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The general properties of models where the absorption of systems coherently produced
in nuclei is small, because the absorption parameters are replaced by a non-diagonal absorp-
tion matrix are investigated. A new class of such models in which the absorption from large
diagonal terms of the absorption matrix is partly cancelled by the off-diagonal terms is dis-
cussed. The dependence of the mass distribution of the coherently produced system on nuclear
radius in this class of models is different from that predicted by Van Hove model. For
certain values of parameters the model discussed here gives the mass distribution and absorp-
tion parameter independent of the nuclear radius, in apparent agreement with the data.

1. Introduction

Recent experiments on coherent production of (3m) systems on nuclei (further on
called A-systems) reveal in particular the following two features of this process [1}-[5]:

i) The eikonal approximation [6] describes well the t-distributions, provided the
absorption of the A-system in nuclear matter is put roughly equal to that of the pion;

if) The effective mass distribution of the A-system shows no strong dependence
on the radius of the target nucleus, except of course for the trivial dependence caused by
the changing nuclear formfactor.

The smallness of the absorption coefficient for the A-system can be explained, when
the absorption coefficient is replaced by an absorption matrix [7]-[10]. The most de-
tailed analysis of this kind was described by Van Hove [9]. In Van Hove’s model the
effective mass distribution for the A-system shrinks with increasing nuclear radius. Gott-
fried {10] indicated the possibility of models in which the effective mass distribution of
A-system broadens with increasing nuclear radius. For the moment these predictions
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cannot be precisely tested with the experimental data, because the experimental errors
are still quite big and the analysis of the data is somewhat model-dependent. However,
since the existing data are consistent with no change in the mass distribution, it seems
interesting to construct models which explain the small absorption without requiring
changes in the mass distribution. This is the purpose of the present paper.

In the following Section we recapitulate the main points of the eikonal approxima-
tion, mainly in order to introduce the necessary notation. In Section 3 non-diagonal absorp-
tion is described, Section 4 contains a description of our model and Section 5 the conclu-
sions.

2. Eikonal approximation

In the eikonal approximation it is assumed that the incident pion travels across the
nucleus along a straight line, like in geometrical optics a light ray in an absorption medium.
One of the possible effects of absorption is that at some point along its path the 7 goes
over into a (3n) system (further denoted A4). The A4-system travels from the point, where
it was created along the same straight line determined by the incident pion momentum.
It may either get in turn absorbed, or emerge from the nucleus.

Let us denote by b the collision parameter i. e. the distance of a given rectilinear path
from the centre of the nucleus. We can calculate the effective path length from the formula

2b) = | olb, 1, @1

where x is the coordinate along the path and ¢(b, x) denotes the nuclear density. According
to the eikonal mode! at very high energies, where the longitudinal momentum transfer in
the process = — A is negligible!, the amplitude for the production of A (for an A-system
emerging from the nucleus) in a collision with parameter b depends on z only. Denoting
this amplitude by f(z), we have for the differential cross-section (cf. e. g. [9])

do r 2

i —_— .
7l ; [ bJo(b \/—t)f(Z(b))dbg . 22
0

Thus at high energies in order to describe the differential cross-section for the production
of A on all the nuclei, large enough to make the eikonal model applicable, it is enough
te know the single function of one variable f{z). If we want to distinguish between A’s
produced in various states m, we can add a subscript m to f(2) and to o.

The function f,(2) satisfies a simple continuity equation (¢f. [9]), which for the standard
version of the model reads

Af

il w(m)e™ **—A(m, m)f,(z) (2.3)

i According to estimates from Ref. [11] for 4 with a mass below 1.32 GeV produced on an Ag
nucleus the correction to the cross-section from taking into account the longitudinal momentum transfer
is about 12% at 30 GeV/c incident momentum and decreases with increasing energy, or decreasing A4 mass.
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with the initial condition
fm(0) = 0. 2.9

On the right-hand side of Eq. (2.3) the first term gives the contribution of the pion going
over into a A-system. Thus A, is the absorption coefficient for a pion propagating through
the nucleus, exp (—A,z)is the amplitude for finding the pion at depth z and w(m) gives the
m distribution (further called mass distribution, ¢f. Ref. [9]) of the newly produced
A-system. The second term is the standard absorption term.

