Vol. B4 (1973) ACTA PHYSICA POLONICA No 4
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The ceefficients &, 5, ¢ and J appearing in the expansion of the nuclear rotational
energy in powers of the square of angular velocity are calculated by a microscopic method.
Two simplified nuclear two level models are used: (i) with use of the BCS approximation,
and (/i) based on the exact diagonalization of the nuclear rotational Hamiltonian including
the short-range pairing forces acting between the nucleons.

1. Introduction

It is well known that the nuclear moment of inertia increases with rotational angular
momentum I. Nuclear rotational energy can be expanded in powers of I. However, it has
been observed [1], [2] that the expansion in powers of w?® where w denotes angular
velocity of the rotational motion leads to a much faster convergence and is, therefore,
more useful in fitting the observed energy spectra [3], [4]. Writting down the energy
expansion

E = aw*+ fo* +yn® + 608+ ... (1.1)
together with the selfconsistency condition [1]
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derived from the cranking model of Inglis [5], [6] we obtain the following expression for
the nuclear moment of inertia

oo 4 6 8
= — =2 - o’ + -yt + = S +.... .
5 w\/l(1+) <x+3/3w+5yw+7w+ (1.3)

The coefficients «, f§, y, 6 ... appearing in the above expressions could be in principle
calculated from the microscopic theory involving parameters characteristic for the nuclear
structure. However, up to now only the parameter « equal to one half of £, (where %, is
the limiting value of the moment of inertia & when w — 0) has been calculated. The crank-
ing model formulae for the higher-order parameters f, y, 6 are complicated [1], [7].

In this paper we attempt to present microscopic calculations of the parameters a,
B, 7, 8 in case of two simple solvable models of the nucleus where the single particle struc-
ture is replaced by a schematic model with a two level spectrum with high degeneracy.
We shall first use the extended cranking model and treat the nuclear superfluidity in the
framework of BCS theory [8] and second employ an exact model of particles coupled
to a rotor. The latter model has been developed recently in connection with the investiga-
tion of the phase transition in a rotating nucleus [9], [10].

2. Cranking model method with the BCS approximation

Instead of calculating directly the total energy of the nucleus as a function of the
angular momentum 7 it is convenient sometimes to perform a contact (Legendre type)
transformation (see for ex. Ref. [11]) using the moment of inertia ¥ as the original va-
riable. Thus, we may introduce the moment of inertia through the relation

w228 = dEJd(II+ 1), @2.1)

this equation being fully consistent with Eqs (1.2) and (1.3). Now instead of considering
E(I) as function of I(/+1) we may use

V() = E(D)—h?[(I+1)[2.5. 2.2)

This is essentially in line with the VMI (= variable moment of inertia) model consi-
dered in Ref. [3] where the intrinsic nuclear energy V is a function of .#. In case when
the short range pairing interaction acting between the nucleons is important one may use
the energy gap parameter 4 instead of £ as an independent variable assuming the existence
of a well defined monotonic function J = #(4). Then Eq. (2.2) may be written as

h2I(I+1)

E = V(4)+ m,

(2.3)

where the new function ¥(4) is now

V(4) = V(F(4)). 24
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We shall now assume that the usual form of the cranking model expression

F = 2 Z '%{i'éi!.- @5

i

for the nuclear moment of inertia # is valid at any value of I (or w) and the dependence
on I (or w) enters only through the intrinsic parameters of the rotating system such as
energy gap 4, deformation efc. In this section we shall be dealing only with the pairing
correlations, neglecting the other degrees of freedom. Now, the usual gap equation for A4
is not valid but instead the expression (2.3) should be minimized (¢f. Refs [12], [13] and
[14]) separately for each I. The condition

OE); — fxea = 0 (2.6)
leads to the relation (¢f. Ref. [14])
(dV]dA)/(dF|da) = dV]dF = w?[2. @.7)
Here the relation
w = hVId+1) ]9 (2.8)

has been employed (¢f. Eq. (1.3)).

