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We applied the method of Lie series for the construction of local solutions of classical
nonlinear relativistic wave equations. Next we gave the explicit form of solutions for the
classical massive Thirring equation, nonlinear Heisenberg equation and the nonlinear equa-
tion in A®* theory.

1. Introduction

We considered in a previous papers [l] nonlinear relativistic wave equations for
quantum scalar fields @(x) of the form

(O m2) B(x) = AF(®). (L.1)

Using a new technique for the expansion of operators in orthogonal operator bases, we
reduced Eq. (1.1) to a corresponding nonlinear relativistic wave equation for the c-number
generalized Fourier transform of operator @(x). Thus we obtain as many solutions for
the quantum field &(x), as we are able to construct for the corresponding classical equa-
tion.

One can reduce Eq. (1.1) by introduction of new unknown functions to the partial
nonlinear differential evolution cquations of the form

0Z{t, x)

ot
where Z®(¢, x) denotes in general the k-th partial derivative of the function Z(z, x) with
respect to the variables x. The evolution equation (1.2) was recently treated extensively

by the methods of semi-group theory, using the formalism of Banach spaces [2]. How-
ever, the main effort has so far been concentrated on the problem of finding a proper

= ¥x, Z, ZWM, ..., Z™), 1.2)
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Banach space in which there exists a unique solution of Eq. (1.2) satisfying an initial
Cauchy condition and continucus with respect to the initial data. This is of course not
sufficient for an analysis of physical properties of systems described by nonlinear differen-
tial equations like (1.1) or (1.2).

We present in this paper the constructive approach to nonlinear partial differential
equations based on the technique of Lie series. This method yields for a fairly general
class of nonlinear P. D. E. an explicit power series solution. The method is also conven-
ient for the construction of approximate solutions, what might be useful in applications
in various problems of science and technology.

We present in Section 2 the basic properties ¢f Lie series. Section 3 is devoted to the
construction of the solution of systems of P. D. E. of the form

6Z{t, x) 9 i=1,2,..,n,

oxt wl(2): u=0,1,..,s. (1.3)
We construct the solutions of nonlinear evolution equations (1.2) in Section 4. The applica-
tion of the present method to the solution of the classical nonlinear relativistic wave equa-
tion to the massive Thirring model is considered in Section 5. Section 6 contains the solu-
tion for the spinor field in the nonlinear Heisenberg spinor theory. The solution to classical
A®* theory is contained in Section 7. Section 8 contains a discussion of results and various
generalizations.

The method of Lie series was invented by Groebner to solve some problems in algebraic
geometry [3]. Later on it was used by Groebner and collaborators [4] and independently
by Filatov [5] in the theory of general nonlinear ordinary differential equations and some
special P. D. E. Using convergence-improving methods Groebner and his collaborators
showed that the method of Lie series is more effective than the well-known approximation
methods of Adams, Cowell or Runge-Kutta-Fehlberg-Shanks [4, b]. In particular the Lie
series method was used for the calculation of the trajectory of the soft landing of the
moon rocket with the minimal use of fuel [6]

The method of Lie series was used also in the statistical mechanics for construction
of formal solutions of Liouville evolution equations (see e. g. [7]).

2. Properties of Lie series
Let D denote a linear differential operator in the form

) é d e
D(z) = 94(2) — +%(z2) — + ... +3(2) — = 8(2) —, 2.1
0z, 0z, 0z d

n i

where 3;(z) = 9i(z,, 25, ..., z,) are holomorphic functions of the complex variables
Zy, ..., Z, in a certain domain G C C". The exponential operator defined by the series

el = — D’ 2.2)



503

is called the Lie series. We shall summarize in this section the basic properties of Lie
series. Let

z) =Y ) k2 (2.3)

be a power series expansion for 3,(z). Let g; denote the common radius of convergence for

all functiens 342),i=1,...,n and a certam holomorphic function F(zy, ..., z,) = F(2)
and let

N; = max {|C{? , 1o""**} N = max {N}. 2.4

The following theorem describes the main properties of Lie series (2.2).
Theorem }. Let G be a finite closed domain of C"in which the differential operator
(2.1) and a function F(2) arc holomorphic. Then the Lie series
tD tv v .
e F(z) = .t D’F(z) 2.5)
v!
v=0

converges absolutely and uniformly at least for

< T=—2__ (2.6)

(n+1)N
throughout the entire domain G where it thus represents a holomorphic function of n+1
complex variables z,, ..., z,, 1. Moreover, in the interior of Gx7, 7 = [0, T) we have

‘ﬁ VF _ tV Dv+“F 2 7
dz“ a vt 2.7
v=0
. oot
—_— D”I‘ — — D'F; 2.8)
vl oz%
=0

for the proof ¢f. [4,a], Ch. 1. The followmg theorem plays a fundamental role in the
theory of partial nonlinear differential equations.

