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The equations of motion of a test particle are derived from the field equations of Ein-
stein’s unifield field theory in the case when there is a cylindrically symmetric source. An
exact form of the equations of motion, corresponding to a particular solution of the field
equations is obfained.

1. Introduction

We considered in a recent article [1] derivation of the equations of motion of an elec-
trically charged test particle from the field equations of the unified field theories of Ein-
stein and of Einstein and Straus [2, 3]. We have shown that electromagnetic interaction
terms (a quasi-Lorentz force) can be obtained from the field equations in the desired order
of approximation, ptoviding the electromagnetic field is suitably interpreted, or, rather,
identified within the non-symmetric geometry. In fact, we take

fuv = .gaﬂgu\\:;aﬂa (1)

where f,,, stands for the electromagnetic field tensor [4], Greek indices go from 1 to 4, guv
is the fundamental tensor, guvs its skew symmetric part and *g®’, its tensorial inverse. The
case considered in the above work (Ref. [1]) corresponds to two structureless “point”
charges so ihat, both the test particle and the field tested are assumed to be spherically
symmetric. The equations of motion of the former are derived by an application of the
Einstein-Infeld-Hoffman (EIH) method (see e. g. [5)).

In the present article we shall extend the EIH method to the case when the source
field is cylindrically symmetric. Thus, it may be due in principle either to an electrically
charged wire, or to a magnetized one. We shall find that in the former case the resulting
equations of motion appear to deviate from what might be expected in the classical
theory.

A form of the equations of motion was suggested previously (Ref. {6]) on the basis
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that they should reduce to the special relativistic, Lorentz equations in what may be regarded

as a non-relativistic approximation. We obtained then a radial force proportional to

(1+¢0)! where ¢ = r+4-m, m is a constant, and r is the radial distance from the z-axis of

symmetry of the field. Although interpretation of the coordinates in relation to the field is

somewhat arbitrary, such a force bears no resemblance to its classical form. We can now

correct this result by utilising a more general solution of the field equations given in Ref. [7].
We adopt throughout the coordinate scheme

) =201, ()

and rely freely on the notation and concepts introduced in Ref. [1].

2. The electromagnetic force

It has been shown in Ref. [5] that the electromagnetic force term obtained from the
field equations is given by (Latin indices going from 1 to 3)

- 1 J.S,,,,‘n"dS, 3)
2n
where
Sun = 3 @’ ~ 2 Pu®ut 3 P, C))
and the function @ is defined, up to the addition of an arbitrary, harmonic function, by
D=9 &)

We take for ¢, as previously, the classical solution of a given potential problem.

In the case of the motion of an electron in the field of line charge, the situation is
complicated (in comparison with a two-point charge problem) by the fact that the field of
the former is spherically symmetric while that of the latter is cylindrical. Let us assume,
nevertheless, that the two can be considered concurrently and that the functions & corre-
sponding to both, are additive. This seems to be warranted by the linearity of the equa-
tion (5).

Let o, be the radial distance of a field point from the moving charge and p,, its distance
from the line source. We solve separately the spherically symmetric equation

ky

By =—

Q1

and the cylindrically symmetric @, =k, In g, where k, and k, are constants. The
complete solution is

a, ky k, 2 2
¢ = — ? + 2 g1+bi+ 4 [(e2+a) In g, —(03+b)], ©®
1
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where a,, by, a and b are constants of integration. As in Ref. [S] we must add to & an
harmonic function

*@(0y, 02)-
Let us suppose that *@ is separately harmonic in g, and in g,. Then
. L
¢=——ln&+Mlngz, ]
€1 Qo Qo

again with L, M and g, constant. Actually, we can put M = 0 because this term already
appears in @. A straightforward calculation now shows that the only surviving terms in

(3) are
k 2k, [
! 2[292 In g, + (1+ >92 292] - —2[a1+Lln Q]
67 ez 302 Qo

For the equation of motion of a test particle, we take k, = 0, so that the force term aquires

the form
elmreny ]
) PR @3

30, ! Qo )

3. The exact equations of motion
The general, static, cylindrically symmetric solution of the field equations is
811 =822 = —Las = —1, 835 = — (I~ (m}—m}) 0%,
823 = —&32 = M30%, 834 = —La3 = —M40?, )

where m; and m, are constants of integration. According to (1), the field components
corresponding to this solution are

