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The structure of a unified field theory is investigated in which the non symmetric “Ricci®”
tensor is expressed in terms of the most general variables with respect to which it is automati~-
cally Transposition Invariant in the sense of Finstein and Kaufman. It is shown that all such:
theories reduce to unified field theory proposed by the latter authors (E-K). Moreover, it is.
shown that this theory itself is fully equivalent to the theory of Einstein and Straus. Thus,.
unless one is prepared to complicate the Lagrangian unduly and arbitrarily, the latter appears.
as the only non symmetric, four dimensional extension of General Relativity.

Newly discovered symmetries of the theory give rise to a conservation law enabling
an identification of the current vector density to be made.

1. Introduction

It is only very recently [1] that some indications have been found of how a class of
unified field theories of gravitation and electromagnetism, the four dimensional, non
symmetric theories, might be tested empirically. Without an experimental verification:
(or otherwise) the only criterion by means of which it would have been possible to judge
their relevance to physics was the principle of simplicity. In the case of unified field the-
ories, however, the principle was particularly difficult to apply, owing partly to their
intrinsic complexity and partly to the uncertainty as to the direction in which relativity
should develop.

In these circumstances, the investigation of the mathematical and logical structure
of the theories proposed acquires special significance. Einstein himself regarded the theory
which he outlined with Strauss [2] and later modified in collaboration with Kaufman
[3] as the natural (that is, presumably logically necessary, Ref. [4]) extension of Generak
Relativity. (We shall refer to these two theories in the sequel as E—S and E—K, respec~
tively.) More important is the fact that unlike most other proposals for a comprehensive
theory of macrophysics, Einstein’s theories begin with a hypothesis which has a direct
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physical meaning. This is the principle of Hermitian symmetry or Transposition Inva-
riance interpreted [35] as charge conjugation invariance of the field equations. We should
recall also that Einstein argued the E—~K theory to be stronger than E—S (and therefore
to be preferred for lack of other evidence, Ref. {3]). We shall find bzlow that this claim
cannot be maintained.
The field equations of E—S are
Buvir = g;;v,x_r':).gav—r:vgua =0

+ -

R‘Lv'l = Rﬂ:-l+Rijﬂ+Rl$l,V =0

and
r,=4+U,—I;)=0.

Here R,, denotes as usual, the contracted curvature (Ricci) tensor Ry, formed from the non
symmetric affine connection (we use Einstein’s summation convention over repeated
indices, Greek indices go from 1 to 4 and Latin from 1 to 3) T jv, a line under two indices
denotes the symmetric, and a hook, the skew-symmetric part of a given quantity.

In the E—K theory, the field equations are derived from the variational principle

5 [ ¢ R, dr = [ (R, 09" +.#5"8U%L)dt = 0
where g*’ = J:gg”', the contravariant tensor g*’ is defined by
8w = 8u& = O

and g is the determinant of g,,. The non symmetric Ricci tensor is expressed in terms
of the pseudo connection UL, defined by

ri, = Ui- 3 U,5%.

R,, is automatically Transposition Invariant with respect to U,‘},, without the need to
assume the last of the E—S questions (the vanishing of I',).

It has been found by one of us [6] that the above expression of the affine connection
in terms of U}, is not unique. If we let

r:;v = V;Alv— % V:c(sﬂ_ % Vvaﬁ
where
Vv = % (Vvaa'_" V:v)7

the tensor R,, will remain Transposition Invariant with respect to the new symbols V,fv.
It seems, therefore, that we can have iwo (or indeed infinitely many, since below we shall
exhibit a general form of the substitution which serves the same purpose) theories of the
E—-K type.
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We shall show, however, that this is not the case. Not only do all the above theories
of the E—K class have the same domain of solutions, but they overlap fully also with
E—S. The result is due to a new kind of invariance arising from the desire to make R,,
Transposition Invariant.

One other point ought to be stressed before we can proceed. The affine connection
I's, or the quantities Up,, Vi, efc. are invariably defined by equations of the form

M =0

which differ from the remaining field equations by being purely algebraic (Mme Tonnelat
solved them completely in the E—S case). Consequently, the theories (or theory) contain
only sixteen variables to which physical meaning can be attached. These are the sixteen
components of the fundamental tensor g,,. The other variables I', U or V are merely aux-
iliary. When one of these is such that R,, is automatically Transposition Invariant with
respect to it, we shall call the variable “Hermitian”.

