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The inhomogeneous Dirac equation (depending on the potential of the external electro-
magnetic field) is transformed into a covariant Hamiltonian form similar to that obtained
earlier for the free Dirac particle. The same procedure is extended to the case of the “ampli-
fied Dirac equation” containing additional tensor terms.

1. Introduction

The manifestly covariant, quantum-mechanical Hamiltonian formalism previously
proposed by one of us (Hanus [1], [2]) has been applied, as yet, merely to problems of
free quantum particles (described by homogenous first-order wave equations). In particular,
the problem of the free Dirac particle has been systematically investigated (Hanus, Sto-
minski [3], Hanus [4]) including questions concerning the physical interpretation of the
displayed formalism. Now, the problem of extending this formalism to descriptions more
general than that of a free particle may be raised. It is well known that no strictly cova-
riant description of interacting particles can be given on the “first-quantization™ level.
However, the simplified model of a quantum particle in a given external field can be ex-
pressed by a formally exact equation, suitable for solving a wide class of important prob-
lems — the well-known case of the charged Dirac particle in the Coulomb field being the
most representative example. This first exact solution of the inhomogeneous Dirac equa-
tion has been followed soon by that for a constant magnetic field (Rabi [5]) and, subse-
quently, by two other (Sauter [6], Volkov [7]). After about thirty years, the new interest
in problems of quantum-mechanical description of relativistic particles in external electro-
magnetic fields has manifested itself by a series of papers on this subject!, mainly owing

* Address: Instytut Fizyki, Uniwersytet Mikotaja Kopernika, Grudzigdzka 5, 87-100 Torun, Poland.
1 See e.g. Redmond [8], Stanciu [9], Sen Gupta [10], Canuto, Ciuderi [11], Holz [12] and Lam [13}-[16],
where several new exact solutions in specified particular cases of external stationary fields (and also in the
presence of the light beams) have been found for the Dirac particle, using the Dirac, or the Feynman and
Gell-Mann equations [17]. Similar investigations for the boson particles have also been initiated in [16].
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to its close connection with contemporary astrophysics and physics of plasma, as well
as with other problems. Our proposed approach, although essentially different from that
represented in Refs [8]}-[16], concerns the same actual problem. The inhomogeneous
Dirac equation will be investigated in Chapter 2. There is still another possibility — to
follow the idea of Pauli {18] and to start from the “amplified Dirac equation” containing
higher order tensor terms (which allow, in particular, to take account of the anomalous
magnetic moment of the particle). The special form of this equation (see Bethe, Salpeter
[19], p. 136 and 175) suitable for an approximate phenomenological description of all
radiative corrections has been investigated by the present autors (Hanus, Mrugata [20])
who have transformed this equation from its standard covariant form into the non-covariant
Hamiltonian one, reducing, subsequently, the so obtained quantum-mechanical wave
equation to the subspace of positive energy states. Now, the possibility of extending into
this equation the previously displayed manifestly covariant Hamiltonian formalism will
be discussed in Chapter 3.

2. The inhomogeneous Dirac equation

In accordance with the idea of the discussed fromalism and of its further physical
interpretation?, the homogeneous Dirac equation

a (V]
'YV'a;"l'm Yy =0 (1)

has been transformed (in the sense of a ““weak” relation, i. e. of a subsidiary condition de-
fining the subspace of “quantum-mechanical states™ ¥o(% ;, Xy)) into the covariant Hamil-
tonian form

—dy¥P° = #3P°, dy= —in,—, 9))

-#1?1 = omMm-+ 9101?1, 3)

where n, denotes a unit timelike vector, interpreted as the time arrow in a “laboratory
frame” (arbitrary, in principle but specified for measuring observables of the described
particle): xy = —in,x, (the c-number timelike variable) represents the time in this frame
and dy the respective time derivative. The following equalities also hold

Om =Yy = —imy, 01 = —7s ©))

| =

01(\)7 = 2x}.pxl = yn?li)xb (5)

[N ]
N

i

2 See [4), in particular Chapter 2, where a short recapitulation of the formalism may be found.
The notation used in our present paper is the same as in [2]-[4], with the only difference that for the free
particle 5y, Oy, v and ¥ (see [11-[5]) have been replaced by #%, 6%, v° and ¥°, respectively, the
former symbols being reserved for the formulae holding in the presence of the external field.
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for simple bivectors of spacelike character? F.s f’,‘ ;and 2K , being covariant generalizations
of x, p and o, respectively.