Now, let us assume that the nuclear spectrum consists of two levels only with the pair
degeneracy £, each. Let us denote the level splitting by 2¢ and assume that number of
particles is equal to 22 (i. e. to one half of the number of available states). The standard
BCS theory employed together with the cranking model method leads to the following
expressions for ¥ and # the notation is standard (¢f. for example Ref. [15])

V=Ye20-GX up)—GY v} =

= —2Qe% /N + 4% — GQ?*4*|(e* + 47), (2.9)
where the term containing v# has been neglected.
Now
S =207 ¥ [Kvljdmd P (p,—v,u ) (E,+E) T =
uv
= &S (8 +4%) 72, (2.10)
where

hz
Frig = " Z [Kvijxludi® (2.11)

ny

denotes the rigid-body moment of inertia in the model. Now, using Egs (2.9) and (2.10)
we can express V as a function of

V = —20u(F/F,,) "} — GRY (1 —(£]F,:)*"). (2.12)
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This equation is the particular form of the dependence (2.4) valid for the two level
model. Hence, according to relation (2.7)

0 = — $ QeI ) (IS4 P+ £ GRS S P (2.13)
This equation can be solved for .#:
S = 8" g 2.14)
G’ {1 F(1-35,,,80% G Q*)}3 " '
In case of
G/G. > 2 (2.15)

relation (2.14) leads to the multivalued expression for £ as a function of w? giving a “back
bending” curve and can be related [14] to the existence of the rapid phase transition
[16], [17], [18]. Here G, denotes the critical value of the pairing force strength G, below
which no superfluid solution exists in the framework of BCS theory. In the two level model
we have

G, = /0. (2.16)

For our purpose it suffices to consider only the plus sign in expression (2.14) and to
expand it in powers of w?® Comparison with Eq. (1.3) gives

1/G\?

o = i E jrig’ (2.17)

27 (G \*
B = R(E) FL)(Q°G), (2.18)

135/G.\° .,

v=5lc IR GP), 2.19)

1323 /G,.\°®
= 8 (E) I/ (Q°G?). (2.20)

Instead of the parameters «, f§, ¥, J, ... it is convenient to use moment of inertia £, at
o — 0, the nuclear softness parameter ¢ [3], and the two parameters ¢, d defining the
curvature in the curve £(®?) (¢f. [4]). They are related to a, B,y and & in the following way

o = 20, 2.21)
o = fl(603), (2.22)
¢ = ay/p? (2.23)
d = 5o, (2.24)

The parameters o, ¢ and d are dimensionless.
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It is worth to notice that the parameter ¢ is constant in this model:
c = ay/p? = 20/27. (2.25)

On the other hand the parameter d is not constant:
392/GY* _,

3. Particles coupled to rotor

Let us now turn our attention to a different model of a rotating nuclear system. It
is based on the coupling between a system of N = 2Q valence particles distributed ower
two levels split by an energy difference of 2¢ with a pair degeneracy 2Q each, as before,
and a rotor characterized by the moment of inertia h2/a. This model has been described
in detail earlier [9], [10]. Here, we shall only briefly recall the most essential points.

We shall assume that each pair of states in the upper level together with the corre-
sponding pair of states in the lower level form a split j = 3/2 multiplet (Fig. 1) and we shall

m Y = 73 ‘_;][_.__ —_— mJ-:—%
V3 V7
| IR

v 71 ———R/
2

Fig. 1. The two level model referred to in the discussion in Section 3. The numbers at the arrows indicate
magnitudes of matrix elements between the single particle states

use index a to list the four possibilities: m = +32 (@ = 1),m = =32(a=2),m = +1/2
(« = 3)and m = —1/2 (x = 4) as indicated in Fig. 1. Now, if cf, denotes a creation oper-
ator in the state k (k = 1, 2, ..., Q) corresponding to given value of « = 1, 2, 3, 4, we
can construct 16 operators

Q
N:zﬁ = ZILCIkaﬁ (3.1)
k=
together with the 12 operators
2
Biy = Y clcl (3.2)
k=1
and
B, = (Bipt. (3.3)

One can casily see that the commutation relations of the operators (3.1) to (3.3) close.
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The set of 28 operators N, Bl; and B,; forms therefore an algebra of R(8), the group
of rotations in 8 dimensional space. The Hamiltonian of the system containing the rota-
tional term, pairing forces and single particle splitting has the form

a
H = > (I-j)*+Hp+H,,. (3.4)

The pairing forces Hp can be written in terms of the operators (3.3):
Hp = —G(B,+BL,) (B;2+Bs.), (3.5)
while the single particle Hamiltonian H,, is simply
H,, = 2&(Ny1;+ Ny, — N33~ Nya). (3.6)