Commutation Theorem. Let F{z) be a holomorphic function in a neighborhood
of a point z =(zy, ..., z,) and let the point Z =(Z,, ..., Z,) with

and

Z, = ez, 2.9
where

0
D = 9,(z) —,
@5

be still in the domain of holomorphy of F. Then
e'PF(2) = F(e'’2) (2.10)
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i. e., the operator U, = ¢'” and the symbol F of a function commute. (For the proof ¢f.
[4, a], Ch. I.).
In the following there will often appear the Lie series of the form

o0

t 0
(1, x, 2) = ePCDFZ), _,, = E = [sk(x, 2~ F(Z)] . @11
* k AZy=2z;

y=

For the simplification of notation we shall write Lie series (2.11) in the form

¥(t, x, z) = 'PDF(z) (2.12)
with

D(x, z) = §:(x, 2) -a—

oz (2.13)

3. Systems of nonlinear partial differential equations

A higher order nonlinear partial differential equation may often be reduced, by the
introduction of new variables, to a system of the following type

0Z(1, x) .
_—a_;.”- = Sui(z): H= Os 1’ ceey 8 i = -&9 29 ceey Ny (3-1)
with the initial conditions
Z(t, X) =gy = z{x)eC', i=1,..,n. 3.2)

We give here the solution of Eq. (3.1) in the form of the Lie series (2.2).
Theorem 1. If 8,(Z) and z(x), p =0, 1, ..., 5, i = 1,2, ..., n, are entire functions
of their arguments then the functions

Z{t, x) = 71D, (3.3)
where
0
Do) = 30i(z) o, (3.49)
Zy
satisfy Eq. (3.1) and the initial conditions (3.2) at least in the region
=t < T = —2, xeR’, (3.5)
(n+1)N

where ¢ < o0 and N is defined by Eq. (2.4).

If 8,(Z) and z/(x) are analytic functions of their arguments with the common radius
of convergence pg and g, respectively, then the solution (3.3) converges at least in the
region Q = Q,xQ_C R**! defined by the relations

Q, = {teR" : je" 02| < 04,0 = 1, ..., n},

Q. = {xeR’: |z{x)| < min (gg, 0,), i = 1, ..., n}. 3.6)
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The solution (3.3) represents the analytic function of (¢, x) in the region (3.5) or
(3.6) respectively.

Proof: Let F(Z) be a differentiable function of the solution Z = {Z;}] of Eq. (3.1).
Then

0
= gz—k P 3ulZ) 2z F(Z) = D(Z2)F(Z). 3.7

4 F(Z)
ox" «

The commutator of the operators D,(Z) and D,(Z) has the form

0
[Dw Dv] lva(z) = (Sni‘gvk,i_suk,isvi) ﬁ‘ ?(Z)-
&

The last condition is precisely the integrability condition for Eq. (3.1). Consequently
[(D,D]=0, uv=0,1,..s. (3.8)
Now, by virtue of Theorem 2.1 the power series
Z(t,x) ="'z i=1,2,..,n, 3.9

converges for at least l1—t,| < T = gg4/(n+1) N, where gy < oo is the common radius of
convergence of all 8(Z),i=1,..., n and N is defined by formula (2.4). The functions
Z {1, x) given by Eq. (3.9) satisfy the Eq. (3.1). Indeed, using Eqgs (3.7), (3.8) and Commu-
tation Theorem we obtain

0Z{x) _

o e(,—m)Do(z)Du(z)Zi — e(t—to)Do(z)gui(Z) =

— gui(e(t_ro)Do(z)z) = sui(Z), (3.10)

If 8,/(Z) are entire functions of their arguments then Eq. (3.10) holds for all ¢ satisfying
[t—1o| < T; otherwise Eq. (3.10) holds for ¢ for which |Z(x)| < g4, i = 1, ..., n. Finally,
by Theorem 2.1, the series (3.9) converges for |z;] < gg. Consequently the series (3)
converges for Q. = {xe R’ : |z{x)| < min (gg, 0.), I == 1, ..., n}.

According to a well-known theorem an infinite series of analytic functions which
converges uniformly in & = {z e C":{z;| < g3} is an analytic functions in the interior of &
[8]. Because the composition of analytic functions is analytic the second assertion of
Theorem 1 follows.

