the known postulates of special
relativity must be combined in a compatible way with those of quantum theory (including
the problems of measurement of quantum dynamical variables). At first, the physical
meaning of the vector n, must be defined, as various points of view on this subject are
possible and encountered in the litterature. In particular, Fleming® has identified the set
of all n, (filling the future cone) with all possible inertial frames (“observers”, according
to the terminology used in [27]). This assumption corresponds to the “active point of
view” on the Lorentz transformation when transforming #,. Following, alternatively,
the “passive point of view”, one must treat n, as an arbitrary, but fixed vector. However
attractive the former may of interpreting », might seem to be, only the latter can remain
consistent with our formalism, as only then X,,, P,;, L.; and S,; possess the postulated
transformation character in the Minkowski space. Hence, n,, in analogy to the dynamical
quantities, X,, p,, /,, and s, must be understood a fixed vector (i. e. distinguishable for
some physical reason). In contradistinction to the latter, n, has been treated, however,
as a c-number quantity. In this situation the most natural (and, perhaps, the only possible)
interpretation is that n, specifies the time axis in the “laboratory frame” (in which some
macroscopic equipment, suitable for measuring observables of the described particle,
remains at rest). We assume this interpretation of n,, obviously consistent with the well-
-known active role of measurement in quantum theory. This interpretation completely

2 in the paper [20] already quoted; for some further considerations on this subject see also Hammer
and others [27].
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determines that of our generalized particle observables (discussed in the two preceding
Chapters). Having the manifestly covariant form, they bescome, on the other hand, frame-
-dependent, as the choice of the laboratory system is inherent in their definition. In other
words, the quantum-mechanical description of the Dirac particle can be “translated”
from one Lorentz frame to another, in the geometrical sense, but no covariant generaliza-
tion of the “instant measurement’ in one specified frame into a “hyperplane measure-
ment” (in the sense proposed by Fleming) can be obtained within our scheme of interpreta-
tion, as the choice of the laboratory frame has now bzcome the physical, and not the
geometrical problem. In this respect our results essentially deviate from those of Fleming.
(For the same reason our generalization of the FW-transformation differs from those
discussed in [20] and [27]). The explanation of this difference is simple, if we remember-
ing that our considerations deal with the specific properties of relativistic quantum-mecha-
nical systems, describad in terms of their own observables (including the position observ-
able, a notion completely different from that of space, or space-time coordinates). The
generalized particle observables defined by us seem just to characterize peculiar difficul-
ties of this description, rather different from those met in quantized field theory!®,

The implications of general quantum postulates for the above interpretation must
now be analysed. Two important questions concern the Hermitian character of the general-
ized particle observables and the consistency of their algebraic properties (understood in
the sense of “‘strong” relations) with the Schrédinger equation (6) playing the role of
a subsidiary condition. This consistency has been established, as yet, only for a simplified
model of a ‘‘relativistic quantum-mechanical system possesing a classical analogue™
(since only commutation relations obtained by the correspondence arguments have been
used in [4], in order to deduce (6)). It is also obvious that X, and P,; can be treated as
Hermitian operators (the presence of the imaginary unit in their space-time components
arising merely from the notation used). The problem becomes more complicated for systems
possessing internal degrees of freedom, as then additional observables appear in the Hamil-
tonian (5). The problem of the Dirac particle gives a good insight into the character of diffi-
culties arising in such cases. Simple considerations show that in our case these difficulties are
immediately related to the well known, specific property of the Dirac operators y,. As four
Hermitian operators, they form a vector in an abstract four-dimensional euclidean space,
rather than in the Minkowski space with indefinite metrics'?. This “pathological” geometri-

. i
cal structure of the vector y,, and, in consequence, also of the tensor ¢,,= — > Gurv—707

manifests itself by many characteristic features of the relativistic electron theory, e. g. by

10 All field operators (hence, also all local observables) are functions of the c-number variables x,.
Therefore, the procedure of translating the physical description from one Lorentz frame to another resembles
more closely that encountered in classical physics. On the other hand, it is well known (see e. g. Wigner [28])
that within field theory x, do not possess any immediate connection with the position of the particle in
space-time.

11 The explicit use of the signature (+ — — —) does not change anything, as then 3%+ = 9°, but
pI+ = —3J,j = 1,2,3 must be assumed.
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the necessity of using 9 instead of u* in the conjugate covariant Dirac equation (although
p* represents the state vector of the first quantization in the dual “bra” space), or by the
appearance of an “imaginary electric dipole moment” in the second-order equation (de-
scribing the Dirac particle in the external electromagnetic field). That property of y, also
causes serious complications in the physical interpretation discussed in this Chapter.
The covariant Dirac Hamiltonian (14), as well as other generalized particle observables,
cannot be treated as a Hermitian operator, since 75 # vy, OF # Oy (bzcause of the factor
i lacking in the fourth component of y,). Moreover, as it can be easily verified, the con-
sistency of the Schrédinger equation (6) with the algebraic (“strong”) relations cannot be
maintained in the presence of the Dirac operators’?. A way out of the apparent discrep-
ancy appearing at this stage of considerations is suggested by the already established
frame-dependence of the generalized particle observables. Indeed, there is one and only
one Lorentz frame in which the generalized observables bscome Hermitian, while the
subsidiary and constraint relations, are satisfied identically. In this frame, specified by
the condition

n, = (0,0,0,0), (5D

all our covariant formulae pass over into the usual, three-dimensional ones, so that the
traditional scheme of interpretation of quantum mechanics bscomes valid. As, in ac-
cordance with our basic assumption (51), specifies the laboratory frame, its distinc-
tion is of a physical character and does not contradict the principles of relativity. The
covariant formalism manifests the possibility of a geometrical translation (in terms of
the space-time coordinates) into an arbitrary Lorentz frame, of the physical results related
to the arbitrary, but fixed laboratory frame.

