Vol. B4 (1973) ACTA PHYSICA POLONICA No 4

NUCLEAR INERTIAL MASS PARAMETER B IN THE ADIABATIC
APPROXIMATION
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The nuclear inertial mass parameter B is investigated by means of two slightly different
approaches, both making use of the adiabatic approximation for the collective motion. The
numerical results are given for two regions: the superheavy nuclei 108 < Z < 124,
1722 < N < 188 and the neutron-rich nuclei 88 < Z < 104, 172 < N < 194,

The influence of the choice of the Nilsson model parameters » and u is investigated
together with the dependence on the deformation parameters € and &,.

1. Introduction

One of the most interesting topics in the nuclear physics of the last few years ic the
problem of stability of superheavy elements (SHE) around Z = 114 and N = 184. In in-
vestigating the properties of the nuclei in this new region and in looking for the possible
means of producing them one has to consider the spontaneous fission half-lives in the SHE
region and — as was pointed out in Ref. [1] — for the nuclei on the r-process path:
8 <LZ<<104, 1T2< N 194

The probability for the penetration of the potential energy barrier ¥{g) in the WKB
approximation is given by

P = exp {—2 f \/2528) [V(e)~E] da}, (1.1)

where E is the initial excitation energy of the nucleus towards fission and B(g) is the inertial
mass parameter associated with fission.

The estimatas of the fission half-lives in the SHE region were made either using the
phenomenological B values independent of deformation (B4-%'3 = 0.054 2 MeV-1) or
with B(g) calculated from the microscopic model (see Refs [2] and [3]). On the r-process
path the estimates are given only with By, [1].
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It is easily seen that the determination of B influences strongly the probability of
fission (1.1). The aim of this paper is to compare the results ¢f micioscopic calculations of
the mass parameter B in the two slightly different approaches.

In Section 2 we describe the microscopic formalism which starts with the two-body
Hamiltonian. An appioximation is made consisting in replacing this Hamiltonian
by a one-body operator and the formula for the mass parameter B, is found in the
haimonic approximation, i. e. to the second order in «, where « is the deviation of
the nuclear multipole moment from its extremal (equilibrium or saddle-point) value.
One can thus expect that this approximation will be less reliable far from the extremal
points. In the investigation of the nuclear fission we would like to cover a wide range of
nuclear shapes, taking into account the vicinity of the extremal points as well as the region
far from those points.

In Section 3 we derive another microscopic formula for B (we shall denote it by B,),
which is valid in the whole range of the deformation. This approach starts with the one-
body time-dependent Hamiltonian. Nevertheless we are faced with another problem, namely
we derive B, in terms of the potential deformation instead of the density deformation.

2. Derivation of B in the microscopic model

We follow here the description of the collective motion given in Refs [4] and [5].
One assumes the Hamiltonian of the system in the form

H=H0—g&-&, @.1)

where « is a one-particle operator corresponding to the deviation of the nuclear multipole
moment (in our case — the quadrupole moment Q) from its value in the extremal point,
i. e. equilibrium or the saddle-point deformation. H, is the average deformed potential
plus the short-range two-body forces.

Instead of (2.1) we consider a one-body operator replacing aa forces by an average
field of the multipolarity considered:

H, = Ho—rxay (D)4, (2.2)

where the average time-dependent multipole moment ay,(f) describing the deformation
of the potential is chosen in such a way that the expectation value of & in the eigenstate
loy > of (2.2) is:

{ayi@ioy) = a. (2.3)

Here o = of?) is the nuclear multipole moment of the density, not the potential. At the
extremal points however (see [4])
oy = a. 2.4

The wave function oy, > is taken as

> =Y e e &1, @.5)

J



469

where |j ) and E; are the eigenstates and eigenvalues of the time-independent part of H
i. e. Hy. Assuming the harmonic time dependence of our field:

oy = 0 COS Wt 2.6)

we look for the coefficients c;(t) of the expansion (2.5). From the Schrédinger equation
for the wave function (2.5)