Let us note that for s = 0 the Theorem 1 provides the solution for autonomous as
well as for nonautonomous system of ordinary nonlinear differential equations. Indeed
we have

Corollary 1. Let s = 0. Then the autonomous system of ordinary nonlinear equa-
tions

dZ(t)

dt T = 3,~(Z), Zi(t)[t=zo = ziecl, i=1,..,n (3.11)
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has the solution

Z(t) = "7 =1, ..,n, (3.12)
where
0
D(z) = $(2) —. (3.13)
0z,
The solution (3.12) is convergent at least for |[t—tyi < T == —g——-.
(n-+HN
Corollary 2. The nonautonomous system
dt() =91, Z), Z{Dp=y =2z€C', i=1,..,n, (3.14)
has the solution
Z() =P, =01, ..., n, (3.15)
where
Zo(t) =1, Zo(Dj=4o = Zo = 1o (3.16)
and
] 0
D(z) = — + *(z) —. 3.17)
0zq 0z,
k=1
. . Q
The solution (3.17) is convergent at least for [t—to| < T = m
Proof: Using Eq. (3.16) we obtain the following autonomous system
dZ(t
-;léz =382), i=0,1,..,n, (3.18)

where 3¢(Z) = 1.
Applying now Theorem | we obtain the assertion of Coroilary 2.

4. Integration of nonlinear evolution equations

We shall now elaborate a method for an explicit construction of solutions of non-
linear evolution equations of the form

oz,
60 _ 0,20 L Z™) i1, .., (4.1)

-~
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where Z®, ..., Z™ mean the derivatives of the form
(1) g : :
Zi,k(t’ x) = W‘Z‘(I’ x), 1 = 1, PR (N k, ’\l = 1, ey 5,

: m

0
Z{m {, X) = —— e Z A1, X).
Al,k| ..... k,-( > x) ax,;, ax:s 1( x) (42)

These equations appear in many problems of Theoretical Physics. The higher order equa-
tions in time variable may be always reduced to Eq. (4.1) by the introduction of an addi-

tional variable associated with the lower order time derivatives. We start with the analysis
of the first order nonlinear equations of the foerm

CZ (1,
_{_{’Q =9%(x,2,2V), i=1,..,n, 4.3)
[ %}

where Z(t, x) satisfy the initial conditions
Zi(t: x)|t=tg = Zi(th x) = zi(x)’ l = 1: cvey R (44)

Let Z,(t, x) = Z(t, x)—z(x). We assume that the functions 9,(x, Z, Z¥) and the initial
conditions (4.4) are such that the following condition is satisfied:
(/) There exists a positive number g such that the functions

z{x) and 8,x,Z,ZV) = 9x, Z+2,ZV+zY), i=1,..n,

are analytic functions of their arguments in the region given by

~ ~ k=1 s
1 4 “en
Il <o 1ZJ) <o, 1Zil<o, 0T (4.5)
l=1,.., n
Let
q A AL @) k ks . 7J Zin . 7l Flns
80, Z, Z) = Y 6 sirombis Xt e XS LY L 2T Zys
be a Maclaurin expansion for functions 84(x, Z, ZV) and let
_ (D) N TR U T 2 PR NS PRy A
N!' = max {ﬁcklxmks-jx-~~jmfn»—-1ns!9 ! st ’ " } (46)
and
N = max {N}. (C%))]
1

The following theorem describes the main properties of solutions of evolution equa-
tion (4.3).

Theorem 1. The evolution equation (4.3) where 9y(x, Z, ZV) and z(x) satisfy
condition (i) has the unique analytic solution satisfying the initial condition (4.4) given
by the formula?!

Z(t, x) = "%, (4.8)

! In order to get an explicit form of factors at (r—1#,)njn! in Eqs (4.8), (4.26), (5.12), (6.8) and (7.6),
we use the fact that {3}, 95,1 = [D, 8,1 = 0. This implies, e. g.,
¢ ot 0 ©°
- = Us etc.

G
D2, == B —Bilx, 2, 20y = P — + — =
(247 (243 €Zg,] CX
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where

-~

D(x, z, zV) = 9y(x, z, zV) 4.9)

0z,

The solution (4.8) is analytic in the region

x| < PRPRIPP A Gl 4.10
ro, - TR m——— .
* ¢ 0 1+8nsN ( )
where |x| = ) Ix;l, 0 < r<1 and N is given by Eq. (4.7).
ic1
Proof: Set
Z(t,x) = Z(t, -z, i=1,..,n @.11)
These functions satisfy the equation
871, N - .
, _ig.t ® _ 84x,Z,ZV) = 9x, Z+2z, ZV 4+ 2V) (4.12)
c
and the initial conditions
Z(to, x) = 0. (4.13)