The conclusion obtained makes possible a consistent physical interpretation related
to the previously constructed quantum-mechanical covariant Hamiltonian formalism.
On the other hand, this conclusion imposes considerable restrictions on the meaning in
which Lorentz covariance can be understood within this formalism. Although the fore-
going considerations have dealt only with the case of the Dirac particles, one may say, with-
out going into detailed calculations, that similar complications are to be expected for
bosons described on the “first-quantization™ level. The best way to give such a descrip-
tion is to use the known f-formalism of Kemmer [29], based on a covariant first-order
wave equation similar to the Dirac equation, but with the Duffin-Kemmer operators f,
instead of y,. As the symbolic four-vector §, possesses the same “pathological” geometrical
structure as y,, the same difficulties must appear in calculations leading to the covariant
Hamiltonian formulation of the Kemmer equation (apart from some additional complica-
tions having their source in the singularity of f, — as then the Hamiltonian formulation
is no longer equivalent to the initial wave equation).

12 1t is impossible to eliminate yx, by expressing it in terms of some “‘spacelike quantities”, as this
has been done in the case of py, since y, are mutually independent. On the other hand, because of
their “pathological” propertics, yx can hardly be treated as the “timelike component”. At any rate, yy ap-
pears, inevitably, in the Hamiltonian causing the above-mentioned difficulties.
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The limitation imposed on the meaning of Lorentz covariance in relativistic quantum-
-mechanical problems has appeared to b2 indispensable within the proposed Hamiltonian
formalism. This limitation seems, however, to possess a more general character, as its
source lies in the algebraic properties of the operators y, or f,, rather than in the given
formalism itself. It has already been stressed that the formalism does not require any
such restrictions in the somewhat trivial case of a quantum system possessing a classical
analogue, hence, not possessing any internal degrees of freedom (contrary 1o the more
interesting cases of the Dirac or Kemmer particles). The presence of these internal degrees
of freedom seems to be the main cause of the difficultics which have led to the necessity
of a specific approach toward the problem of Lorentz covariance. One may relate this
result to the known fact'? that Lorentz transformations, whitch leave {y rather than
p*y invariant, do not correspond to unitary transformations in the Hilbzart space
of relativistic quantum-mechanical states (of the Dirac or Kemmer particle), in con-
tradistinction to field-theoretical problems where such a correspondence plays a funda-
mental role.

The covariance of the generalized mean-operators (defined by the formulae (47)-(50))
must be understood in the same restricted sense. This result provides an additional
argument in the controversial problem of the covariance vs the non-covariance of these
operators. On the other hand, the distinctive meaning of these operators (relegating to
them the role of the “true particle observables”) so suggestively implied by the papers
already quoted ([6], [7]. [9] and [10]) has bzen confirmed by our results, at least for
relativistic quantum-mechanical problems (understood in the sense specified in this
paper).

The interplay of the manifestly covariant mathematical formalism and of the restric-
tions imposed on the former for the sake of correct physical interpretation may be illus-
trated by the example of the covariant FW-transformation (formulae (25) ane (26)). The
covariant triple gy, gli, om possesses all the algebraic properties (except hermicity) of the
non-covariant g,, ¢,, ¢3. (In the traditional formulation of the Dirac electron theory
the latter are often treated as a three-vector g; however, contrary to the spin vector a, o
has nothing in common with the physical three-dimensional space, so that its covariant
generalization is not related to the Minkowski space). Hence many interesting formal
considerations, including the interpretation of the FW-transformation as a rotation in
the g-space may bz immediately extended to the covariant case. Nevertheless, only in the
laboratory frame (51) does this transformation bzcome unitary and acquire the property
of transforming the Dirac Hamiltonian into the “even” form (separating positive and nega-
tive energy states). It should be still stressed that, although the meaning attributed in our
considerations to the Lorentz invariance deviates from the traditional point of view, it
remains compatible with the axiomatic approach (setiing up only one condition: that

'3 This problem has been raised e. g. by Bollini and Giambiagi [30] in connection with their studies
concerning some analogy between the homogeneous, special Lorentz transformations znd the FW-trans-
formations. (The problem has been, subsequently, discussed from various points of view in many papers
not quoted here).
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the proper, inhomogeneous Lorentz group be the symmetry group for an arbitrary physical
theory consistent with special relativity). In particular, the consistency of the proposed
physical interpretation with the Haag postulates (quoted e. g. in [20] and [28]) has been
preserved.
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