2. The general Hermitian substitution

We begin, for the sake of precision, with a general definition of Transposition In-
variance. Suppose that a two index quantity H,, is a function of the fundamental tensor
gy of a quantity Uy, and of their derivatives with respect to the coordinates x* (denoted
as usual by a comma):

Hﬂv = Hyv(gaﬁa U;a’ "')‘

We say that H,, is Transposition Invariant (“Hermitian”) with respect to g,, and U}, if

Huv = Hvﬂ(gﬁa’ U:qa )'
In terms of the affine connection I',, the (“Ricci™) tensor R,, is [7]

R,, = Ty, 4T+, —T g, 1)

Hy
Let now U,f’v be an Hermitian variable so that if
I, = I,(U3,) @)

is substituted into (1), R,, is Transposition Invariant with respect to U%,.
In addition, we require (as in Ref. [8]) that the equation (2) should be invertible,
so that

Uy = Ui(T5,)- 3
For example, this condition excludes Schrédinger’s substitution
I, =T+ 33,
for which I'; = 0.
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Moreover, it virtually forces us to write (2) as a linear expression
i 2 2
Fﬁv = Unv+a1U:65v+m2 U:aéu'*'ﬂl U:;;a:'*'ﬁZU:va;}; (4)
where o, ,, B and B, are numerical constants.

Then the two conditions, namely that U,’fv should be an Hermitian variable and that
the equation (4) should be invertible, require that

rj, = Uh+Qa+ D3 Uy, ~ 3 8, U, ~ Gy + DU, +

+(3ay +20, +1)5,U,. o)
‘We readily find that

Ui, = Th+ 9[(B— A8\, ~(4+B)ST,+

+(C-D)5;I';,+(C+D)5,I,], ©
where
A = 1202 +8a 0, + 30, + 305,
B == 3a%+2a10{2+2al +'}az+%,
C = 302+ 200, +a; + 30y,
D = 1203 +8a 0, + Ty +Za, +1,
and

D' = (Say +%) (9a, + 60, +2). )

Thus U,fv given by (6) is the most general Hermitian variable with arbitrary o; and o,
providing

-t £ 0.
The excluded values of a; and «, are therefore
o, = —4/15 and 9oy +6a,+2 = 0. 8
In particular, the theory of Ref. [6] is obtained if we put
oy = —% and a, = —%.
and E~K if
¥y = ""%, Ay = 0.

In terms of U,’;, , the Riccl tensor becomes
R,, = —US, .+ (1430, +ay) (Us,,+ U, ) —
~ oy (Uguv+ Uss )+ UL UL, —2(1+ 3a,)UZvU?,£—
-303U5, U8, —a,(1+30y) (U5, U+ Ug, Ug) —

_3(% +a1)2U:nU$¢s (9)

and is easily seen to be Transposition Invariant as required.
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3. The field equations
We derive the field equations from the variational principle

5[ g"R,dr = 0 (10)
1 4

with g*" and U}, as the variational parameters. Variation in g*” gives immediately the
sixteen equations

R,, =0, 05))

R, being expressed either by (9), that is in terms of U:.,, or by (1) in terms of the affine
connection I';, related to the former variables by the equations (5) or (6).

With the usual assumption that all integrated parts (that is 3-integrals over the hyper-
surface bounding the four volume V') vanish on the boundary, variation in U;}, gives the
64 algebraic equations determining U}, itself

81— (1+3a, +,) (6%,083+87 .69 +002(8" .03 +6™ .0 +
+" U, +67 Ul —2(1+32,)8" U3, — (1+ 34,7 (U, 83 + Upe ) —
—30(6" Ugd1+ 6™ UL dD) — 3 +a,)*(8" UL, +8™Ug,0) —
—ay(1+3a,) (§°US0; + 7 UL 03+ 87 UL B4 +§° UL = 0. (12

Equations (12) have some very interesting consequences. A direct calculation shows that
four differential identities on g*' are implied. In fact, skew symmetrising equations (12)
with respect to g and v and contracting over v and 4, we obtain

—(2+90a, +6a,)g"* , = 0. 13)

Since the numerical factor is not allowed to vanish by the conditions on 2-* of the pre-
vious section

g, =0, 14

identically. Substituting these identities into (12) we see that the algebraic equations are
independent of a,.

We now show that they are also independent of «,.Indeed, contracting equations
(12) over v and 4 (but without previous skew symmetrisation), we find

g s+ 97 U% = — § (14609208, ~ $9"°U, (15)

the factor (4+15x,) cancelling out. Collecting the cofactors of 6} and 8% respectively from
the last three brackets of the equations (12) and eliminating (1+6a,) g22U2, with the
help of (15) we can write the former equations in the form a

8" a+9"U%L+6"UsL - 2(1+30,)9" Ul —
— (6" .+ 87 U3~ (8" . +8¥ Usp)s —
~ 3 (1+6a,)Ugy(g™5]+8 ™09 — } U(g"5;—g™5}) = 0.