By virtue of Perron Theerem, there exists the unique solution Z(t, x) of Eq. (4.12) satisfy-
ing initial condi ion (4.13) which is analytic in the region Q given by

ixi < ro, 5I—IE<T=~—»_V_,:., 4.14
e ¢ 1 +8nsN .14)

where 0 < r < 1, g is the radius defined by condition (i) and N is given by Eq. (4.7) (cf.
Perron [9], § 3 and Berstein [10], I1, §10). Now using Eq. (4.11) and condition (i) we see
that the functions Z(t, x) have also the region of analyticity given by Eq. (4.14). The power
series expansion for Z(r, x) has the form

t—t,)
200 -y S arw,
v=0

where coefficients Z{"(x) represent the v-th time derivatives of Z(t, x) at ¢ = t,. Conse-
quently in the region {t—ty| < T we have

Z(t, x) = " TOZ (1 ). (4.15)

Now let F(Z) be a differentiable function of solutions Z(t, x). Then using Eq. (4.3) we
obtain

d
,F(Z) = 8x,Z, ZV) iz F(Z). (4.16)
k
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Thus, in the space of solutions the operator

d
D(x,Z,Z") = 9(x,2,ZV) — 4.17
8z,
corresponds to the operator d,. Consequently, by virtue of Eqs (4.15), (4.16) and (4.17)
one obtains

Z{t, x) = &' 710z,

i

where

19
D(x, z, zP) = 8,(x, z, z") — .
8z,

The function (4.8) provides the solution of the evolution equation (4.3) which is
expressed in terms of initial conditions z,(x) and of the functions 9(x, z, ")) representing
the degree of nonlinearity of the problem. This implies in particular that the solution
of the nonlinear relativistic wave equation is a function of asymptotic @,(x) field only.

Remark 1. One may convert the Minkowski space X and the space {Z(x)){_, of
solutions into a Banach space by introducing, for instance, the norms of the form

Vil = (Y i
k=1

One can then apply the technique of Banach spaces to get much more detailed information
on the region of analyticity of solutions Z{t, x), growth of solutions and their derivatives,
etc. (cf. e. g., {11]). In particular, one obtains the following additional result which gives
important information on dependence of solution on coupling constant:
If 34, x, Z,ZM), i = 1, ... n, are analytic functions of a parameter 4, |1} < 1, x, Z, and
Z'D then the solution Z(t, x) of Eq. (4.8) is an analytic function of 4 for |A] < 1 (¢f. [11]
Theorem 3).

The technique of Banach spaces is particularly convenient in cases where the dimen-
sion of coordinate space X or the space of solutions or both are infinite.

We shall now consider second order nonlinear equations of the form

02Z(1,
- a(,z 9 _ ax, 7,20, 2, 4.18)
where
0Z(t, x)
(1) —_ d —
Z,(t, x) = P p=01 ..,s, (4.19)
and
0%z .
Z3t, x) = o M= 0,1,...,s, i=1,..s. (4.20)
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We suppose that the function Z(z, x) satisfies the following initial conditions
Z(ta x)|(=xo = Z(t()a x) = Zl(x)a Z(ts x)[t:to = Z(th x) = Zz(x)’ (421)

where z{x), i == 1,2 are analytic functions of their arguments. Introducing new vari-
ables

Zo=¢Z, Z, =2, Z,=207Z,
Zi.,=0uZ,, Ziysi2=0ul, I=1,..,s5,
Zysez = 0x10aZy, .., Zs(s+1)/z+2s+2 = axsax-‘zl’ (4.22)
we may cast Eq. (4.18) into the system cf first order equations of the form

ﬁli(t, x) (1) . [y
——Tt“- =9x, Z2,Z2'), i=0,1,..,5(s4+1)/24+25+2 = K, (4.23)
0
where
S8, =2Z,, 8,=38Qx2),

\91+2 = O.\JZZ’ teey 91+s+2 = OxIZQ, l = 1, ees S,

2542 = 0uZsrsy ooy I = 00slgrs

K

09
90 = o 91. (4‘24)
az,

The solutions Z(t, x) of Eq. (4.23) satisfy the following initial conditions defined by rela-
tions (22) for t = 14:

Zi(t, X)p=1, = 2fx), i=0,1,.., K. (4.25)

Notice that all functions &, i =0, 1, ..., K with the possible exception of 3, and 3, are
entire functions of their arguments.

The following theorem describes the properties of sclutions Z(z, x) of second order
equation (4.18).

