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DETERMINATION OF STATISTICAL TENSORS IN SEQUENTIAL
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It is shown how to determine statistical tensors from the angular distributions in the
decays where one of the decay products decays in turn. Alj tensor components may be estimated
by this method, even the components of tensors TII(, with odd L(e. g. Im py0 for spin 1 par-
ticles) which cannot be measured by the usual method of moments. In addition, the decay
amplitudes can be found if there are more than one coupling constants, like for spin 2 particles.
Examples of decays of particles with the following spins are discussed: 17 = 07+(1- - 0--0),
222 0 H(1" - 0-40), -0 -(E*>4120), 22-0-2">50-0) and "0+
42 = 0-10).

1. Introduction

The polarization and alignment of particles produced in high-energy collisions can
be conveniently described in terms of statistical tensors (for a review and a list of references
¢f. [1]) or equivalently, in terms of density matrices. The simplest way of estimating the
statistical tensors is the method of moments: the average values of spherical harmonics
over the angular distribution are proportional to the statistical tensor components

(cf. Ref. [I]
<Yi(9, @)y = F(L)Ty, (LD

the coefficients F(L) depending on the decay coupling constants.

In the most common case of decays into particles of spins §-+~0 or 0-+0 there is only
one decay amplitude, which is eliminated by the normalization condition and coefficient
F(L) is then a constant. This enables one to use Eq. (1.1) for direct determination of tensors
T with L even. On the other hand, the coefficients F(L} vanish for L odd, if parity is con-
served in the decay. The coefficients F(L) with cdd L may be different from zero only if the
decaying particle interferes with another particle (or with the background) of opposite
parity (¢f. Ref. [2]). Therefore the components of tensors with odd J are difficult to
measure. An example of such a component (in the helicity frame) for spin 1 particle is 77,
equal to i\/2 Im g,,.
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In decays into particles of spins higher than 1-+0 or 0-+0 there is more than one
coupling constant and coefficients F(L) are a priori unknown. If nothing is known about
the dynamics of the decay, it is impossible to determine then any tensor using formula
(1.1). The only exception is the decay J* — 171--0°2 if the parities P, P, and P, satisfy the
relation

PP,P, = (—1). (1.2)

In this case there is also one decay amplitude. In the other case and for higher spins there
are more independent decay amplitudes and F(L) cannot be determined by kinematics.
A similar situation is found in many body decays (¢f. Ref. [3]).

To summarize, the simple method of moments is good for determining even L tensors
for resonances decaying into 040, 440, or into 14-0 if Eq. (1.2) is satisfied. More sophis-
ticated methods have to be used to estimate either odd L tensors or any tensors at all for
particles decaying into higher spin particles. For instance, the odd L tensors may be evalu-
ated for hyperon decays of the strange baryons (Ref. [4], ¢f. also Ref. [5]). Then an addi-
tional piece of information is available — the hyperon polarization. The odd L tensors
are then evaluated from the correlation between the baryon decay distribution and the
hyperon polarization.

Another possibility of measuring odd L tensors was indicated by Chung [6, 7] for
the sequential decays where the additional information is obtained from the decay distribu-
tion of a product of the primary decay. The purpose of the present paper is to develop
this idea and to show on several examples how it is possible to determine the tensors
for any L and the ratios and relative phases of the decay amplitudes from the moments
over the sequential decay distributions.

The advantage of this method is that in most cases everything can be measured: even
L tensors, ratios of moduli of the decay amplitudes, odd L tensors (up to the sign) and
the relative phases of the decay amplitudes (up to the sign). Note that in the decays
considered below the simple method of moments (1.1) fails.

In Section 2 we derive the basic equations and in Section 3 we discuss the symmetry
properties of the double moments. Section 4 is devoted to the detailed discussion of an
example: the decay 1+ — 1-+0- followed by 1- — 0+0. All the important features of the
method are illustrated here. Formulae for four other processes are given in the Ap-
pendix.