)
ih = la(0)> = HOlan(0) @7

we get in a straightforward way

i i
- — Ext —

ihie F = —xa, Ykl B 28)
J

We assume that the grouna state |0 ) is the leading term in the expansion (2.5) by putting

c(t) = djo+afn) 2.9
so that
- 3 ot " i Ejt
oy = [0)e + ZO a Dljde * (2.10)
i*
and (2.9) gives
. = Ext - ot
ithae * = —xuyCkig|0de * (2.1
or
K , i (Ex—Eo)
a = — o <kig0) fay(te® dt. (2.12)
Together with (2.6) this gives
i (Ex—Eo+ #w)t ! (Ex~Eo~ o)t
K ka0 | + & 2.13
a, = — {Ki& R — — m— - 1. .
kT N E —Eg+hw | Ey—E.—ho 213

If we express the total energy of the nucleus in terms of « and @ we obtain the inertial
mass parameter B from the term proportional to a? according to the relation:

E = Ey+% Ca?-+1B o2, (2.14)

When we include the terms up to the second order in g, together with the seifconsistency
condition for the expectation value of o in the state |a, > we get:

Sl ey Z IRIOMA(E; — Eq)
E= s Eqo+x*ad(hw) ) [E, Eoy—(hay' T (2.15)
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When o is given by (2.6) we get the relation

a?+aw? = w?s? (2.16)
and
j1410>|*(E;— E
B = 2K32h2 |<Jl I >12( j 2)2- (217)
[(E,j"Eo) —(hw) ]
ji#0
In the adiabatic approximation we put
so that
2z
B,=h? 2, 2.19
@z, @)
where
I1<j1810)|?
Z, = —, i=13. (2.20
: Z (E;—Eo) )
j#0
For the superconducting nucleus we obtain for Z;:
[KvI81p) (w0, + u,0,)?
Zi = n > i = 1, 3, 2.21
(E,+E,) i (2:21)
Vi
with
E, = V(e,~)*+4%, (2.22)

where A is the Fermi level and 4 the energy gap. The occupation factors for the single-
particle level |v ) fulfill

w4l = 1. (2.23)

In our case o describes the quadrupole moment Q so that

&,
Bl = gy = <] \/?r Y;0l1> (2.24)
and
_ o (42Y
B, = B, <Zi£> . (2.25)

It has to be stressed that during this derivation we made use of the assumption that
we are close to the extremal point of the nuclear potential energy. First, the operator &
was defined as the deviation of the nuclear moment from its extremal value and the ex-
pansion of the total energy in o and « was made up to the second order terms in « and &.
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Second, the mass parameter B is related to the nuclear density deformation o, whereas
the calcalation is made in terms of the potential deformation ;. We are able to pass from
one to another because of the self-consistency conditions (2.3) and (2.4).

3. Alternative formula for B

In this section we review the adiabatic approach to the collective motion outlined
in Ref. [6]
As before, we are looking for the solutions of the Schrédinger equation

L0
ih 5, Y0 = HOw(), 3.1

where H(t) varies slowly with time. Now the solutions of the energy eigenvalue equation
at each instant of time are assumed to be known:

H(u,(1) = E,(Du,(D). 3.2)
We assume that the wave function u(t) is given by

W= > e - 3 B0 u0. 63

n

If we assume that the system is in the ground state [0 at ¢ = 0, we can put as before
an(t) = 5n0+cn(t)' (3.‘4)
Substitution of (3.3) into (3.1) gives

t

i ot ou, i E i E ()it
i au,+a, o ;l—a,,u,, L lexp| — — | E(t)dt' | =
0

n

b4

4

= Z a,u, exp [ - é jE,,(t')dt'] (3.5
o

n

1

) i (- a

4y = — E a, exp [in(Ek—En)dt]fuk o & (.6)
o

n

so that

For the last integral in (3.6) we get

_ Ou,
iy - dt = — = . 3.7
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In addition we make here the adiabatic approximation assuming that all the quantities

ay, Uy, Ex—E,, 0H|0t are slowly varying with time. This allows us to find

As before we calculate the total energy of the system

ki — 10
oy _ +hzzl<| 7 o>t
Cyly) ° (Ec—Eo)®

0H ©OH oa JH .