Theorem 2. Let the functions 3, and 8, of the system (4.23) and initial conditions
satisfy condition (/). Then the unique analytic solution Z(¢, x) of Eq. (4.18) satisfying the
the initial conditions (4.21) is given by the formula (see previous footnote)

Z(t, x) = "7z | (4.26)
where
K
é
D(x, z, zV) = E 84x, z, 2V . 4.27)
Zi

i=0
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and the functions 9(x, z, z") are given by Eq. (4.24). The solution (4.26) is analytic at
least in the region

(1+r)’e

¥l <ro,lt—ty| < T = — e,
1+8(K+1)sN

(4.28)
where 0 < r < 1 and N is defined by Eq. (4.7).

If the function 9(x, Z(M), Z®) does not depend on derivatives with respect to time,
then the solution Z(z, x) can be rtepresented in the form

Z(t, x) = 710z, 4.29)
where
2
\ 0
D(x, z, 2V, z¥) = E 3(x, z, 21, 2P P (4.30)
Z;
i=1
with
9y = z,, 9, =8,z P, zP), (4.31)

The region of analyticity of the solution (4.29) is also given by formula (4.28).

Proof: The functions 9,(x, Z, ZW) and z{(x), i = 0, 1, ..., K, satisfy all the assump-
tions of Theorem 1. Consequently, there exists a unique analytic soluiion Z(t, x), i = 0,
1, ..., K of Eq. (4.23) satisfying initial conditions (4.25) which is analytic in the region
(4.28). The Lie series form of solution Z(t, x) is given by Eq. (4.8). If the function $ in
Eg. (4.18) does not depend on derivatives with respect to time of Z(¢, x) then Eq. (4.18)
can be represented as the following evolution equation

0Z(t, x)

e 9, Z,ZM,29), i=1,2, (4.32)
where
Zl(ta x) = Z(t9 x)’ ZZ(t') x) = atZ(t9 x)
Zl(t09 x) = Zl(x)’ ZZ(tO’ x) = ZZ(x)
and

91 = Zz, 92 = S(x, Z, Z(l), Z(Z));

Using the same arguments as in the second part of proof of Theorem 1 we find that the
solution Z(t, x) of Eq. (4.18) satisfying the initial conditions (4.21) has the following
form

Zft,x) = etz i=1,2

where
2

: )
D(xa Z, 2(1)9 Z(Z)) = ‘9i(xs Z, Z(l)s Z(z)) 67 .
Z

i=1

Clearly the solution (4.29) has the region of analyticity given by Eq. (4.28).
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The form (4.8), (4.26) and (4.28) of solutions of evolution equation (4.3) or (4.18)
respectively, shows that the manifold of solutions is in one to one correspondence with the
manifold & of initial date. The generators D of solution (4.8), (4.26) or (4.29) act non-
linearly in &.

The Theorems 1 and 2 provide the form of solution for all known classical nonlinear
relativistic wave equations like nonlinear Heisenberg spinor equation, equation of massive
Thirring model, classical A®" equations, ezc.

It is evident that this theory may be generalized to any higher order nonlinear analytic
equation like (4.1) in finite or infinite numbers of varjables x, and components Z;.

5. Quantum-mechanical massive Thirring model

We shall now consider the massive Thirring model in two-dimensional space-time.
The wave equation has the form [12]

"0, ¥ —m¥ — APy ¥,Y =0, ¥ =¥y, (5.1)
with the initial condition
Yt x Yoilx
Y(t, )l =< o )> E( ol )), (5.2)
Yot X)/e=1 ¥o2(x)

where ¥o,(x) are analytic functions of x for |x| < g. Taking the representation of y,-matrices

in the form
01 _ 01 53
Yo = 10/’ Vi = —10/) (5.3)

we obtain
o, 0\ (¥ 0, m y P v, 2
‘ ‘) +(° ( ! +2il(‘ 3 ZZI =0. (5.4)
0 6/\Y, —-m =0,/ \¥, 1
Set now
Z“ = Re ?’i’ Zi+2 = Im qli, i= 1, 2, (5.5)
Z; = RC lll()i, Zi+2 = ]m TOi’ i= 1, 2- (56)

Using Egs (5.5) and (5.6) we can write now the wave equation (5.1) in the standard
form (4.3)

oz 1,
LX) _ g0,z 27, (5.7)

-

where
9404 Z, 2) = —mZy+20Z5(Z5+ 29~ Z, (5.8)

8,4, Z, ZMV) = mZ,+2AZ,(Z2+ 2D+ Z, ,, (5.9)
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954, Z, 2"y = —mZ,—2AZ (2342723 —2Z,,, (5.10)