In this paper we shall employ the simplified version of the model corresponding to
the introduction of a two dimensional rotor that can only rotate about a fixed axis (say,
x-axis) perpendicular to the nuclear symmetry axis (z-axis). In this case the Hamiltonian
H’ reduces to a simpler form

a
H=-d ~j)*+Hp+H,,, (3.7)

where H and H,, are given as before by Eqs (3.5) and (3.6), respectively. Now, the
generators entering (3.7) form under the commutation relations a subalgebra of the full
R(8) algebra. This can be shown [10] to be an algebra of R(6). Its 15 generators are

K. = Bl,, K_= B,,,
A, =B, A_=B,,,

Ty = }(Bl4+Bs+Bls+Bl.), I' = §(Bis+By3+B,3+B,4),
4y = Y(Bi4+Bi;—~Bl;—Bl.), A- =4(Bia+B2s—Bi3—Buy),
hy = ¥(N13—Nps+Na3—Nya), he = 3(N3; —Naz + N3 —Nyy),
er = 3(Ny3—Nyu—Ny3+Nyy), e = §(N3; —Nyz—Niz+Nyy),

N = 3(N1y+ Ny +Nyz+Nys)
V= 3N 1+ N2 —N33—Nyy),
D = (V124 Ny — N3y — Naa). (3.8

The operator j, can now be expressed [10] in terms of generators (3.8)
3 .
Jx =\/7(h++e++h_+e_)+D. 3.9

It can be checked that the set of the operators (3.8) closes under the commutation
rotations. The lowest energy states of the Hamiltonian (3.7) correspond to the symmetric
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representations of R(6). Matrix elements of various terms in (3.7) in these representations
are found with use of the Gel'fand Tsetlin method {19] and the Hamiltonian (3.7) is then
diagonalized numerically for several values of I. Simultaneously, the angular velocity

w = dEjdI = a(I—{j.>) (3.10)

is calculated for the same set of I values. In this way the total energy E is determined numer-
ically as function of w? and the parameters «, 8, y, 6, ... are found with use of Eq. (1.1).
Another more convenient version of the calculation consists in computing numerically
the moment of inertia

£ = hllo 3.1

and using Eq. (1.3) instead of (1.1) for the determination of the parameters a, B, y, 6,...

It is worth noticing that formulae (3.10) and (3.11) contain [ instead of \/I(I—!—l).
This is the deficiency following from the assumption of the two dimensional rotation.

4. Discussion

We have performed the calculation of the coefficients a, §, y and J in the expansion
of the rotational energy in powers of the square of the angular velocity. Two simple models
have been employed in the calculation. Both of them are based on the assumption that
the single particle spectrum of the deformed nucleus can be replaced approximately by
two highly degenerate levels. The first of the two models (model 1) discussed in Sec-
tion 2 employs the BCS approximation. Now, the expression (2.5) for the moment of
inertia # contains only the first term of the cranking model expansion, while the higher
order terms (considered for example in Refs [1], [7]) have been neglected. Consequently,
the increase of the moment of inertia with @ (or 1) is caused only by the change in pairing
correlation. Thus Eqs (2.17) to (2.20) for the coefficients @, 8, v and & are limited only to
the contributions coming from the antipairing effect. On the other hand the particle-
-coupled-to-rotor model (model 1I) based on the exact diagonalisation of the Hamiltonian
(3.7) contains the sum of the contributions coming both from the antipairing effect as
well as all the higher order terms in the cranking model (i. e. terms proportional to w*, w5, ...
in expansion (1.1)). Furthermore, model Il describes the motion of 22 external particles
coupled to a rotor, while in model I the rotor does not exist and the motion is determined
by the 2Q particles only.

The above reasons make rather difficult a strict comparison between the two models.
Nevertheless, it seems interesting to look at the properties of the parameters «, f, y and
resulting from the two approaches. In the discussion below we try to compensate partly
for the nonexistence of the rotor in model I by assuming the degeneracy Q slightly higher
as compared to € in model 11 (see Figs 2, 3, 4 and 5 below).

Fig. 2 presents the variation of the quantity 2« = 4, as a function of the pairing
force strength G. We can see from this figure that model 11 based on the exact diagonalisa-
tion of the Hamiltonian gives a much slower variation of # with respect to G as compared
to the BCS theory (model I). This may be partly caused by the fact that at G — oo the
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quantity £, goes to the finite limit equal to #%/a, the moment of inertia of the rotor in
model II. Nevertheless one may suspect that the BCS theory underestimates the moment
of inertia in the physical region (i. e. for G slightly above G.).