—a,
ot Jo. Ot Jo

When we put here

where o describes the deformation of the nucleus, we get

I(k! — I0>|

E = Ey+o0®— ZZ ;
° (Ex— Eof
hence
0H R
i<k N 10>
~¢ = h22 '—3 = h2223.
; (Ex—Eo)

k#0

In the case of the superconducting nucleus X5 is given by the formula

0H
l<vl ~ i“>12(uvv + uuvv)2

8o Y Gy
T (E,+E,)’

Y

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

In this derivation we did not assume that we are close to the extremal-point deforma-
tion. Unfortunately it is evident that in this case we are dealing with the deformation
of the potential instead of the deformation of the nuclear density. Moreover, we have no
means of relating those deformations between themselves because from the beginning
we deal with the average field and we have no self-consistency conditions analogous to
(2.3) and (2.4). We can only hope that because of the short-range character of the nuclear
forces the shape of the nuclear density and that of the equipotential surfaces are very

similar.
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4. Description of the calculations

Inertial mass parameter B was calculated according to the formulae (2.19) and (3.12)
in the region R: 88 <CZ < 104, 172 < N < 194. In the SHE region only the formula
(3.12) was used because the B, values in this region were recently calculated in [3] with
the formula (2.19).

The dependence of B on the quadrupole ¢ and hexadecapole &, deformations was
investigated. To obtain the single-particle energies we used the Nilsson model single-
particle Hami'tonian with 1he deformed osci'lator potential:

h wo(s, 84) 2

2
Ve, &) = 5 e [I ~3 eP,(cos 8,)+2e,P,(cos 6,)] —

— icharg[2hs+p(I% = (1?5y]. @.1)

Here &, n,{ are the stretched coordinates:

M 1 M i M 2
£ = :0(1+§£>x2, n = i?’°(1+§s)y2, = :)0(1——58)22,

62%‘}?2_%_{2 — 92.

P,(cos 0,) and P4(cos 6,) denote the Legendre polynomials and the subscript ¢ denotes that
the quantity is expressed in the stretched coordinates.
In the formula (2.19) we put

t Té;[— 2 '
vidp) = g, = i “‘5— FY0iv). 4.2)

The corresponding formula (3.12) requires the knowledge of the matrix elements of

0V(e,es) 0 {hwo(a, £4)

2
% A 5 [92 - 5‘8921)2(005 0,)+2e,0P (cos 9,)]} . 4.3)

We find the derivative of the first term from the constant volume condition

) -
s _ 0 [ [0+ 39 Vi-3e] "
[wo(e, €4)]° = @3 j [1— 2 &P, () + 26, P07

-1

(4.9)

The second term when differentiated gives
29(. £ e 5 5
— 2l (12 B 2 002pcos B)— [ = + 2 ) x20%Py(cos 9,)-' ,  (45)
3 o afll 11 3 B

= (1+}e) (1-3e) (4.6)

where
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and
q = 20°P,(cos 8,). 4.7

The pairing forces were included in the BCS approximation; the energy gap 4 and
Fermi level 4 were found from the equations
e,—A @3)

I I
G E,
E, = V(e,—)*+4% 4.9

v

where

and 7 is the number of particles (/. e. Z or N). The equations (4.8) were solved for the number
of levels included in the summation equal to the number of the particles.

The pairing forces strength G was assumed to increase with the increase of the nuclear
surface:

Gz, &) = G(0, 0) ‘;((‘; i‘)‘)) (4.10)

and the initial values in both regions were:

G,(0,0) = 19.55 MeV/A4
in the R region “4.11)
G0, 0) = 13.40 MeV/4

and

G,0,0) = 18.6 MeV/4
in the SHE region. 4.12)
G,(0,0) = 13.30 MeV/4

In the SHE region the fission barriers and B, values were calculated in Ref. [3] with
the Nilsson model parameters x and g fitted to the levels obtained in the Woods-Saxon
potential. We used now those parameters to calculate B, with the formula (3.12).