584

Our aim is to convert these equations into a covariant tensor form. The usual method
is to multiply them by, say, g,.,8,, (and later to contract in order to eliminate § g* Lap.2)-
But they are not in the right form for this because

8ue8™" # Oy
We observe first that because of the equations (14)
8" . +67 UL = g% 487Uy,

If we now substitute for the latter expression from (15) (it occurs twice with x and v
interchanged) we find that the equivalent form is

8" 1 +8" U +"Ug — 2(1 4 301 )8" U3, +
+ 5 [(1+60,)g" Uz +6"U 0} +
+ 3 [(1+62,)g"U% —g"U.J8% = 0
and we can lower the indices in the usual way. The result is
gca;}._ U:).gaa— zogea— % (1 +6d1) (zgoaU:_a'*' go).Uzu'i'

+ gla'U:i.)_ %’ (gqua - g&aUg) = 0. (16)

If we substitute for U}, from equation (6) in order to discover the equivalent equations
from which the affine connection might be found, we get
gu_v;l_%rlgpv_%rvgmt:o (17)
independently of a,. These equations of course [9] are not Transposition Invariant with
respect to the affine connection. However, the forms (16) and (17) are completely equiv-
alent to each other so that regardless of which one we happen to select we must finish
up with the same true field equations, namely, the differential equations from which the
components of the fundamental tensor g,, are determined. It is only to these equations

that physics, in the guise of suitable boundary conditions and symmetry restrictions,
can apply.

4. Equivalence of E—S and E—K
Let us write g, ,, 2(U) for the same expression as g, ,. , but with U,‘}v replacing
+ = =
I}, Let also I'3, denote the affine connection of Einstein and Straus. The field equa-
tions of E—S can be written in the form

g_‘;l“'(f‘) = O’ R;ﬁ(f‘) = 03 Rux = Aﬂ.v_Av,;u fp = 0’ (18)

where 4, is a vector.
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Indeed, it is in this form that they are derived from a variational principle.
If we let

I, =v.+43,

then y5, is still an affine connection but

B

gu v;}.(y) = Alguv+Avgub Ruv()’) = 0, Ryv(’)’) = 0’ 'yu_ %A = 0' (19)
g fadd
If we therefore choose

A, =3y, 20)

we obtain the equations of the E—K theory except for the addition of the equations (20).
This could be called a hybrid theory H. Notice, however, that y, has nothing to do with
E—S theory so that all we are doing is requiring the arbitrary vector 4, of E—S to be
the contracted skew part of some affine connection. We obtain E—K if we select 'y,‘fv to
be the connection of that theory.

The reverse process is easily carried out. Starting with equations (17) we simply put
i, =ri+%or,,
and find immediately

Rﬂ-(f) =0, Ru\y,l(r) = 0’ g_‘:_ v;).(f) = 0’ f'p =0 (21)

i. e., the equation of E—S.

Equations (17), which are a consequence of the variational principle adopted, guarantee
that

g“v,v = 0. (14)

The important point is that although in E—S$ these equations are equivalent to the vanish-
ing of I',, the affine connection of E—S and the affine connection of E—K (with respect
to which the field equations of the latter are not Transposition Invariant) need not be the
same at all. Indeed, as long as we regard g,,, as the only fundamental quantity of the theories
concerned, it does not matter what auxiliary quantities we may care to use. They are
determined by equations of a very different nature from those which determine g,,’s
themselves, since they do not involve any boundary conditions in their selection. We are
driven, therefore, to the conclusion that the theories of E—~S and E—XK (and, in view of
the «;, and a5 invariance, any generalisations of the latter) are completely interchange-
able in the sense that they possess the same domain of solutions.

5. Conclusions

The test of the non symmetric unified field theories mentioned in the Introduction [1]
depends on the equations of motion of a test particle which, in accordance with the situ-
ation encountered in General Relativity, follow from the field equations. (We have shown
elsewhere that the field equations of the E—S theory give rise to the “correct” equations
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of motion in the sense that a Lorentz-like term appears naturally in them providing the
electromagnetic field is suitably identified, [9]. In view of the results obtained in this
article, there is only one non symmetric four-dimensional theory that needs to be con-
sidered and that is the theory of Einstein and Straus. If the results obtained from it are
experimentally verified we have no option but to accept it as (indeed, Einstein claimed
it to be!) a next step in the development of a comprehensive theory of macrophysics.