944 Z, 2"y = mZy— 22223+ 23+ Zs (5.11)

We see that all functions 34, Z, ZV), i = 1, ..., 4, are entire functions of their arguments.
Therefore, by virtue of Theorem 4.1 the solution of Eq. (5.4) has the form

Y, x) = ez tiz ), k=1,2, (5.12)

where

~

D@, 2, 2 V) = 844, z, 21) — . (5.13)
¢z;

The solution (5.12) is an analyuic function of ¢ and x at least in the region

(1-r)%0
Ix’ <rg, It'—to <T= ~ 3 (5.14)
1+ 32N
where 0 < r < 1 and
N = max {g, mp, 240°}. (5.15)

By virtue of Remark 4.1 the sclution (5.12) 1s the analytic function of coupling con-
stant A at least for Al < 1.

6. Heisenberg nonlinear spinor field theory

The Heisenberg nonlinear spinor wave equation in fourdimensional space-time
has the form (¢f. [13], Ch. 1II)

., 0xx) v .

io” =57 + P60 ({(9)o() = 0, (6.1)
where ¢* = (I, 6) are conventional Pauli matrices, /? is a coupling constant of the dimen-
sion of a length and x(x) is the two-dimensional Weyl spinor

x(x) = (X”’(,x)>. (6.2)
sz(x)

The first index of x, g(x) refers to Lorentz space and the second one to the isotopic space.
Because the structure of the equation (6.1) is the same for all isotopic components of
z(x) we shall not write in what follows the isotopic indices explicitly.

We assume that the spinors x(t, x) satisfy the following initial conditions

, Zoi(x)
A Di=gy = ( ) (6.3)
T \toa(®)
where xo{x), i = 1, 2 are analytic functions of x for x| < 0, k==1,2,3.
Set now
Zi(ts x) = RC X:’(ta x)’ Zi-fZ(t’ X) = lm Xi(t’ x)a i = 19 25 (6'4)

zi(x) = Re yoix), zZis2(x) = Im yoi(x), i =1,2. (6.5)
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Using Eqs (6.4) and (6.5) we can write Eq. (6.1) in the standard form (4.3)
0Z(t, x)

P 80, Z,Z'V), (6.6)
where
8,4, Z, 2Ny = —0,Zy—02Zy—0Z+1*{—AZ,+CZ,+DZ,+BZ,),
9,4, Z,ZMY) = —8uZ 4+ 062Zy+8Zy+1*{~AZ,+CZ,—DZ, —BZ,),
934, Z,ZMW) = —0uZy+080Z,+60Zy+1*{AZ,~CZ,+DZ,—BZ,),
9,4, 2,2V = —04Z3—0,2Z,+8pZ,+1*{AZ,—CZ,~DZ++BZ,), 6.7)
and

A=2¥4+22427234+22, B=272}-73+71-72,
C —_ 2(2122—2324), D= 2(2223—2124).

We see that all functions 8,4, Z, ZV), i = 1,2, 3, 4 are entire functions of their argu-
ments. Therefore, by virtue of Theorem 4.1 the solution of Eq. (6.1) has the form

ult, x) = e(r—to)D(zk+iZk+2)’ (6.8)

where

-~

D(z, V) = 9(z, z'") Z. (6.9)
dz

i

The solution (6.8) is analytic function of ¢ and x at least in the region

x| < li—to] < T (=)’ (6.10)
x| < rp, - e .
¢ ° 1+96NM
3
where |x] = Z [x.}, 0 < r < 1, N=max {p, 2/%0®} and M is the dimension of isotopic
k=1

space. The solution (6.8) is the analytic function of coupling constant /? at least for |/?2] < 1.

7. Classical A®* theory

Let &(r, x) be a wave function for a scalar particle satisfying in two-dimensional
space-time the following nonlinear relativistic wave equation

62 62
(5 = 5+ #0em = —i0) 1)
o cX

with the initial conditions

o1, x)itzto = z,(x), d)(t, Xty = 22(x), (1.2)

which are analytic functions of x.
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Setting
®(1, x) = Z,(t, x), D1, x) = Z5(t, x), (7.3)
we obtain
a T F
aZZ 2 3
“7[ = -m"Zl-—).Zx+Zl'xx. (7.4)
é

Thus in notation of Section 4 we have
$(Z,Z2P) = 2Z,, 90Z,Z%) = —m*Z,—AZ}+Z, ,,. (7.5)

We see that the functions 3(Z, Z(”) are analytic functions of their arguments. Thus,
using Theorem 4.2 we find that the solution of Eq. (7.1) satisfying the analytic initial
conditions (7.2) has the form

o(t, x) = 702, (7.6)
where
2
(2) 2) 4
D(z, z*¥)) = 9,(z, ") — . (1.7
0z,
k=1

To calculate the region of analyticity of solution (7.6) we pass to the canonical system
of first order equations (4.3).
Using the variables (4.22)

