Vol. B4 (1973) ACTA PHYSICA POLONICA No §
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Following the general idea of a previous paper [5] the operations CP and T are defined
in a rigorous manner by their actions on the one- and many- particle basis vectors describing
free but physical (dressed) stable particles, It is shown that TCP invariance implies the pos-
sibility of a new redefinition of the inversion operators which restores the invariance under
the full Poincaré group even in CP and T do not commute with the total Hamiltonian. The
rigorous representatives of the space and time inversions have the forms ACP and AT respec-
tively, where A4 is a suitable unitary operator.

1. Introduction

The full or extended Poincaré group H ; is defined as the group of linear transformation
of the space and time coordinates x* = (7, x):

x'"* = ILx"+a" €Y}
which leave invariant the intervals
4s* = Ax*4x, @

between any two events. Besides the continuous transformations n,, which form the proper
Poincaré group I1, the group I1, contains the discrete operations of geometrical space and
time inversion P, and T,:

P:t =t x=-x €))
Tt =—t, x' =ux, 4

and all the products of P, T, and &, € Il. Obviously
P:=1, T}=1, P,T,=T,P, 5

g

The rules of multiplication of the continuous Poincaré transformations n, by P, and T,
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can be easily obtained from the corresponding relations for the 10 generators j°, p4
of II:

PPyt = e(mpy,  Pjy'Pyt = e(we(iy’, (6)

ToAT, ' = e(wpl, TiwT, ' = —e(we(v)jy’, )

where

_ )41 for p=0,
8(“)'{—1 for u=1,2,3. )

It is to be noted that both P, and T, commute with the generator p) of time translations.
If we take T, antilinear instead of linear, the relations (5), (6), (7), together with the well
known commutation relations between the generators themselves, reproduce all the
essential (local) group properties of II.

For many years there were practically no doubtsthat Il ; (and not IT alone)is the group
of rigorous relativistic invariance valid for classical and quantum physics. The experimental
discovery in 1956 of several P-violating slow processes raised the first serious doubts
concerning the inclusion of space inversions in the group of strict relativistic invariance.
However, it was soon realized that the same processes which violate P, violate simultane-
ously the invariance under particle-antiparticle conjugation C. The violation of P and
C is such that the invariance under the product CP remains valid. Taking CP as the correct
quantum representative of P, one could save Il as the relativistic invariance group [1].

Unfortunately, in 1964 it was shown that in some rare decay modes of neutral kaons
the product CP seems to be violated [2]. So the operation CP is most probably no rigorous
quantum representative of P,, although it is much better than P alone.

Strictly speaking the experiment shows that the final decay products of the longlived
kaon K? are not in an eigenstate of CP. One should emphasize the fact that in the case
of ordinary slow processes the P-violating amplitude is of the same magnitude as the P-con-
serving amplitude. This is the result of the maximal violation of P by the weak interactions
which are responsible for the slow processes. On the other hand in the case of K° decays
the admixture of the CP-violating amplitude is small. In principle there is still a possibility
that CP is not violated, but K7 is not an eigenstate of CP. In fact there are some models [3]
which explain all the experimental results without CP-violation, but assume — for example
— the existence of a new particle, e.g. a neutral boson which has only weak interactions.
However, the assumption of CP-conservation is not very popular among physicists, because
the respective models are rather artificial or purely phenomenological possibilities. In
either case it is difficult to explain the equality of masses and lifetimes (or mass distributions)
in all the different decay channels which suggests rather one unstable particle.

Therefore, most physicists are rather inclined to accept the fact that CP is indeed
violated, although the situation is not quite clear yet. Quite obscure are also the conse-
quences of the CP-violation. For example T. D. Lee and G. C. Wick argue [4] that if CP
is not conserved, then it cannot be defined in a rigorous manner. According to these
authors one can define nonconserved discrete operations P, C, CP, T only formally and
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approximately for certain model theories described by some truncated Hamiltonians H,.
For a suitable approximate model theory with the Hamiltonian H; one can define the cor-
responding operators Py, C,, T, that commute with H; but do not commute with the
exact Hamiltonian H. From the formal point of view the procedure of Lee and Wick
is selfconsistent, however, from the physical point of view one can raise serious objections.
For example the transformation properties of the physical particles with respect to the
mentioned approximate operators remain unspecified. The same refers to the commutation
relations of P, C;, (CP), and T, with the generators of the rigorous Poincaré group
of relativistic invariance. Moreover, the conclusion of Lee and Wick that the inversion
operators cannot be defined rigorously if they do not commute with H, seems also very
strange. We may ask the following question which brings out the inherent contradiction:
How can we say that CP is violated if it is not well defined?