2. Moments of the sequential decay distribution

We consider here the sequential decays of particles with the following spins (and
helicities)

J - 540, 2.1)
s — 0-+0 (2.2)
or s - £4-0. (2.3)

Here J denotes the spin of the primary particle and s denotes the spin of one of its decay
products. Spin projections (helicities) will be denoted by A for particle J and by 4 for
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particle s. Further, helicity of the decay product of spin £ in Eq. (2.3) will be u. Of course,
4 = 0 in the case of decay (2.2). The angular decay distribution can be expressed by the

density matrices of particle J and the coupling constants Fj and F,; of the decay (2.1)
and (2.2) or (2.3)

2J4+1)(2s+1 .
W@, d,8, ¢) = (_""'—]‘éizs ,,) Ff(Fj) O X
T

A AAy

x D'(@, 0, 0),D'(®, ©,0) D, 3, 0);,DX(¢, 9, 0) (2.4)

/
L

Fig. 1. The helicity decay frame of particle J produced in the process a-+b — J+d, followed by J — s--0.
The Z axis is directed opposite to the momentum of the ¢. m. system in the J rest frame. The Y axis is
perpendicular to the production plane, i. e. ey | Pcms XPg in the J rest system

¥4
,Z
y
.

X

.

Fig. 2. The helicity decay frames of particles J and s. The axes Z, z and x lie in the same plane. Angles
0O, @ define the orientation of the momentum of particle s in the XYZ frame. Angles ¢, ¢ (not indicated
in the figure) define the orientation of the momentum of one of the decay products of s in the xyz frame
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The angles ©, @ of the decay (2.1) and the angles 3, ¢ of the decay (2.2) or (2.3) are defined

in Figs 1 and 2. The coefficient in front of Eq. (2.4) has been inserted in order to have
WO, P, 9, ) dcosOddd cos 3 dg = 1. 2.9)

Our notation and conventions are similar to those in Ref. [7]. The helicity coupling con-
stants F are normalized to unity
YIFr=Y IR =1 (2.6)
A u
Hence it follows that |F;| = 1 for process (2.2) and |F,| = 1/\/2 for process (2.3). The

coupling constants are related to the reduced helicity decay amplitudes M,(4, 0) of Ref. [8]
in the following way

Fi = M2, 0 IM,(4, 0)/*)"2. (2.7
A
They are also related to the coupling constants in the LS basis by the following equation
2L+1 .
F = E \/2.1+1 C(L, 0; s, AlJ, H)F]s. (2.8)
LS

Formula (2.4) can be «implified by replacing the density matrix with the statistical
tensors (¢f. R-f. [1])

o4 = 2 (= TTRCU, — A3 I, AL, M)Ty; (2.9)
LM
and by coupling the D-functions with the Clebsch-Gordan coefficients. Then it is straight-
forward to calculate the double moments

H(l, m; L, M) = {Dho(g, 8, 0)D3(®, @, 0)> =

= [ Dlo(p, 3, 0)D5,(®, O, 00W(O, &, 9, ¢)d cos Oddd cos dy. (2.10)
The result is
2741 _
H(,m;L,M)= |——— H (L)H*()T%), 2.11
( ) \/2L+1 (LYH(I(Tyy) (2.11)
TABLE 1
Coefficients H3(/) for a few decays
Process =0 =2 | == 4
3 - 340 1 — —
1-0-+0 1 V3 —
3140 1 - —
24040 i SN NE:
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where

HiY(L) = Y FiF5.C(J, 2’5 L, miJ, ))C(s, A'; I, m|s, A) (2.12)

AL
and

HY(l) = Y (s, u; 1, Ols, p), (2.13)

u

where p = 0 for reaction (2.2) and u = £ % for reaction (2.3). Coefficients H*(/) are
different from zero for / even and not exceeding 2s (see Table 1).