It will be shown that this way of obtaining the covariant Hamiltonian wave equa-
tion (2) can be generalized to the case of the inhomogeneous Dirac equation

I: Y (i —ieav) +m] =0, (6)
ox,

a,(x) denoting the four-potential of the electromagnetic field. Its components will appear
in our further calculations combined into A, (%, Xy) and ay(Z,,, xy) where

- i "
Ax). = '5 si.xvapvs Auv = nuav—nva;n (7)

ay = —in,a,, ®

(these being, obviously, covariant generalizations of & (r, #) and a.(r, f) respectively).
It can also be verified that the Lorenz condition expressed in terms of A,;, ay assumes
the form

3 ﬁx)/ax).'l" dyay = 0, )]
where

- i 0 é
Dnﬂ. = _é' sxlnvDuv’ Duv = nnéx—v —nv'a—x:-

(10)

The symbolic bivector i),d has the meaning of a “spacelike derivative”. Its presence in our
formulae denotes the use of the “covariant Schrédinger representation”. On the other
hand the obvious relation*

P, = —iD,, (11)

allows to express the covariant Hamiltonian in a more general form, independent of the
representation used.

The explicit calculations transforming (6) into the covariant Hamiltonien form are
as follows: multiplying (6) on the left by yy = —in,y, and putting 9,7, = 6,,4-3(7,7,—7.7,)

we get
(9 . i o .
in, 6_x”_lea“, + Ey,,yy n, —a—xv—leay -
o .
—-n, é——xu—tea“ —myyeyp =0, 12

N i
3 Defined according to the general rule Vi, = 3 ExcauyVivs Vv = nuvy—nyoy (for details see [4]).

7}
4 Immediately resulting from p, = —i —; (for the role of thelatter relation in the formalism see [2]).
8xy
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Passing now over to the “weak” formulation (i. e. introducing the timelike derivative into
the first term of (12)), interpreting, simultancously, the remaining terms as the Hamil-
tonian operating in the Hilbert space of wave functions ¥(&,, xy), we obtain, using (7),
(8) and (10)

1
—-dy¥ = {myN+ % y,;yv(D,,v—ieAW)—ieaN} v, (13)

Taking into account the relations occuring between the bivectors D,,, 4,, and their dual

counterparts and using the known formula

euvx).anv = = ?5(?1:?). - y,l’}’x) (14)

we have

1 _ 1 i R
'2—;. }’p‘yv(D uv leAuv) = '2'; '}’n'yv ("' E) guvn).(Dxi._ leAuﬁ.) =

1 ~ ~
= - é‘l: ')’5')’,.’)’,1(— li). - eAul)' (15)

Hence, owing to (4), (5) and (11) we can express our final result in the form

—dy¥ = H\YP, (16)
Hn = moy+ofy—ieay, an
1 N " 1. 4 -
Oy = 2i VFa(Pea—eAs) = 2 2Py —eAy,). (18)

(The latter formula for 8y, containing ¥, can easily be verified by using the explicit ex-
pression for 2‘,0'. The structure of (17) requires still some explanation: Ay ought to be ex-
pressed in terms of operators which unlike, ay, do not have the geometrical character of
“timelike scalars”. The controversy is apparent only, since ay(Z wv» Xn) as well as A & v
xy) represent in # y functions of the spacelike operators x wvand of the c-number variable xy.
The role of the mass term containing gy = yy has already been explained in [4] by the
fact that y, is not a Lorentz four-vector so that the timelike character of yy is rather

illusory.

3. The amplified Dirac equation

The Dirac equation (6) supplemented (according to [19]) by phenomenological terms
describing radiative corrections assumes the form?

ie ie
{F + 81 yom YuvFuv— 82 " yuDa,,} p =0, 19)

5 The notation has been somewhat changed, as compared to that used in [20].
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where
o .

r=y, é—x—u —iea, | +m (20)

stands for the operator of the equation (6), while
F 0 0 21

= — - —4a,,

o ox, av ox, " @n
Oa, = —47nj,, (22)

x denoting the current-charge four-vector related to the source of the given external
field. The symbols g, g, represent dimensionless constants whose numerical values are
(according to the results of quantum electrodynamics) of the order of the fine structure
constant. The possibility of transforming (19) to the respective covariant Hamiltonian
form, in analogy to the procedure applied to (6) in the preceding Chapter, must now be
examined. The main difficulty follows from the fact that F,, appears explicitly in (19).
F,, is not a simple bivector but, according to the known property of antisymmetrical
tensors of second rank, it can be decomposed into a sum of two such bivectors. Namely,

we define two quantities:

i i A

fe=— 5 Bavofwhar 8 = = 0 N . (23)
and subsequently
Joo = Mefe—Nfio Boe = M8 N 24y
From the definitions (23) it follows that
fu=—imfy=0, gy=—inf, =0, 25
and also
8 = Frolo- (26)