Zo =02, Z,=2, Z,=20Z,
Zy =02, Z,=062Z, Zs=2Z, (7.8)

we cast Eq. (7.1) into the following equivalent system of the first order equations

oz
2 = (=m*=31Z})Z,+0,Z,,
ot
oz 0z
=2, = -mZ,-AZ}+Z,,
ot ot
0Z, 0Z, 0z

2 =8,Z,, = 8,Z¢, o = 0,24 7.9
ot 2 ot Y ¢ (19
This system has the initial conditions given by (4.25). We see that all functions 3,4, Z, ZV)
defined by r. h.s. of Eq. (7.9) are entire functions of their arguments. Consequently
the condition 4 (i) is satisfied at least for ¢ equal to the radius of analyticity of initial
conditions (4.25).
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Using now Theorem 4.2 we conclude that the solution (7.6) of Eq. (7.1) is analytic
function at least in the region Q

x| < ro, li—ty] < T = (1—;»)29_, (7.10)
1+48N
where 0 < r < 1 and
N = max {p, m?p, 3103} (7.11)

By virtue of Remark 4.1 the solution (7.5) is the analytic function of the coupling constant
A at least for |A} < 1. In fourdimensional space-time the nonlinear wave equation has
the form

o 2) g = ¢
Rl Rl e 5 +m (t, x) = —AP°(1, x). (7.12)

The solution of this equation satisfying the analytic initial conditions (7.2) is also given
by formula (7.6) and (7.7) with

92,2 = Z,,
82,27y = —m*Z,—AZ3+ 0L Z, + 0L Z, +E2 Z,. (7.13)

It is interesting that there are special solutions of Eq. (7.12) which can be expressed in
terms of known special functions. For instance, for the plane-wave-like solutions of the

form
2

o1, x) = ¢(px), px =px" =0, p'=m’ (7.14)

Eq. (7.12) reduces to the following ordinary differential equation

dztp

— +o+{AmP)g® = 0. (7.15)
do
Mutltiplying Eq. (7.11) by dg/do we obtain
d (1/de} 1 ,
— - ~ @+ (2AmP)e*r = 0. 7.16
da{Z(d:;) + 5@+ AmT)g (7.16)
Consequently
d
9 _ [2E— ¢* —(3)2m?)¢* (7.17)
do
or

J -
V2E—¢?—(2[2m*)e*
The L. h. s. is the integral which represents the inverse function to the Jacobi elliptic func-
tion cn {(x, k). Thus

0 — 0, (7.18)

PD(x) = @(px) = A cn (Qpx+B), (7.19)
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where the constants 4, B, Q and elliptic modulus k depend on initial conditions (7.2).
Solution (7.15) provides a representation for the creation and annihilation operators in the
Ad*(x) theory of quantum scalar fields (¢f. [1,2], § VI).

8. Discussion

1. Tt is well known that the number of nonlinear differential equations, which may
be expressed in terms of known functions, is very limited (¢f. e. g., [14]). Consequently,
in case of an arbitrary nonlinearity one may expect at most a power series form of solu-
tions. Thus the forms (3.8), (4.26) and (4.29) are representative of the general result which
might be achieved in treating problems.

2. It should be stressed that the theory of Lie series is well suited for a calculation of
approximate solutions of nonlinear ordinary or partial D. E. To illustrate this we give the
main approximation theorem for Lie series ([4,a], 1.3).

Theorem 1. Let the fuctions 94(zq, ..., z,) in the operator

d
D(z) = 3(2) P 3.1
k

be all holomorphic in the same n-circle |z;—~a;| < p; and let
94z} < N; for z;—al =905 Lj=1,..,n (8.2)
Then if the Lie series
Z{t, z) = e’Dz,-lzjzaj (8.3)

are bfoken off after the m-th term then the modulus of resulting error is below the following
bound

t\?
Rm = l i(szi)z:tr
E yl j=aj

where

< [(n+DNILT™ s 9
(nt Dmg™ [o—(ns DN "= 2> B8

o = min {g;}}_,, N = max {N;}i.,. (8.5)
In order that the error R, < g0, 0 < ¢ < 1 it is sufficient to restrict ¢ by

4 !
(n+ DN 1+¢°

[t < & = Vem(n+1). (8.6)
This theorem might be very useful in the analysis of properties of approximate solutions
in various problems of applied science and technology.