There remains, however, the question of the strength of the field equations. Relying
on the so-called A-invariance of the E—K equations Einstein claimed the latter to be
stronger than the E—S equations (and therefore preferable on the grounds of the Prin-
ciple of Simplicity or Occam’s razor). The fact is, however, that A-invariance leads [3]
to the equations (14) which are a consequence of our field equations anyway and which
represent only a restriction on the choice of the fundamental tensor.

We can show easily that invariance corresponds to a case which is a priori excluded
by the conditions of the theorem of section 2. If we put

V= 3 Vied) = Uyt Ug oy +(ay + DU+
+ o, U708 — (Baty + o, + 1)U, 52 (22)
(so that ¥}, is the pseudo-connection of E—K), then
Vi = Ul —Gay+o, + 1)UL +0,84U07, +
+0,8,U7, — Bty +ay + 1)83UG,. (23)
Hence, if we choose

% =-% @o=g, 29

(excluded, since for these values 2 = 0)
Vi = UL - L6iU,+ LoiU, (25

(which cannot be inverted so that U, will be arbitrary). We obtain the E—K A-invariance
if there exists a scalar such that

V, = A,

Since we have excluded this case, the A-invariance does not affect the theorem considered
in this article, which in any case have been shown to reduce to only one theory.

APPENDIX
Matter in the unified field theory

Einstein and Kaufman obtained in their article an expression for a quantity which
could be identified as an energy momentum tensor. This followed directly from the in-
variants associated with the variational principle. The fact that their Lagrangian is A-in-
variant gave rise only to the equations (14) which we have now seen to be an immediate
consequence of the field equations (16). Hence A-invariance cannot be said to contribute
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anything to the structure of the theory. The E—XK identification of energy-momentum
density, (¢""Ug, , = €J) is made simply because this quantity is conserved in the sense
that

. =0. (26)

However, there is a serious drawback to this. £2 is a tensor density only for linear transfor-
mations of coordinates reviving almost the distinction between Special and General The-
ories of Relativity.

In any case the problem of matter in the unified field theory remains formidable.
How, for example, can one hope to obtain a model of a stratified stellar object with a large
magnetic field? So far, we have good reasons for identifying [10] the electromagnetic
field as

fpv = g¢ﬁgi vafe (27)

The answer to the above question ought to be sought not so much from finding expressions
for energy-momentum, but from attempting to extract from the theory a metric tensor.
It is highly doubtful whether guv is an adequate description of the latter especially if guv
is not the electromagnetic field tensor. However, there does not seem to be at present
any way in which a more general expression for the metric could be derived. Most probably
discovery of such a way will have to wait until more solutions of the field equations are
known.

There are on the other hand two alternative methods which may throw some light on
the problem even in the present state of the theory. It has been pointed out by one of us
[11] that according to the definition (27) the electromagnetic field f,, can vanish without
simultaneous distinction of skew symmetry of the fundamental tensor. This is the case
when guv satisfies our analogue of the wave equations

gapg uviap = 0. (28)
4.

Solutions of this equation in the vicinity of the coordinate origin may represent distribu-
tion of matter, though of course, skewsymmetry precludes by Noether’s theorem, 8uy
itself, from being regarded as the energy momentum tensor. Secondly, we can revert
to the variational principle but consider the a-invariance discovered in this article.

A change of o, and a, corresponds to a “new” version of the theory (although not
a new theory as we have seen above). Moreover, by equation (16), any solution for U:v
(but not for I' :v) depends on g,,, 842 and a, (but not on a,, by equation (14)). Conse-
quently, variations in «; and U,‘}, are not independent but we can vary a,. A glance at
equation (9) (expression for R,, in terms of Uﬁy and the «’s) shows that the result is

@ Uy, =0. (29)

Unlike the E~K energy momentum, g*~'U, is a vector density. This can be verified since
from equation (6)

s +60,+2)U, = 3+ L1, (30)
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and

2 i
r ul,v_r Vi

is a tensor by the contracted equation (17) which gives
Tist 3T, =4 8%8y, = (v -g), (31)
In fact (29) reduces to

@"I),, = 0. (32)

It is, therefore, tempting to identify current density as

J = ghr,. (33)

This does not conflict with (27) if we adopt Mie’s point of view that the field tensors occurr-
ing in the first and the second set of Maxwell’s equations should be regarded at least
a priori as independent field entities.
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