The parameters « and y fitted to the experimental levels in the Rare-Earth and Actinide
regions can be extrapolated with the mass number 4 (see Ref. [2]). This extrapolation
was made along the beta-stability line. As the region R departs seriously from this line
we took into the calculations three different sets of extrapolated k, u parameters, correspond-
ing to A = 264, A = 280 and A = 294, in order tc explore the sensitivity of the B values
on the choice of those parameters.

In the SHE region the calculations were performed for

g == 0.0(+0.1)0.7 with g, ==¢/10. (4.13)
In the R region the range of ¢ was

e =0.1(+0.1)1.0 4.14)
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Fig. 1. Deformation parameters ¢ and £, taken into account in the calculations in the neutron-rich region

and g, was taken as indicated by the solid line on Fig. 1. The additional g, values included
in the calculation are marked by the open circles.

5. Results and discussion

The numerical results for B, in both versions are presented in Table I (R region)
nad Table II (SHE region) for different values of the deformation parameter &. In both
cases the first column specifies the atomic number Z, the second — the neutron number N.
The third and fourth columns give B, = h2(2X5)/(2%;)? and B, = h2 2%, for & = 0.1;
the next columns give the same for ¢ = 0.4, 0.7 and in the case of R region for ¢ = 1.0.
The deformation dependence of both B, and B, can be seen from Fig. 2 (R region) and
Figs 3 and 4 (SHE region). The solid lines give B, and the dashed ones represent B,. The
differences between those two can be as big as 409 B,.

As mentioned above, in the case of R region three different sets of k and p parameters
were used in the calculation. The resuits for four cases: 18994, 18894 180100 and 188100
are presented in Figs 5 and 6 for B, and B, respectively. It is immediately seen that B is not
very sensitive to the changes of k and u: the biggest discrepancy is less than 109 of the
lowest B value for a given deformation. In general the discrepancies in B, are larger than
those in B,.

The lower parts of Figs 3 and 4 give the fission barriers in the SHE region as calcul-
ated in Ref. [3]. Table Il gives the spontancous fission life-times calculated as

In2 1
Tgp=— —, 5.1
sF=""p .1
where n = 102°3% sec! in the number of assaults of a nucleus on the fission barrier per
unit time and P is given by (1.1). The first two columns specify the nucleus, the third gives
T calculated with B, (taken from [3]) and the fourth contains Tgp calculated with B,.
The fifth column gives the difference

4(log Tr) = log Ts(B,)—log Tsx(B,). (5.2)
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TABLE I

B, and E values in #2MeV—! in the neutron-rich region (» and u values extrapolated to A = 280)

2 | x £m=0.1 £=0.4 €=0.7 £=1.0
By e By g Be e Ag e

88 | 172 | 369.2 299.4 | 700.4 657.4 | 1184.8 1084.6 1623.2
174 | 376.6  305.2 | 673.4 573.4 | 1157.1  1000.5 13372
176 | 430.9 349.5 | 822.8  519.9 | 1030.8  235.5 1229.8
178 | 557.5 481.6 | 719.2 550.5 | 1035.2  8u5.: 1810.¢
180 | 566.8 526.0 | 79C.8 606.5 | 1083.3  S.ii.c 17933
182 | 568.8  ©53.5 | 758.6 561.0 | 1104.8 130C.5 1751.3
184 | 537.5 528.3 | 733.2  532.1 | 1091.7  1052.7 17261
186 | 495,0 480,86 | T30.4 541.5 | 1063.3  1092.6 1238,5
188 | 470.2  451.1 | 748.1 588.3 | 1055.2  1136.7 1665.7
190 | 467.9 448.3 | 782.3 666.1 | 1051.2  1185.% 1625.2
192 | 457.1 4387 | B15.4  749.8 | 1084.3 1233.7 1615.5
194, 4265.1 407.7 | 835,56 818.8 | 1060.1  1278.2 18613.1