2. The definition of P' = CP

We shall assume in the following discussion that CP is not conserved in the sense that
it doesnot commute with H = p°. In order to clarify the situation let us first investigate
the possible ways of defining an operator O in quantum theory.

The first possibility consists in prescribing the commutation relations of O with
a suitable fundamental set of operators. The most convenient fundamental set of operators
contains all the charges and the ten generators of II. However, in the case of CP just its
commutation relations with these generators are questioned so they cannot be used as
defining relations.

In a quantum field theory one can define the discrete operators we are interested
in, in terms of suitable independent quantum fields. However, the exact quantum field
theory is not known yet. On the other hand the use of approximate model theories is not
satisfactory for several reasons mentioned above in connection with the work of Lee
and Wick who use just this method.

Another method of defining an operator O consists in prescribing its action on all
basic vectors |k)> which span the Hilbert space o of quantum states. This method has the
adventage of being exact, unique, and very close to the procedure applied at the analysis
of the experimental data. The vectors |k) need not belong to the space # but the set
of all [k) should be essential and complete. As the basis vectors let us take the vectors
|piA:q:> which describe the free physical particle 7 having definite momentum p;, helicity 4;
and charges g;, and all the direct products of such vectors. The word particle is used here
in the Wigner’s sense, i.e. for systems which may be also composite (non-elementary)
but have definite values m;, s; of mass and spin.

In order to avoid unnecessary repetitions of essentially the same formulae and argu-
ments we shall restrict our discussion for the moment to the operator P’ = CP. Its action
on the one-particle basis vectors can be defined as follows [5]:

! df 7
P'\pliq:> = nil—pi— 24—, %)

where #;, is the conventional phase factor of modulus one, which is proportional to the
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intrinsic CP-patity n; = X1 [6]. We can always choose these phases so as to have
P:2 — (_1)2.}’ (10)

where J is the total angular momentum. The equation (10) reflects the well known fact
that the intrinsic P-parity of a fermion (half-integer J) is not equal but opposite to that
of the corresponding antifermion. Once the action of P’ on single particle states is specified,
there is no problem with states comprising many free particles. In fact we have then:
P [1ipda = [T nl-pi—ti—a. (11)
i i
It is to be noted that no new phase factors are introduced in (11).

The assignment of the phase factors #; to all the stable particles may be partly experi-
mental and partly enforced by suitable conventions [6]. We assume that the defining
relations (9) and (11) can be imposed in a consistent manner on all the basic vectors describ-
ing free stable particles without creating nonexisting states or otherwise contradicting the
experimental data. At the moment there is no experimental evidence against the validity
of this assumption but, of course, it must be checked more carefully. We shall come back
to this point later.

A closer investigation of the procedure adopted at the analysis of the experimental
data reveals that in principle one is using there just the above definition, though sometimes
in a not quite consistent manner. Some inconsistencies may emerge if, for example, apart
from giving the prescription (9), (11) of the action of P’ on a complete set of basis vectors,
one requires an independent transformation law for special linear combinations of these
basis vectors which correspond to metastable states or resonances. This may be a serious
source of troubles which we can avoid only by restricting our defining relations to free i.e.
noninteracting stable particles which form a complete set. From the theoretical point
of view the possibility of a consistent definition of P’ given by (9) and (11) corresponds
to the following division of the total Hamiltonian [8]:

H= Ht‘ree+ V. (12)
Here H,.. describes free (i.e. noninteracting) but physical (i.e. dressed and bound not

bare) particles and V is responsible for the scattering of the physical particles. In the
quantum field theory one uses a different splitting

H=H,+H, (13)
where H, desciibes free bare particles and H’ is responsible for both: dressing and mutual

interactions. Our definitions (9) and (11) may be justified by the following properties of
the Hamiltonian:

[Pla Hfree] =0, [PI’ V] # 0. (14)

At any rate this is a sufficient condition for the validity of (9) and (11). The construction
of Hy.. and V from H, and H’ is quite complicated but a general prescription is known
in literature (see e.g. [8]). In the following discussion we shall not need the explicit form
of the Hamiltonian.
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3. A possible redefinition of the inversion operators

Suppose that the set of the basis vectors for which the defining relations (9-11)
hold, is complete. Then P’ is obviously an unitary operator satisfying