Equation (2.3) can be easily integrated, but it is even simpler to work with function
F,(z) satisfying the equation

dF,(2)

Frie ~ A(m, m)F,(2), 2.5)

F,(0) = w(m). (2.6)

This function describes the propagation of an A-system in state m starting from the mo-
ment, when it was produced. As easily checked by direct substitution

Iu(2) = | e *F (z = x)dx. Q.7

0

On the other hand from (2.5) and (2.6)
F(2) = w(m)e™(mmz, 2.8)

Thus the logarithmic derivative of F,(z) gives immediately the absorption coefficient
A(m, m).

Existing experimental data on the absorption of A-system in nuclear matter [1]-[5]
indicate that indeed F,(z) can be written in the form

F,(2) = w(m)e "3 (2.9)
where
A2(m) =~ A, = (4.5 fm)~*/0(0, 0) (2.10)

is roughly independent of m.

This result is difficult to understand if the following twe very natural assumptions
are made

(i) The eikonal approximation is considered as the limit of the Glauber model, so that
the elementary scattering act is scattering on the single nucleon, which proceeds as if
the nucleons were free. Then (¢f. e. g. [6])

}'A(ma m) =} O4,N> Ay = 3 GaNs (2.11)

where o, y is the total cross-section for the scattering of the A-system in state m on
a nucleon.
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(ii) The A-system is a (mo) system. Then using Glaubzr’s model for the scattering of
a (on) system on a free nucleon it can be proved that [1]

aAmN o~ Za'nN. (2.12)

From (2.11) we thus obtain using (2.12) the following relation between the absorp-
tion parameters of the A-system and =:

Apeer ~ 21 (2.13)
Combined with the experimental result (2.10) this implies that
A‘;heor # l;xper‘ (2.14)

The source of this difficulty is in the assumptions that an A-system is a (pr) system and
that its scattering off the free nucleon can be described by the Glauber model. If these
assumptions are rejected e. g. by saying that the A-system is a resonance there is no problem
[1]. However, it is interesting to look for other ways to avoid the contradiction (2.14).
This is discussed in the next section.

3. Non-diagonal absorption

A way out of the difficulty described in the previous section is to propose a different
interpretation of the experimental results (2.9) and (2.10). Two possibilities arise: either
the absorption coefficient 15P*(m) is not related to the parameter Am, m), i. e. formula
(2.8) is not valid; or the parameter A5 (m) is not related to the total cross-section of the
A-system on a free nucleon, i. e. formula (2.11) is violated.

Van Hove [9] and Rogers and Wilkin [8] observed that such possibilities do indeed

arise if one introduces non-diagonal absorption, i. e. if one replaces equations (2.3) and

(2.5) by
dﬁ@: W(m)e_}'"z"' Z Mm, m')f,(z) G-
dz '
and "
dFu(z) Z A(m, mVF. (2). (3.2)
dz

The initial conditions (2.4) and (2.6) and relation (2.7) remain unchanged. Also formula
(2.11) remains valid under the same assumptions which were necessary to prove it in the
diagonal case (¢f. Appendix A). Specific models are obtained by fixing the matrix A(m, m’).

Van Hove considered a class of models with non-diagonal absorption matrices and
has shown that one may obtain a substantial reduction of the expected absorption para-
meter with respect to its value required by formula (2.13). The models considered by Van
Hove have two essential properties:

a. The absorption matrix is a smooth and slowly varying function of the parameters
m and m'.
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b. The range of parameters m and m’ in which A{(m, m') is substantially greater than
zero is of the same order as the range in which the probability amplitudes w(m) for cre-
ation of A-systems are different from zero.

Furthermore, correspondence with the condition (2.11) can be obtained if one
notices that in Van Hove’s model [9]

E' Mm,m)~4%o, x (3.3)

where o, y refers to the scattering on a free nucleon.
It is easily scen that by the substitution

Mm, m')y - A,6(m, m'). (3.4

Egs (3.1} and (3.2) reduce to the diagonal case (2.3) and (2.5) with the condition (2.11)
satisfied.

Apart from the basic result that absorption is strongly reduced, Van Hove’s models
have two other important properties:

(i) Condition (2.11) is not satisfied, as is obvious from formula (3.3). This is explained
by observing that the interactions of the A4-system in nuclear matter may have little to do
with the scattering of an A-system on free nucleons.