94 | 172 | 408.1 379.8 | 712.7 637.2 | 124C.5 1095.6 | 1732.9 1691.6
174 | 427.0 386.2 | 861.4 532,58 | 1210.8  995.3 | 1742.6  16a.1
176 | €77.5 430.0 | 831.8 484.6 | 1020.2  762.9 | 1750.3  1666.9
178 | 632.6 607.8 | 705.0 508.1 | 1003.9  749.7 | 1758.9  1830.5
180 | 632.8  655.7 | 810.9 589.1 | 1078.3  862.5 | 1770.8  1567.2
182 | 637.6 693.8 | 749.5 521.3 | 1110.2  956.9 | 1787.5  1B48.0
184 | 02,1 659.6 | 715.2  483.3 | 1091.%  1006.2 | 1803.3  i499.2
186 | 555.1 598.5 | 7i4.1 491.8 | 1061.6 1040.6 | -833.8  1454.3
188 | 520.7 563.2 | 745.0 548.1 | 1044.4  1083.0 | 1856.9  1408.7
190 | §32.3 566.4 | 802.8 540.6 | 1040.5 1132.1 | 1821,z  13s8.8
192 | 524.7  55B.5 | 857.2  743.5 | 1044.7  1181.0 | 1910.8  1319.9
194 | 492,35 522,0 | 893.8  827.6 | 2051.5 1225.7 | 1952.0 1303.0

98 | 172 | 440.4 420.6 | 753.2  727.1 | 1280.9 1076.8 | 1809.5  1699.5
174 | 460.4  436.9 | 698.2 605.8 | 1237.1  963.6 | 1815.6 1691.2
176 | 507.3  476.4 | 663.8 523.6 | 958.7  670,9 | 1818.2  1660.6
178 | 690.0 691.6 | 737.9 573.6 | 940.8  655.7 | 1820.8 1614.5
160 | 681.7 739.5 | 851.6 672.7 | 1043.1  779.1 | 1826.7  1561.3
182 | 688.4 785.6 | 7B9.6  576.6 | 10B4.9  O76.5 | 1837.9  1508.0
164 | 847.6  742.7 | 725.8 528.3 | 1058.8  917.7 | 1854.3  1455.6
186 | 595.1  670.2 | 712.0 526.7 | 1017.8  941.9 | 1872.5 1401.8
188 | 567.3  628.9 | 731.1  575.6 | 994.9  BY7.0 | 1887.5 1343.8
190 | 572.6 834.2 | 780.4 870.0 | 988.5  1020.1 | 1901.6 1287.8
192 | 566.2 628.6 | 826,86 771.2°| 991.5 1062.5 | 1620.6 1232.5
196 | 529.1 586.1 | 850.3 847.3 | 996.5 1099.8 | 1953.6 1205.¢

10¢ | 172 | 475.6  454.4 | 827.6 954.3 | 1538.9 1141.1 | 2018.2 1888.3
174 | 497.8  460.1 | 777.1  B14,3 | 1522,0 1024.2 | 2026.8 1880.0
176 | 538.2 . 489.3 | 747.5 719.3 | 1138.8  €33,3 | 2031.0 1847.4
178 | 795.4 75.2 | 832.5 793.1 | 1156.3  631.2 | 2036.7 1796.8
180 | 767.2  616.6 | 969.8" 942.9 | 1324.4  800.3 | 2045.5 1739.8
182 | 778,8 876.1 | 873.4 813.z | 1408.6  929.0 | 2063.3 1684.9
184 | 723.6  B15.7 | 836.8 761.5 | 1406.1  986.6 | 2088.8  1633.C
186 | 655.5 722,14 | 821.3  781.1 | 1391.1 1032.6 | 2116.9 1579.8
188 | 619.9  669.7 | 836.8 821.5 | 1429.4 1106.5 | 2140.9  1520.3
190 | 630.5 680.3 | 884.1 939.6 | 1503.9 1206.6 | 2162.3 14558
192 | 625.2  676,8 | 928.1 1065.5 | 1620.7 1330.0 | 2189.3  1400.3
194 | 577.0  £22.8 | 950.9 1159.7 | 1794.4  1487.9 | 2234.0  1374.7
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TABLE 11
B, and B, values in #2MeV-! in the SHE region