3. Symmetry properties of the moments

We quote here the most important symmetry properties of the moments H(I, m; L, M)
defined by Eq. (2.10) (¢f. also Ref. [7]).
From the hermiticity of the density matrix o,, it follows that

H(, m; L,M) = (—DMH(, —m; L, —M)". G.D

If particie J was produced in a collision of two unpolarized particles and if M is the spin
projection on an axis lying in the production plane (e. g. helicity of Gottfried-Jackson
axis)

H(l, m; L, M) = (=D "MH(, m; L, —M). (3.2)
This follows from the relation
TL = (=D M1k (3.3)

which holds under these assumptions (¢f. Ref. [L]). If, on the other hand, M is the pro-
jection on an axis perpendicular to the production planre (a transversity type frame), we
have then instead of Eq. (3.2)

H(l,m;L, M) =0 for M odd. (3.4)
Finally, parity conservation in the decay J — s+0 gives
F} = P,PoP,(—1)Y % FL,, (3.5)
where P’s are intrinsic parities. Hence we get
H(, m; L, M) = (—=D*"'H(, —m; L, M). (3.6)

From Egs (3.2) and (3.6) we see that only the moments with m > 0 and M > 0 are relev-
ant in the helicity-type frames, and that only the moments with m = 0 and M even are
relevant in the transversity-type frames. Furthermore, for m = 0 the non-vanishing mo-
ments must have /+L odd.
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4. Example: decay 1* - 140~ followed by 1= — 0+0

From Eqs (2.10)-(2.12) we obtain the following non-vanishing moments with w1 > 0

H(2,0;0,0) = 2 (1-3|F ), 4.1
HQ2, 1:1, M) = \/6'1 Y (ThH*

2,11, )—_?lm(FxFo)(TM), 4.2)

/;6 2 2% ~

H(0,0;2, M) = s QG F " =1 (Ty)*, 4.3)

H(2,0;2, M) = ié(3%1? 12 —2) (TH)* 4.4

s Uy Ly - 25 [ DE T M ) M7 s ( . )

3,./6 I
H2,1;2, M) = — 55 Re (FFo) (Ty)*, 4.5)
3\//6 2 2\ %
H2,2;2, M) = — 55~ IF 1 5(Ty)*. (4.6)

These relations are valid both in the helicity-type and in the transversity-type frames.

The only difference is that in the helicity-type frames we are interested in moments with

M > 0 and in the transversity-type frames we are interested in moments with M even.
The coupling constants satisfy here the relations

2|1F > HiFe 2 =1, 4.7)
F, = —F* . (4.8)

They can be related to the coupling constants for the S~wave and D-wave decays by the
following equations (see (2.8))

i i
Fy =~z Fs+ - Fp, (4.9)
V3 N{)
: 2 4.10
Fo=—=F¢— |- Fp .
O \/3 S \/3 b ( )

It is easy to see that the above relations enable us to find all the quantities on the
right-hand sides of Eqs (4.1)~(4.6) except for the signs of Im (F Fy)and of T\ (cf. Ref. [7]).
Thus Egs (4.1) and (4.7) may be used io find {F,| and Fyi, then Eqs (4.3), (4.4) and (4.6)
determine T)5. Then Eq. (4.5) gives us Re F\Fy and lm F,F}! may be found from the
relation

(Im F,F3)? = |F,[*|Fy*—(Re F,F3)*. (4.11)

Finally, Ty may be determined (up to the sign) from Eq. (4.2).
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Therefore, everything may be found except for the sign of T, and the relative sign
of the helicity decay amplitudes, provided T3 and Tm F,Fg do not vanish for some dynamical
reasons.

Note that the simple method of moments is equivalent to evaluating H(0, 0; s, M)
alone. As is seen from Eq. (4.3) even the tensor T cannot be found in this way. This is so
because the coefficient F(L) in Eq. (1.1) is in this case proportional to 3{F,2—1 and be-
cause F,; is unknown.

In the method described above the system of equations (4.1)-(4.7) is overdetermined.
For instance, T)2 can be found from Eqs (4.3), (4.4) or (4.6). This makes possible to use the
least-squares method to reduce the errors.