(if) The mass distribution F,(2)/} .F,(0) changes with distance z when the A-system
travels in nuclear matter. This effect should lead to observable differences between the
mass spectra obtained from scattering off different nuclear targets (apart from the trivial
cut-off dependence implied by the nuclear form-factors); consequently it may perhaps
serve as an experimental test of the Van Hove mechanism in future more accurate experi-
ments.

The mechanism by which absorption is reduced in Van Hove’s models can be seen
by writting Eq. (3.2) in the form

1
Anl2) = — = {log \Fn(2)I} = EZ; 5 T (3.5)
where
Z j'(m m,)Fm‘(z)
,,,(z) = ——_ (3.6)

Z (m, m")

and A,(2) is the effective absorption parameter for given m and z. Here we have used
condition (3.3).

Let us first consider the effective absorption parameter 4,(z) for short distances
z ~ 0. Then formula (3.5) reads

w(m) 1
( )2 G AN>

and we see that in the region where w(m) is large: W(m) < w(m) and 4,(z =0) < } o,n.

Az = 0) = 3.7
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Thus in the central region of the A-bump the absorption coefficient is reduced, whereas in
the outside regions it is enhanced. Consequently, the 4-bump shrinks as z increases.

At large distances the absorption parameter tends to zero as follows from the discus-
sion given in Ref. [9].

These results show that

a) at large distances the absorption in Van Hove’s model will be small independently
of the normalization condition (3.3). This indicates that condition (3.3) may be relaxed
[12] and stili small absorption is obtained for a suitable set of w(m). E. g. for w(m) = F©)(z,)
where z, is a fixed large value and F(z,) are calculated with some original w(m).

b) the effective absorption parameter changes with the distance z. Consequently the
amplitude F,(z) cannot be written in the exponential form (2.9) and the dependence of
the differential cross-section on the nuclear radius is altered with respect to the prediction
of the simple eikonal model with diagonal absorption.

¢) the effective absorption parameter depends not only on z but alse on m. Thus the
mass distribution changes when experiments are performed on different nuclei.

To investigate this last point in more detail we write Eq. (3.2) in the form

dF,, _ 1
dz(z) = Ful@) 5 0 (3.8)

and observe that, since A(m, m') is a slowly varying function of m and »/’, the function
F,(z) depends only weakly on m. Thus the rate of decrease is similar for all F,(z): their
distribution sinks without changing shape. As a result negative values of F,(z) appear in
the region where w(in) are small, /. e. at the edges of the A-bump. The mass distribution
changes in two ways. Firstly, the central peak shinks. Secondly, broad wings correspond-
ing to the negative values of F,(z) appear, with minima between the central peak and the
wings.

To summarize, in the Van Hove model the reduction of absorption is intimately
related to changes in the shape of the mass spectrum. Furthermore, the attenuation of the
produced A’s is not exactly exponential in the travelled distance.

In the next section we discuss another class of models in which the reduction of
absorption is not necessarily accompanied by these side-effects.

4. Quasi-diagonal absorption

In this section we discuss the main point of our paper which is to describe a mechanism
for the absorption of the A4-system in nuclei which has the following characteristics:

a. The conditions (2.11) and (2.12) are satisfied, /. e. the absorption of the A-system
in nuclear matter can be determined from its interaction with a free nucleon.

b. Despite of this, the absorption parameter 4, of the 4-system need not be equal to
twice that of the pion but can be made arbitrarily small and, in particular, equal to that
of pion.

¢. The absorption parameter 4, depends practically neither of z nor on m, provided
the mass distribution in the 4-bump is a slowly varying function of m. Thus it should be
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possible to describe the data for all nuclei by one value of Z,. Furthermore, except for the
effects of nuclear form-factors, the mass distribution in the 4-bump is also the same for
all nuclei.

The mechanism we discuss here is thus complementary to that proposed by Van Hove
[91. Point (c) above indicates that there are observable differences between these two
mechanisms. It would be interesting to analyze the data with particular emphasis on these
effects.

The mechanism can be illustrated on a model where Eq. (3.2) takes the form

dF,(z)
dz

Fo(z) = Fyy4{z) =0, m=1,..,N. 4.2)

= —AoF,(2)+ ;_M{qu(ZHFmﬂ(Z)}, 4.0

Thus in this model the only non-zero elements of the A-matrix are A(m, m) = A, and
A(m, m+1) = 1 ;. The calculations are performed for N finite, but at the end the limit
N - o0 is taken. In the limit therefore we have a continuous mass spectrum.