£=0.1 tn0.4 £20.7

= = =
By

T, By B, Be B,

108 172 605.4 440.3 | 1067.7 941.2 | 1895.2 1696.5
174 752,41 554.7 | 1144,6 $82.3 | 2152.5 2245.8
176 700.8 518.9 | 1137.9 966.4 | 4993.0 2118.1%
178 713.0 537.7 | 1049,9 816.8 | 1839.4 1846.5
180 | 1708.6  1597.0 881.7 621.7 | 1607.7 15623.9
162 | 1113.86 1055.8 $58.9 €85.4 | 1527.8 1397.8
184 | 1089.1  1093.3 | 1048.0 767.3 | 1468.4 1418.6
186 | 1024.2 1056.1 | 1002.7 802.3 | 1538.6 1506.5
188 921.5 952.0 | 1128.6 9456.9 | 1663.3 1595.9

112 172 687.0 412.2 | 1106,9 968.3 | 1862.5 1760.0
174 776.8 542.5 | 1249.5 1048.7 | 2205.3  2389.1
176 695.1 487.2 | 1216.9 1032.3 | 2008.,9 2201.5
178 660.7 467.5 | 1111.8 866.7 | 1834.6 1884.2
180 | 2184.2  1755.3 889.6 635.3 | 1561.8 1487.4
182 | 1151.1  1029.8 996.8 716.6 | $487.2  1329.0
184 | 1134.4  1075.9 | 1098.9 805.7 | 1360.1 1336.0
186 | 1050.4 1021.4 | 1033.7 831.,0 | 1422.1 1421.2
188 921.5 892.7 | 1172.2 987.4 | 1439.6 1505.4

118 172 605.7 414.8 | 1131.3 1020.9 | 1863.83 1743.5
174 882,56 564.1 | 1272.0 1106.6 | 2314.5 2491.2
176 802.6 528.3 | 1277.6 1097.0 | 2069.3 2333.1
178 756.0 492.5 | 1164.2 918.4 | 1859.7 1874.5
180 | 2937.5  2096.4 897.¢8 648.3 | 1505.8 1395.9
182 | 1381.4 1186.6 | 1038.8 760.8 | 1386.4 1207.9
184 | 1383.8  1262.7 | 1158.3 854.0 | 1RSP.4  1210.2
188 | 1296.9 12368.1 | 1079.5 871,7 | 1310.7 1206.2
188 | 1162:5 1138.7 | 1235.4 1047.% | 1331.5 1377.1
120 172 568.9 373.9 | 1138.3 947.6 | 1924.5 1786.9
174 856.8 567.5 | 1809 S 1051.3 | 2491.8 2665.9
176 726.6 485.7 | 1299.9 1032.8 | 2196.6 2324.9
178 611.6 401.3 | 1128.9 822.8 | 1954.5 1932.1
180 | 3256.6 2364.9 736.3 492.3 | 1521.9 1361.5
182 | 1200.5  1111.3 928.8 808.8 | 1291.2  1145.3
184 | 1294.4 1202.8 | 1082.9 T708.3 | 1194.0 1144.%
186 | 1180.2 1131.1 9857.0 695.5 | 1289.8 1238.5
188 | 1009.5 972.7 | 1145.7 873.6 | 12906.0 1324.0

Fig. 3 displays the differences in B, and B, and the fission barriers for the cases when
[A(log Tsp)| = 0.1. The nuclei Z == 116 and Z = 120 have A(log Tsr) = 0.1, the other
two have A(log Tsp) = —0.1. Fig. 4 gives analogous dependences for the cases when
A(log Tsp) > 2.5. The nuclei 188116 and 178120 have A(log Tsz) == 2.6; these values for
174116 and 76118 are 2.7 and 2.9 respectively. If we remember that the log T'sy values in
this region depend fairly strongly on various other assumptions made in the calculation,
e. g. whether G is proportional to the surface or not, on the value of the zero-point energy
E in the formula (1.1), on the method of calculating efc. (see Ref. [3]), we may conclude
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Fig. 4. For description, see Fig. 3

that at least in the SHE region the problem of choosing between the formulae (2.19) and
(3.12) is not a crucial one in the determination of the spontaneous fission half-lives.