It should also be mentioned that there are elaborated special effective convergence-
improving methods for the Lie series ([4, b]).
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3. Rccently various types of nonpolynomial Lagrangian field theories with inter-
action Lagrangian of the type (see e. g. [15])

1
Lim = 1 +}¢2 (87)
or, so-called chiral SU(2) x SU(2) Lagrangian
0,) (o'
3,9 (@) 5

T (a0
have been consideied.
It is evident that equations of motion derived from Lagrangian (8.7) or (8.8) are second
order P. D. E. of the form (4.18) with analytic coefficients (@, @, &®). Thus, using
Theorem 4.2 we may obtain a solution of corresponding equations of motion in the

form (4.29) with a region of analyticity given by Eq. (4.28).
The nonlinear coupled spinor field equations e. g. of Federbush type [16]

Y0, p—mp— APy p)y.y = 0, (8.9)
iya, 0 —myp— APy )y, ¢ = 0, (8.10)

may be reduced using formula (5.5) to the sysiem of first order P. D. E. of the form (4.3),
with entire coefficients 9,(Z, Z®). The solution of the coupled system (8.9) and (8.10)
will be given by Eq. (4.8) with the region cf analyticity given by Eq. (4.10).

It is evident that the present approach provides a class of analytic solutions for any
Lagrangian L,,, = L,(®) or L,(¥, ¥) where L, and L, are analytic functions of their
arguments.

4. We gave in our works [1] and [17] a method of a reduction of nonlinear P. D.
equations for quantum fields to the corresponding nonlinear P. D. equations for the
c-number generalized Fourier transforms: the present method, by providing explicit solu-
tions for classical equations, opens new possibilities for the analysis of extensive classes of
relativistic models in Quantum Field Theory.

5. Notice that the present meihod also provides the solution of Eqs (3.1) and (4.1)
in cases when the functions 9,; on the 1. h. s. of corresponding equations depend explicitly
on the variable r. In this case the generator Dy(x, z, 2V, z¥) should be replaced by

-

)
DO(tD: X, Z, Z(l)a Z(Z)) = axg+901‘(10’ X, Z, Z(l)a 2(2)) 5"— .
Z;

6. The analysis of solutions of nonlinear P. D. E. (3.1) and (4.1) shows that in general
the region of analyiicity of solutions Z(t, x) in (7, x) space is much smaller than a region
of analyticity of functions 8,(x, Z, ZV, Z®) and z(x),i=1,...,n.

The following simple example well illustrate this general phenomenon. Let

dZ(1)

_ . 2
— NZ) =1+Z (8.11)
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with
Z(0) = z.

The solution of Eq. (8.11) is given by
Z(l) — el(l +z2)d/dzz — tg (t+'y), Y= arctg z. (8.12)

Now although 3(Z) and z are entire functions, the radius of convergence of solution (8.12)
might be arbitrarily small by taking y = n/2—¢, ¢ arbitrarily small. Thus in general a large
radius of convergence of functions 94(x, Z, Z¥, Z'®) and z,(x) does not imply a large
radius of analyticity of a solution Z(z, x).

7. It is interesting that we may cast every nonlinear relativistic wave equation consider-
ed in Sec. 5, 6 and 7 into the equation of a type (3.1), if we restrict ourselves to a certain
subclass of solutions. For instance, let us look for the particular solutions in 19* theory
for which the Lagrangian

r ., m? s A .
L-245 @, —2-d> +4d5

is invariant with respect to the scale transformation
xt o x = ExF, P(x) > (x) = EP(x),
m-m =&Tm Ao A =§4

This invariance of Lagrangian implies the existence of a new integral of motion. Using
this additional relation between &(x) and @,,(x) and the wave equation (7.1), we may reduce
ow problem to a system of partial differential equations of the form (3.1).

This method might be used also for other nonlinear relativistic wave equations.

8. Recently there were obtained very interesting global results for particular types of
relativistic wave equation by Chadam [18] and Morawetz and Strauss [19]. It was proven
in those works an existence of global solutions of equations like (5.1), (7.1), (8.9) and (8.10).
In addition, it was shown the existence of nontrivial unitary classical scattering operator
S [19]. All these results are in a sense existence type theorems: hence the present method
which is local, but constructive provides useful complementary information about solu-
tions of nonlinear relativistic wave equations.

I would like to thank Professors A. O. Barut, W. E. Brittin, J. Dreitlein, M. Flato,
1. Girardello, J. Simon, and W. Wyss for interesting discussions and suggestions. The
author is grateful to Professors A. O. Barut and W. E. Brittin for the hospitality at the
University of Colorado, and to the National Science Foundation for the financial support.
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