Pt =p7t p?= (-1, 15)

Let us investigate the P’-transforms of the ten generators p”, j** of II which act in the
Hilbert space of quantum states. Since P’ is unitary we can always write

Pp'P ' = g(u)A"'p*A, PP T = g(ue(n)AT AL (16)
Because the operation of attaching the sign factors
p* = ewp”,  J* - e(we(v)j” (17

can always be taken unitary, the operator A4 is also unitary. If P’ does not commute with H’
neither does 4 which represents the residual effect of P’. However, it can easily be seen
that the unitary operator

P’ = AP = ACP (18)
not only commutes with H but also restores the group relations
P'p*P ™! = e(u)p¥, PP = e(ue()j*, 19

required for an operator representing the space inversion. The same effect has

Pll—l — PI—XA—X‘ (20)
The condition
P’2 = AP'AP’ = P2 2y
will be satisfied if
PAP ' =471 (22)

A similar procedure can be applied to the time inversion operator 7. The result can
be summarized as follows. If T doesn’t commute with H but its action on a complete set
of stable, free-particle states can be defined in the usual manner, we can introduce a new
antiunitary time inversion operator T = TB~! which satisfies the group properties (6).
Because of the still unfought TCP invariance we can put B = 4 and hence

T" = TA. 23)
The condition
T'* =TA'TA ' = T? = (-1D¥ (24)
will be satisfied provided that
TAT ' = A"1. (25)

The squares of the new quantum representatives P”/, T"' of P, and T, are not exactly unity
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but +1 as in the case of CP and T, in agreement with the fact that for half-integer spin
the quantum representations of I, are not faithful but only representations up to a sign
factor.

In this way we have proved that under the conditions stated above one can construct
new operators P”, T'"' which are exact representatives of the geometrical space and time
inversion respectively. We can visualize the situation with the help of the following picture.

/P
BT P=CP Ty T T'=T (26)
P"-ACP T=AT

In other words, a second redefinition of both inversion operators is then possible with
the help of the same operator 4. The single or double vertical dash indicates weaker or
stronger violation of the respective approximate symmetry.

4. The basic properties of the operator A
The operator 4 has to satisfy the following relations
[p",A] #0, PAP '=A"', TAT '=4"1. 1))

Since P’ does not commute with H, neither does 4. Thus the operator 4 cannot be a Poin-
caré invariant but it can be still a Lorentz invariant. At any rate there is no experimental
evidence against such a simplifying assumption. (It would be wrong if for example P’ were
not commuting with the angular momentum J, but there is no experimental evidence
for such a drastic assumption.)

There are two distinct possibilities

(@ A4'=+4, (b) A1 # LA (28)

In the first case the operator A is itself some sort of “inversion”. This type of operator has
been used in 1957 at the first redefinition of the space inversion operator when P was
replaced by CP. In fact C? = 1 and thus the operator C belongs to the class (a). At the
moment it seems that there is no other nontrivial discrete operaton of type (a) which
could be used for the second redefinition of inversions. However, its existence cannot
be excluded.

Let us, therefore, investigate more carefully the second possibility. A unitary Lorentz
invariant operator A4 of the second type, which satisfies all the conditions (27), must have
the form

A = exp (iW), (29
where
wt=w, (w,p"1#£0, [T,W]=0,
PW+WP =0, [W,j*]=0. (30)
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In order to avoid the parity degeneracy of the physical vacuum |0) we must require
Wi0> =0. 3D

Obviously there are many solutions satisfying all the conditions (30) and (31). E.g. an
operator of the form

W = QF(ms S, jpvjnv) (32)

is satisfying all these conditions. Here Q is one of the charges, or an odd function of the
charges, and F is a Lorentz invariant operator which is however not Poincaré invariant.

The actual form of W can be found either on the basis of some theoretical arguments
or from the experimental data. Suppose that we know the Hamiltonian H and its CP-even
and CP-odd parts

H=H,+H_, (33)
where
PH,PP"'=H,, PH_P '=-H_. (34)
It can easily be seen that
exp (iW)H exp(—iW)=H,—H_. (35)

Both W and H_ are odd with respect to P’. Separating the even part from the odd part
we obtain two separate equations

[(W,H_]+ %[W[W,H+]]+... =0, (36)

+2

2H_+i[W,H,]+ %[W[W, H_I]+... = 0. 37)

The Eqgs (36) and (37) will be satisfied up to the third order (i.e. in the zeroth, the first
and the second order) if

[W,H,] = i2H_. (38)

Knowing H, and H_ we could solve this operator equation for W. The solution would
be approximate but rather quite accurate. In fact we could expect some errors only in the
third of higher orders in H... Of course the above perturbative method of determining W
may be useful only if H. and H. are known, which at present is not the case.