In Appendix the formulae relating the statistical tensors to the non-vanishing moments
are given for the following processes: 3= — 0~ +(37 — 3+0), 2= - 0-+(I- = 0--0),
1# = 0-—=(2= - 0-0) and 2~ - 0~ (27 = 0--0). For the process * - 0~+-(3+ - 1 +0)
the only non-trivial moment is

H(2,0:0,0) = L. (4.12)

The method fails in this case since H(2, 1; 1, 1) = 0 because of the “‘accidental” vanishing
of the Clebsch-Gordan coefficient C(3, —%; 2, 1 3, 1). However, Eq. (4.12) may be used
to check the spin-parity assignmenis of the particles.

5. Discussion

We have shown how it is possible to measure the tensors for any L and the decay
coupling constants from the double moments in sequential decays. We stress again that
the usual method of moments gives in these cases only the even L tensors up to an unknown
factor F(L).

A possible difficulty in the practical application of the method presented here may
be the correct spin-parity assignment of the particles and decay products, as the method
relies on this assignment. However, in most cases the system of equations giving Ty
and F; is overdetermined and the extra equations may be used to check the spin-parity
assignments or to reduce the errors.

The authors would like to thank Dr A. Bialas and Dr K. Zalewski for discussions.

APPENDIX
Further examples of the double moments in sequential decays

Only the non-vanishing moments are quoted below.

a. Decay 3~ - 320 followed by 37— {+0

H(2,0;0,0) = +(1—4|F; %), (la.1)

8
HQ2,1;1, M) = — — = i Im (F3F}) (TY)*, (1a.2)

515
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H(0,0;2, M) = 2 (41F,|* = 1) (T;p*,

H(2,0;2, M) = — % (T)*,
H(2,1;2, M) = H(2,2;2, M) = — - Re (F F}) (T:h)*,
HQ2, 1;3, M) = — &% JZilm (F5F7) (Ti)*,

H(2,2;3, M) = &% i Im (F3F7) (Tap)*.
The coupling constants satisfy the relation
FiPHIRBP2=1}
and can be expressed by the S and D wave decay constants
Fy = 3 (Fs+Fp),
Fy = 3 (Fs—Fp).
b. Decay 2= > 1--+0~ followed by 1= - 0-+0
H(2,0;0,0) = £ (1-3|F, ),
HQ, 1;1, M) = —i JZIm (F,F3) (Ty)*,
H(O,0;2, M) = — /3 (1=1F, ) (T,
H(2,0;2, M) = — 3G ~IF,") (Ti*,
HQ2,1;2, M) = — 1 /S Re (F,F3) (T)*,
H(2,2;2, M) = = 3 JF IFA(T)*,
H(22,1;3, M) =

i

z %ilm (FoF7) (T)*,
~ P IF A (T,
— 4 |F, 1)) (T,

H(0,0;4, M) = L /1F
H(22,0;4, M) = /&
2
3

7

2 (
5
1

H2,1;4, M) = Re (F Fg) (Ty)*,

V7
H(2,2;4, M) = 2 JZ IF,A(Ti*.
The coupling constants satisfy the relation
2IF, P+ Fol? = 1

and can be related to the P and F wave coupling constants
F, = W3AF ! F
1 = 10 P \/g F>
F, = iF 3 F
[ 5 P \/g F-

(1a.3)
(1a.4)
(1a.5)
(1a.6)
(1a.7)

(1a.8)

(12.9)
(12.10)

(1b.1)
(1b.2)

(1b.3)
(1b.4)
(1b.5)
(1b.6)
(1b.7)
(1b.8)
(1b.9)

(1b.10)

(1b.11)

(1b.12)

(1b.13)

(1b.14)



c. Decay 1% - 2t+0~ followed by 2t - 040
H(29 0’ 0’ 0) = %(1—- [Fl i2)7
H(4,0;0,0) = 3(1- 5 |F,]?),

, 2. i
H(2,1,1,]\/1)— _TIIm(FlFO)(TM)’
H@4, 151, M) = — 2 /3 i Im (F,Fg) (Typ*,

H(0,0;2, M) = 3/5—6 GIF: P =D (T,

H(2,0;2, M) = Vo (51F,12=2) (T)*,

35
32
HQ,1;2, M) = — ~3\é— Re (F,F3) (Ti)*,
3.6
H2,2;2, M) = — ~3‘§— FL2(Ti)*,
2./6
H(4,0;2, M) = — 246 B—41F1*) (Tip)*,
105
H(4, 152, M) = — 3 /T Re (F,Fo) (To)*,
H(4,2;2, M) = — 2 JZ|F,A(T)*.