The properties (a)~(c) required from the model can be obtained also for any quasi-
diagonal matrix A(m, m'), for which only a finite number of off-diagonal elements close to
the main diagonal is different from zero in each line. For simplicity we work with example
(4.1).

From Eq. (4.1) we have the following expression for the absorption parameter
A4(m) of the A-bump in state m:

2, Mm, m)F,(2)

d i AoFm— % 24(Fms1+Fp_
A m) = -—-&;{]nwm(z)l}:m _ %of'm YA (Fsr+Fp_y)

F,(2) Fr

. (4.3)

Now, the point is that whenever w(m) can be written as a smooth function of mass, the
same can be expected for F,(z). Then the change of m by onc unit should not affect much
F,(z) and Eq. (4.3) can be rewritten approximately as

A m) = Z A(m, m) = Ay—4A,. (4.9)

Thus the absorption parameter 4, is the sum of a diagonal and some off-diagonal elements
of the absorption matrix. By choosing the off-diagonal terms negative (i. e. A; positive)
we obtain the reduction of absorption compared to the value obtained from the diagonal
term alone. Thus the absorption can be made arbitrarily small inspite of the condition
(2.11) applying to Ay = A(m, m).

Eq. (4.4) indicates also that the value of A, depends neither on m nor on z. Thus
condition (c) is satisfied and we have

F(2) = w(m)e™Go~40z, (4.5)

The arguments used here are only qualitative but we believe that they describe corectly
the general behaviour of absorption. For the interested reader we give in Appendix B
the exact solution of the set of Eqs (4.1) and verify explicitly the relation (4.5).
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The same situation is obtained also for more complicated quasi-diagonal matrices
A(m, m"), provided the width of the central band of the matrix A(m, m’) is small compared
to the width of the A-bump. In this casc we have several off-diagonal terms which reduce
the large diagonal term in formula (4.4). This behaviour of A(m, m’) is illustrated in Figure 1,
where the schematic plot of A(m, m’) as function of m' for fixed m is given. It may be con-
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Fig. 1. The absorption matrix A(m, m’) for fixed m as function of ' is represented by solid lines for the
quasi-diagonal absorption (a) and for the Van Hove model (b). To fix the scale the mass distribution of
the A-bump is indicated by the dotted lines

trasted with the one obtained in the Van Hove model, which is also shown in Figure 1.
In this case there is no central peak, but the distribution is smooth and very broad.

We believe that, as argued by Bell [13] and Gottfried [10], the situation in which
there is a sharp central peak of the elastic transition followed by a more diffuse distribu-
tion of the off-diagonal terms is likely to occur in the real world. For example, such struc-
ture is present if the scattering of the A-system from the nucleon is described by the Glauber
model [10]. Although in the case the negative wings of the absorption matrix are too small
to account for the observed reduction of the absorption parameter [1], it is important
that qualitatively the effect is present. It seems to us likely that an improved calculation,
taking into account the interaction between ¢ and 7 may well enhance the effect con-
siderably.
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We close the description of the model by the observation that in order 1o obtain
cancellations in formula (4.3) for the absorption parameter 4, it is not necessary that
the negative wings of the absorption matrix are very narrow. What is important, is the
sum of all non-diagonal elements which should be negative and approximately equal to
one half of the diagonal term. Thus qualitatively similar results can be obtained even
for wings as broad as A-bump itself. [n this case, however, similarly as in Van Hove model,
the absorption parameter will depend on z and on m. Thus we should observe changes
in the mass distribution and in the absorption parameter for different nuclei. It is inter-
esting to note that the changes in mass distribution are opposite to those predicted in Van
Hove’s model: we expect a broadening of the central peak and the appearance of wings
in the mass distribution without a dip between peak and wing. Thus the distribution
simply broadens with increasing nuclear radius without developping any structure [10].

For completeness, let us mention another possibility of a mechanism which reduces
absorption: for 4; < 0 cancellations are possible if F,{(z) oscillates rapidly as function
of m. For Egs (4.1), (4.2) with

w(m) = (=" (4.6)

and 4, negative we have again

F,(z) = e Mo 1llzypy, 4.7

5. Conclusions

Following the discussion given by Van Hove [9] we have investigated the general
properties of the models for the absorption of composite objects in nuclear matter in which
the absorption is described by a non-diagonal matrix.