In the case of the formula (3.12) the tests were made concerning the influence of the
volume-conserving term entering (4.3), i. e. B, values were calculated with

0
— wole, 84) =0 (5.3)
d¢

and compared with those with the full expression for 6¥/de. The results are illustrated
0

in Fig. 7. One can see that the role of the term proportional to % wole, &4) i1s small for

all e-values used in the calculation. It is quite negligible for small deformations (¢ < 0.4)

and for & = 1.0 it does not exceed 109 of the true value of B,.

The sensitivity of both B, and B, on the e, values is far greater. Fig. 8 gives the g,-de-
pendence of B, (solid line) and B, (dashed line) for ¢ = 0.4, 0.6, 0.8 for four different
nuclei. B, changes oven more rapidly with g, than B,; the differences are as great as 209
for B, and 35% for B, as compared to the values with chosen as indicated in Fig. 1.
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Fig. 5. B, values for three sets of » and x parameters as extrapolated to 4 = 264 (dotted line), 4 = 280
(solid line) and 4 = 298 (dashed line)



481

o~ 2 o
LB 0K Mevy A B, rh/mevy
1900 79 1900+ 2100
- N=180 . r N=160
1700 - 7001 j
1500} 500+
800+ 1300k
ot oo}
001 900}
W0 N w0+
N .
500 C I3 1 o 1 i i 1 i SR S 500 C 1 L A, 1 1 1 i A
of 03 05 07 05 ¢ o1 03 @5 07 09 ¢
a
B r#¥meva LB, (ro e s
] Z=54 7100
N=188 3 :
700t 100 | =10
500 - 1500 -
2300+F 2300+
700+ "o
L L
soot so0
700+ 700+
T X BT . VI T 07 83T a5 07 08 ¢
b

Fig. 6. B, values for three sets of » and u parameters as extrapolated to 4 = 264 (dotted line), A = 280
(solid line) and A = 298 (dashed line)

Fig. 9 gives the dependence of B, and B, on the proton number Z (for N = 180) and
on the neutron number N (for Z == 94), for ¢ = 0.2, 0.5, 0.8. The general behaviour of
B, and B, is similar but B, is a more sensitive function of both Z and N.

Finally the estimate of By, == const * 4%3 (h* McV-') was investigated on the basis
of the values of B, and B, obtained in this calculation. The results are listed in Table IV:
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Fig. 7. The influence of the terms proportional to ¢wq/0c on B, values. Dotted line gives B, calculated with
awo

= = 0, the solid one represents the true values of ~Be
£

the first column gives the mass number A, the second — atomic number Z; the next three
columns give B, 4~/ for & = 0.1, 0.5, 0.8, the other three give B,4-5/3. Fig 10 gives the
values of B,4~3/® for £ = 0.1 (solid lines), ¢ == 0.5 (dashed lines) and ¢ = 0.8 (dotted lines).
Fig. 11 gives the same for B,. For comparison the mean phenomenological value of
BA-5/® = 0.054 h? MeV-! (see Refs [7] and [1]) is given by the heavy solid line.
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TABLE 11

Spontaneous fission life-times for the SHE region as calculated with B, and B,

log TSP A( )

Z N log T
- 'i’g sr

108 | 10 3.2 3.9 0.7
182 2.9 10.3 0.4
184 i8.7 19.5 0.8
188 10.1 11.4 1.3
188 1.3 3.3 2.0