After applying (23) and (26) to relation (24) we get
o i
fxt = _2 sxruvfuv = Fxt_nuanux_nuantu: (27)

8k = nuantu'l'nuanux' (28)

Adding these two last quantities we obtain the desired decomposition of the antisymmetric
field tensor F,, into the sum of two simple bivectors

f:C‘F+ gKT = Fxr' (29)

In a special Lorentz frame n, = (0, 0, 0, i) we have

fkl = Bm’ f‘k4 = 05 8 = 0’ gak = iEk: (30)
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where k, I, m stands for a cyclic permutation of 1. 2. 3;therefore we introduce the new
symbols

~

fuv = 3uw Euv = Euv (31)
and correspondingly we may write
F,, =B,+E,,. (32

The bivectors 3,” and E,, have of course different characters. Only the first one is spacelike.
E,, has a timelike character — this is quite natural because F,, is not a plane tensor. How-
ever, there is no difficulty since we can always write instead of E,, a dual tensor.

The equation (19) shall be transformed into the covariant Hamiltonian form in the
same way as the homogeneous and inhomogeneous Dirac equations. Namely we shall
multiply it on the left by yy == —in,y,. For shortness we shall transform the terms propor-
tional to y,y,F,, and y, [0 a, separately, neglecting temporarily in calculations the con-
stant factors

o o i ~
YNYquFuv = ’YN'Yu'yv(Buv_'_Eyv) = YNyn’)’v (pr— '2— syvtoEm) =

= vNquVpr + i}’N}’SYt'YaErg = inlliuvBuv + i@llfuvgav' (33)

We have used here the relations (14), }'.’\?,,,nv == 0, Eﬂvnv =0 and gy, = ipy. The last term
with y, {0 a, is transformed according to (22)

i

> v,‘vv(n,,jv—nvjy)} =

),N‘YnDaﬂ = 4ninv'))v’yujy = 4rn [inuju'i'

== 4an + 27[1.')’“'}’,.]‘“ = - 4nJN + nyu)’vsuvrgjm =
= _4an - 275')75'}’{))9-719 = —'47:.;}\’ + zniglfrajm' (34)

The way of generalizing the current-charge four-vector j, consists in extending it to the
plane antisymmetric pseudotensor

Juv = nujv_nvju (35)
and the scalar variable jy = —in,j,. It is easy to test that
3Tt it = Juda (36)

and in a special Lorentz frame n, = (0,0, 0, /)
Jn =Ja = ig, :ikl = Jms ju. = 0. 37

Finally, taking into account the relations (17), (33) and (34), we arrive at the “amplified
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Dirac equation” in the following form
—dy¥ = HyY, (38)
Hy = mom+ ¥ Qxfuv(P#v—eZuv)—ieaN—

2me 2re

e . N a N . A A
— 81 4'_"; Xuv(gllIan + QIlEnv) + 8>l JNT 82 _”7' leuv‘]uv' (39)

mZ
The scalar term jy introduces no difficulties, since jy(% wy» Xn) as well as NG 4 uvs XN) @T€
functions of the spacelike operators &',, and of the c-number variable xy.

4. Concluding remarks

Our considerations have shown that the covariant Hamiltonian formalism displayed
and applied in [1]-[4] for the problem of the free Dirac particle can be generalized in
a consistent way to the case of an external electromagnetic field. The Dirac equation (6)
as well as its modification (19) can be used, alternatively, as starting points of the consider-
ations. Both these equations are formally treated as exact ones. Similarly the way of trans-
forming them to the covariant Hamiltonian form contains no approximations. The approxi-
mate character is, however, inherent in the very formulation of the problem (of a quantum
particle in a given classical field). This character does not diminish the large practical
usefulness of such equations, as it has been mentioned in Section 1. Among special cases,
the most important are those with stationary fields. The assumption of independence of
P,, and ay on xy means that in a specified laboratory frame they do not depend on ¢, the
condition is, however, expressed in a covariant way. The physical interpretation of the
formalism (discussed in detail in [4]) remains unchanged. No new difficulties appear
beside those existing for the free particle. This result extends considerably the domain of
applicability of the investigated formalism to actual relativistic problems of quantum
mechanics.
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