The normalization condition is
2|F, P+ Fpi?2 =1

and the relation with the S and D wave coupling constants are

et
10 NE
Fo= — J3Fs+ JIFp
d. Decay 2= - 2+4+0- followed by 2t - 040
H(2,0;0,0) = 3(1 —4iF, >~ |F, ),
H(4,0;0,0) = & 3—5|F,2—10|F, ),

F,

Il

HQ2, 151, M) = — £/% ilm (F,F3+2F,F7) (Typ)*,

H(4,1;1, M) = %5 i Im (F,F} +3F,F}) (Ta)*,

H(0,0;2, M) = JZ4IF, >+ |F 1> = 1) (TR*,

H(2,0;2, M) = £ /2 (3|F,*-2) (T}H)*,

529

(1c.1)
(1c.2)

(1c.3)
(1c.4)

(1c.5)

(1c.6)

(1c.7)

(1c.8)

(1c.9)

(1c.10)
(lc.11)

(1c.12)

(1c.13)

(1c.14)

(1d.1)
(1d.2)

(1d.3)
(1d.4)

(1d.5)
(1d.6)
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H(2,1;2, M) = — } /2 Re (6F,F| +F,F3) (T)*, (1d.7)
H(2,2;2, M) = — Y /2 (4 Re (F,F3)+3/F i) (TH)*, (14.8)
H(4,0;2, M) = A JE(TIF,\* +8F 2 —3) (T, (1d.9)
H(4,1;2, M) = 2 /5 Re (F,F; —FoF) (T, (1d.10)
H(4,2;2, M) = 2 /1% (Re FoF3 —|F 1) (TR)*, (1d.11)
H2,1:3, M) = — 24‘;5 ilm (3F,F} +FoFY) (To)*. (1d.12)
H(2,2;3, M) = — 13i21Im (F,F3) (TH*, (1d.13)
H(4, 133, M) = Fr J2 i Im (F,Fy +2F F3) (T)*, (1d.14)
H(4,2;3, M) = &5 /'8 i Im (F,F3) (Ti)*, (1d.15)
H(4,3;3, M) = 7 %9 i Im (F,F )*(Tip)*, (1d.16)
H(0,0;4, M) = — L. /L0 (S|F,1* + 10|F, >~ 3) (T)*, (1d.17)
H(Q2,0;4, M) = — &5 10 (TIF, 2 +8iF, 1> =3) (Ta)*, (1d.18)
H2,1;4, M) = — 1% \—/% Re (F,Fi—F,F3) (T4)*, (1d.19)
H(2,2;4, M) = — 1% /2 (Re (F,Fg5)—F,|*) (T;D*, (1d.20)
H(4,0;4, M) = —;§¢?( 8—20|F, 2 =35|F,)%) (Tyh*, (1d.21)
H(4,1;4, M) = 135 /19 Re (6F,Fg + F,FY) (T3, (1d.22)
H(4,2;4, M) = 135 /19 (3 Re (F,F5)+4IF,*) (T3)*, (1d.23)
H(4,3;4, M) = 75 /10 Re (F,F3) (Ti)*, (1d.24)
H(4,4; 4, M) = &5 /0 [F,|X(Ti*. (1d.25)

The normalization condition is
2F P2 F 2+ iR =1, (1d.26)

and the relations of the helicity coupling constants with the decay constants in the §, D
and G waves are

2 1
F fF - Fp+ —=Fg, 1d4.27
2 \/ S \/7 D \/70 G ( )
F,= 4 F— L F gF (1d.28)
1= \/g s V/ﬁ D 35 G» .

1 2 18
Fo= Gz Fs= |2 Fo+ / ZF,. (1d.29)
v N
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