110 178 3.1 4.6 1.5
180 1.1 11.8 0.5

182 17.2 i7.1 0.3
i84 25.7 25.8 -0.4
188 17.8 18.7 0.9
188 10.1 11.8 1.7

112 | 174 3.2 -1.9 1.3
17¢ 5.9 7.3 1.2

178 ig.8 13.7 0.9

180 22.8 22.2 ~0.6

182 26.7 25.8 «0.9

184 35.0 3.5 045
188 27.9 28.3 0.4

188 20.9 22.2 1.3

114 i72 -1.9 0.8 1.8
i74 9.3 11.5 2.2
176 21,2 22.9 1.7

178 32.14 33.4 1.3
180 40.7 42,8 1.9

182 48.6 49.1 2.5
i8¢ 58.3 80.8 4.5

188 49.7 55,4 5.4
188 43.8 80.2 6.4
118 | 174 5.2 2.8 2.7
176 5.4 7.8 2.4
178 12.7 PUR § 1.7
180 23.3 28.4 0.3

182 26.3 26.8 0.3

184 M.1 35,8 1.4
186 27.2 ’.1 1.9
188 20.7 23.3 2.8
118 [178 4.8 2,0 2.9
178 1.8 3.4 1.8
180 12.7 12.4 -0.8
182 18,8 16.4 0.1
184 24.6 25.8 0.2
188 16.8 18,1 1.8
188 9.1 10.8 1.8
120 |178 5.2 -2.8 2.8
i8¢ S.4 4.2 0.8

1 182 8.8 8.7 0.1
184 18.2 15.9 0.7
108 4.4 5.6 1.2
188 si.B O 1.9
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TABLE 1V
5 . -~
B - A-°3 values (in #2MeV-!) for B, and B, : » and u for 4 = 280
B, 47573 By 475/3
PO
t=0.1 £=0.5 £=20.8 €=x0.1 €=0.5 €£=0.8
270 | 88 | 0.0508  0.0663  0.1027 | 0.0495  0.0667  0.0933
80 0.,0522 0.0713 0,1053 0.0808 0.,0732 0.0976
92 0.0541 0.0810 0.1133 0.0508 0.0890 0.1044
94 | 0.0623  0.0877  0.1198 | 0.0882  0.1015  0.1088
96 0.0391 0.0798 0.1249 0.0382 0.0892 0.1113
98 | 0.0391  0.07035  0.1357 | 0.0379  0.0749  0.1163

280 88 C.0381 0.0877 0.0913 0.0370 0.0781 0.0744
80 0.0411 0.0881 0.0907 0.0413 0.0816 0.0768

2 0.0430 0.0742 0.0982 0.0448 0.0947 0.0813
94 0.0463 0.0837 0.099¢ 0.0503 C.1076 0.0840
96 0.0518 0.0775 0.1024 0.0685 0.0950 0.0883

98 0.0674 0.0682 0.1145 0.0668 C.0782 0.0983
100 0.0697 0.0688 C.1316 0.0858 ¢.0779 0.1317
102 0.0839 0.0767 0.1428 0.0846 0.0980C 0.1861
104 0.0499 0.0777 0.1453 0.0408 0.0810 0.i6268

290 96 0.0398 C.0790 0.0918 0.0438 C.1087 0.0708

98 0.0448 0.0697 ©.1041 0.0499 0.0824 0.0764
100 0.0478 0.0859 0.1248 0.0837 0.0870 0.1123
102 0.0488 G.0875 0.13587 0.0844 ©.08%4 0.1361

104 0.0818 0.0892 0.1324 0.0871 C.0904 0.1388

6. Summary

The comparison was made between the two adiabatic approaches to the collective
motion of the spontaneously fissioning nucleus. Each of them has its own shortcomings:
in the first case it is the validity of the approximation in the region of nuclear shapes
which is limited to the neighbourhood of the extremal points, in the other case it is the
use of the potential deformation parameter instead of the density distortion in the expan-
sion of the total energy and in the formula for B,.

Numerical results for the nuclei in the two investigated regions show that the differ-
ences in the values of the mass parameter B may be as large as 409 of the B, when com-
pared with B,. On the other hand, when incorporated into the spontaneous fission life-time
formula, both B, and B, give 1elatively consistent estimates of the half-lives in the super-
heavy region.

Both B, and B, were found to be nearly independent of the choice of the x, u para-
meters when those were extrapolated to the values of the mass number 4 = 264, 280,
298 respectively.

The dependence of B on g, deformation parameter was considerable in both cases.

The comparison was made between the calculated B, values and the phenomenological
value By, = 0.054 h? MeV-!, frequently used in the fission half-lives estimations.

The author would like to express her deep gratitude to Professor Z. Szymainski for
suggesting the problem and many valuable comments and discussions.
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