J23 = —6msy and f3, = 6m,. (10)
These give the electric and magnetic line charge distribution fields

6m 6m
E=—-—y and H=-—%¢, a1

r r
respectively, r being the radial and @, the transverse unit vectors. It follows that when
my, = 0 we are dealing with a purely electrostatic field and when m; = 0, a purely magneto-
static one. However, neither of these reduces to the solution used in Ref. [1], which must,

therefore, be regarded as a particular solution only.
We investigated in the above article the exact equations of motion in the form
d*x® dx" dx* 1 e X"

- e - ¢l.uv 1/2 12
d82 + 122 ds ds 2 m ( g) g).xfuv s ( )
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where I’:v is the symmetric part of the affine connection, v the symmetric part of the

fundamental tensor whose determinant is g, e is the charge and m, the rest mass of the
test particle; s is the parameter of the path which may be identified with proper time. Pre-
viously, the reason for studying equations (12) was heuristic — with the solution of Ref. [1],
they reduced to classical form, at least in what seemed to be a non-relativistic approxima-
tion. They bore no relation to the field equations. When we employ solution (9) instead,
we find that in the electrostatic case, m; = 0, we obtain exactly the equations predicted
by the EIH method. Indeed, if dots denote differentiation with respect to s, equations (12)
become

. v 2. . k.
=0, 0+-0p0=0, t=——-p, 13
4 e

e being the charge and u the mass of the test particle. Hence the orbit is given, in ge-
neral, by
- k" .
o—00 = —— 1%, M=, (14)
e o’
where po > 0 and % are constants. When the electron is projected parallel to the linear field
source, we have § = 0, throughout its motion, and the equations reduce to
k2
6=——m%. (15)
e @
The classical equation is obtained if we let k2 - 0 but k2 In g, — g3/2 say, (for the line
distribution and the test particle being of opposite sign) and put m = 0. It is impossible to
assign theoretically a physical meaning to the consiant g, except that it is presumably
very large (or very small, depending on relative sign of the charges involved) in compas-
ison with .
It is of considerable interest to note that the right-hand side of equation (15), the force,
is exactly what we obtained by an EIH calculation in the expression (8).

4. An approximate solution

Neither the classical nor the above, unified field equation of motion can be integrated
in terms of elementary functions. However, some idea of the deviation from the classical
case can be obtained by considering the initial stages of the motion.

Let us suppose that ¢ = 0 when ¢ = g, and s =0 and that both s remains small

and ¢ ~ p, (¢ < @, but close to it). Then the classical case gives VIn 01/0 = tan wes =~ Wes
or

— - g 2s?
G = 04€

, say, (16)
where @, = ¢/2¢,.
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Similarly, the unified field case gives \/ In py/o = @o 5 (1 —¢), where

In o, K? (17
g o~ -
e, 1613 )
so that, if we denote this ¢ by o,, 0, ~ 0,exp (—2ewis?), or
%" 2ew3s?. (18)
@c

5. Conclusions

We should note that in addition to the EIH approximation used in obtaining the eleciro-
magnetic force term from the field equations (implicit in our calculation) a test particle is
characterised by putting k; = 0 (or, more exactly k; < k,). The second assumption is clearly
responsible for the result being the same as that derived from the “exact” equations (12).
We cannot say therefore, that the latter have been rigorously derived. The result must be
regarded merely as confirming the general form of the exact equations when the exact
solution of the field equations (solution (9)) is employed. Furthermore, equations (12)
give the classical result when an electric line charge distribution is replaced by a uniformly
magnetised wire. The reason for that is that in this case, the fourth of the equations (13)
becomes ¢ = 0. We mention in Ref. [6] the possibility of constructing an empirical test of
the unified field theory. The results obtained herein may go some way towards finding one.
This is why we have attempted to compare in the last Section the conclusions to be drawn
from the present theory with the classical case. While the exact nature and the numerical
values of the quantities appearing there remain uncertain, the “test” must be regarded as
purely speculative.

We should like to express our appreciation of a constructive criticism due to Dr A.
Staruszkiewicz of an earlier draft of this paper.
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