The main conclusions can be summarized as follows:

a) The presence of the large diagonal term corresponding to elastic transitions in the
absorption matrix (d-term in Van Hove’s notation) does not necessarily lead to strong
absorption of the composite object travelling through nuclear matter. Thus it may be
possible to describe the scattering of this object from a free nucleon by the same amplitude
which describes its scattering from a nucleon bound in nuclear matter.

b) We discussed in some detail a class of models in which the off-diagonal terms
of the scattering matrix are negative and largely cancel the diagonal absorption term.

c) The properties of these off-diagonal terms can be deduced from studying the
dependence of the mass distribution of the produced objects and of the absorption para-
meter on the nuclear radius. It is not difficult to construct models in which the mass distribu-
tion and the absorption parameter do not depend on the radius of the target nucleus in
apparent agreement with existing data.

d) Property (c) can be used for an experimental distinctions between the models
we discuss and the Van Hove model (in which the d-term is not present). This is so because
the dependence on the nuclear radius is very different in these two classes of models.
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€) The structure of the absorption matrix discussed by us occurs in the Glauber
model and is very likely to occur in its generalizations.

Both authors thank Professor W. Czyz for stimulating discussions. One of the authors
(K. Z.) is grateful for discussions to Professors L. Van Hove and J. Bell.

APPENDIX A

In this Appendix we prove that relation (2.11) holds for non-diagonal absorption
matrices, provided it holds in case when the absorption matrix is diagonal.

Let us denote the states which diagonalize the absorption matrix by |u>. They are
related to states |m) by

B> = Y Qunlm, (A.1)
where Q is an unitary matrix. Also we have

)”m,m' = Z QnTuAuQum', (A2)
I

where A, are the eigenvalues of the absorption matrix.
According to our assumption, condition (2.11) holds for eigenvalues of the absorp-
tion matrix and we have

AI‘ = % O.A“N’ (A.3)

where a4,y is the total cross-section for scattering of an 4-system in state |u) off a free
nucleon. By the optical theorem we can write

64,8 = Y<ulT|u3, (A.4)

where 7 is a coefficient depending on the normalization of states |u> and {u|T|u) is the
forward elastic amplitude.

To prove our statement, we observe that, since Q is an unitary matrix, the normaliza-
tion of states |u> and |m) is the same and we have also ‘

64,8 = Ym|T|m}, (A.5)

where 6,y is the total cross-section for scattering of an 4-system in state [m) off a free
nucleon, and {m|T|m) is the corresponding forward elastic amplitude. Thus, using
Egs (A.2)-(A.5) we obtain

: Y §
Amm = Q:MAMQW" = 5 Q':Il<ﬂlT]I't>Q“m =

“ u

1
- G4 (A.6)

= 2 <miTim) =3

This completes the proof.
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APPENDIX B

In this Appendix we present the solution of the system of equations (4.1). The method
is standard (¢f. Ref. [9]). Substituting

O e
F.(z) = N1l Z ¢,(2) sin (ﬂi) (B.1)

n=1

into Eqs (4.1) we have

de, P nmn
— | Ag— 44 cos
O TN+

iz 1) cn(2)- (B.2)

The initial condition (2.6) implies

L0 = TN- s nkn B3
0= 153 vorin(25). 5
k=1

Solving Eqs (B.2) with the initial condition (B.3) and substituting into (B.1) we find

2 k =] Ao— 41 cos E z
Fm(Z) = m Z W(k) z sin (;’:7;) sin (Nn+nl> e [)' (N*l)} . (B.4)
1 n=1

Since we have assumed that the mass distribution in the A-bump region is a slowly
varying function of m, we can represent w(k) by a finite Fourier series:
L

Ik
w(k) = z a; sin (N :1) . (B.5)

=1

Substituting (B.5) into (B.4) and performing the summation over k we obtain

L N
N (10~ cos =)z
Fuy= NN sin (2 5 o (om e i) (B.6)
N+1 N+l
i=1 n=1

For fixed L and N — oo, this formula gives

L
ml
F(z) = E a, sin <N +n1) e~ Hom a0z — yy(m)e otz (B.7)

I=1
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