5. Discussion of the assumptions

Let us consider the possibility that our assumptions which imply the existence of A
are not fulfilled.

The existence of a unitary operator 4 satisfying (16) was the consequence of the
unitarity of P’ = CP which followed from the definitions (9)~(11) of the action of P’ on
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the complete set of basis vectors. Internal inconsistencies due to choice of phases can be
excluded by the fact that our basis consists of stable particles and by the superselection
rules [6] Therefore, our theorem about the existence of a unitary A4 satisfying (16) may
be wrong only if the set of the stable, free particle states on which the definition (9)-(11)
can be enforced is not complete. Because of the structure of our basis vectors, the incomplete-
ness must appear already in the set of one-particle states. Thus we come to the conclusion
that the assumptions of our theorem may be wrong only if there exists at least one stable
particle for which the change

(Pidia) = (—pi—Ai—q) (39

leads to non-existing states and thus is not allowed. In this case the Hilbert space of physical
states is not invariant under CP. Such a situation would be analogous to that pertaining
to the two-component neutrino, where the action of P alone leads to non-existing states
of a righthanded neutrino or left-handed antineutrino.

It is to be noted that an additional change of sign of the linear momentum can be
achieved with the help of a rotation through 180° around an arbitrary axis perpendicular
to p;.. However, the resulting transformation of the basic quantum numbers

(piliq) = (pi—A4i—q)) (40)

coincides with that provided by the operation TCP. Therefore, it seems that the existence
of stable particles for which the transformations (39) and (40) are forbidden is necessarily
connected with TCP violation and not only with CP violation. In other words: TCP in-
variance implies the existence of a unitary operator A satisfying the conditions (16) even
if we have CP violation.

It is hard to believe that a stable massive particle with such properties will be discovered.
However, one may look for it among massless fermions or neutrinos, where the situation
is far from being clear. In fact, one can easily imagine that apart from the usual (electronic
or muonic) neutrinos v for which the products CP and TCP are allowed but P and C
are not, there exists another type of neutrinos v’ for which, e.g. C and CT are allowed but
P, CP and TCP are not. We can visualize such a situation by the following two tables:

usual neutrinos v CP violating neutrinos v
(Ag) allowed (A'q") allowed

(—Aq) forbidden (—A'q") forbidden
(A—gq) forbidden (A’ —¢q") allowed
(—A—q) allowed (—A'—q') forbidden

The primes in the second column indicate the possibility that the new neutrinos
may have the helicities and the leptonic charges different from those of the usual neutrinos.
Such neutrinos and the corresponding antineutrinos would have the same helicity. Of
course the interactions of these new neutrinos would be different from those of the ordinary
neutrinos. E.g. if we assume an independent conservation law for the new leptonic charge ¢’,
the lack of the corresponding electricically charged leptons implies that the new neutrinos
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may occur only in some neutral leptonic currents v'I'y coupled to other suitable neutral
currents. It is to be noted that the existence of such neutrinos is possible only in the case
of violation of TCP invariance.

Another difficulty which cannot be a priori excluded consists in the following. We
may find a unitary operator A4 satisfying (16) but not satisfying the additional conditions
(22) and (25). Such an operator would not restore all the group properties of IT,. Without
having the explicit form of the operator A4 it is hard to discuss the ways of solving this
possible difficulty. One can only point out that the opertor 4 is not defined completely
by (16) but only up to an arbitrary Poincaré invariant unitary factor. One can use this
freedom to find such a factor which makes A satisfy the required additional conditions.

It is possible that in the case of many-particle states the operator 4 may not factorize
into a product of operators 4; referring to single particles but may depend on some overall
properties of the system or on the interaction. This would mean that the new inversion
operators P’ and T are somehow related to the dynamics of the system. In fact, already
at the first redefinition when the space inversion operator was identified with CP, the
factor C, which is definitely not geometrical, implies some dynamical character of the
space inversion operator in quantum physics.

The author is indebted to Professor G. Sudarshan and to Drs A. Szymacha and S. Ta-
tur for pointing out this last possibility and for several interesting discussions.
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