10 \ s

4 t ! 1 t \‘T““—r e
g 004 0.08 ar G

Fig. 2. The perameter 2 = £, plotted versus the pairing force strength G. Solid line corresponds to

model 11 discussed in Section 3 with the parametrs @ = 0.04, ¢ = 0.2 and £ = 4. Dashed line represents

the results of mode! I Section 2 using ¢ = 0.2 and 2 = 6. The parameter #;; appcaring in model I (see
Eq. (2.17)) has been chosen as to fit both the curves for G = 0
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Fig. 3. The parameter f§ plotted versus the pairing force strength G corresponding to model II (solid line)
and 1 (dashed line). For the parameters used see caption to Fig. 2

Figs 3, 4 and 5 illustrate the variation of the coefficients B, y and 6. One can see that
both the models give roughly the same G dependence of these coefficients in the region of
large G (i. e. for G/G, considerably exceeding unity). On the other hand, in the region of

G ~ G, or G/G, < 1 the BCS approximation is useless and we can only discuss the result
of model 1I.
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The two parameters y and J determine the curvature of the function S (w?). We can
see that the BCS formulae (2.19) and (2.20) always give positive values for these coeffi-
cients. However, it remains an open question what would be the signs of the higher-order
cranking model contributions in the framework of the BCS approximation. On the other

: H
-02L L IJ 1 i 1 : }
¢ 204 308 a2

[

Fig. 4. The parameter ¥ plotted versus the pairing force strength G corresponding to model II (solid line)
and I (dashed line). For the parameters used see caption to Fig. 2
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Fig. 5. The parameter & plotted versus the pairing force strength G corresponding to model 11 (solid line)
and 1 (dashed line). For the parameters used sce caption to Fig. 2

hand model 1I shows that y and 8 can vary very rapidly and even change signs. The values
coming from fitting of Eqs (1.1) to (1.3) to the experimental spectra seem to indicate that
y is negative and & — positive in the region of actual G [4]. Fig. 4 and 5 show that this
can occur in our model II only at the region of very small G (G/G. <€ 1). However, the
discussion of the detailed properties of these two parameters clearly requires a more
careful investigation exceeding perhaps the simplified two-level model.



446

The total moment of inertia calculated 1in model 11 is shown in Fig. 6 as function of
2. The increase of £ in this plot is caused by a combined effect of the antipairing contribu-
tion and the higher order terms in the cranking model (solid line). The dashed-and-dotted
line in Fig. 6 illustrates the calculation in model 11 with G = 0 (i. e. containing only the
higher-order cranking model terms without the antipairing contributions). The consider-
able increase of F in this case proves that model I is by no means limited to the antipairing
effect. 1t may be seen that the calculated moment of inertia # exceeds the vatue of £,
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Fig. 6. The nuclear moment of inertia £ plotted versus w?. Solid line corresponds to model 1T calculated

with G = 0.045. Dashed line represents calculation in model I for the same value of G. The dashed-and-

-dotted line illustrates the calculation for G = 0 in model I1. For the other paramcters used see caption
to Fig. 2

considerably at high angular momenta. The dashed line in Fig. 6 represents the resuits
obtained in model I based on the BCS theory including only the antipairing effect without
the higher-order cranking model tzrms. The curve is much steeper in this case. This
reflects probably the deficiency of the BCS approximation in the rotating nucleus.

On the other hand let us notice that in model 1I (Section 3) the distinction between the
external particles and the rotating core is somewhat arbitrary. This is an obvious imperfec-
tion of this model. Very roughly, one has to assume that the nucleons close to the Fermi
surface (and, therefore, interacting viag pairing force most effectively) are treated explicitly
as external in Egs (3.4) or (3.7) while the remaining contribute to the core. Only in this
case one may hope that the quantity a in Eqgs (3.4) or (3.7) depends very weakly on G
and therefore this dependence may be neglected.

Although the above calculation does not answer the interesting question why is the
expansion in powers of w® so much superior to the expansion in I{I+1), we hope that
it can be useful in the quantitative estimates of the expansion parameters a, f, 7, d.

We would like to thank Drs @. Saethre, S. A. Hjorth, A. Johnson, S. Jagare and H.
Ryde for their king permission to include their results (Ref. [4]) prior to publication.
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