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1t is pointed out that if the mechanism of diffractive production of particles is the same
as that of elastic scattering, the diffractive dissociation can be calculated as shadow of non-
~diffractive processes. A general method of calculation is proposed. It uses the technique of
the overlap matrix. A specific calculation in Uncorrelated Jet Model is performed. In this
calculation the diffractive processes arise as a direct consequence of correlations induced in
non-diffractive interactions by energy and momentum conservation. The most important
prediction of the model is that the inclusive mass distribution of diffractive dissociation
splits into non-scaling part describing the low-mass excitations and the approximately scaling
part describing the high-mass excitations. The non-scaling part of the mass spectrum is
dominated by single particle production and at large masses behaves as do/d.#? ~.#-5, The
shape of the scaling part of the spectrum in the triple-Regge region is do/dl = ({ log &)™
where { = #2[s. The properties of exclusive diffractive channels are also discussed.

1. Introduction

One of the well-known features of strong interactions at high energies is a division
of most of the channels into two classes:

(a) those with cross-sections dropping rapidly with increasing energy (non-diffractive
channels);

(b) those with cross-sections varying slowly with energy (diffractive channels).

The best-known representative of class (b) is the elastic diffractive scattering. The
existence of the diffractive inelastic channels was conjectured by Feinberg and Pomeranchuk
(1956) and by Good and Walker (1960) and then identified experimentally (see e.g. a recent
review by Lubatti (1972)).

There exists at present no fully satisfactory description of the diffractive production.
However, all models agree with the basic idea of Good and Walker (1960) that the
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mechanism of diffracive dissociation is the same as that of elastic scattering, i.e. the
absorption of incident and outgoing hadron waves'.

In this paper we follow this point of view, and we investigate one of its straightforward
consequences: that diffractive scattering and production is determined by the non-diffractive
production of particles, which is the source of absorption. In other words, diffractive
and non-diffractive production cannot be treated independently in consistent models
of strong interactions at high energies.

This general idea was already widely explored in investigation of elastic scattering
and proved to be a useful tool in the analysis of the properties of both elastic scattering
and particle production (sce e.g. Van Hove 1964, Michejda 1967, 1968).

The purpose of the present paper is to investigate this relation also for inelastic diffrac-
tive channels, with the hope that it may provide some interesting constraints on models
for both diffractive and non-diffractive interactions. The main conclusion from our qualita-
tive analysis is that such a program is indeed feasible and that many important properties
of diffractive dissociation can be determined from the known or assumed properties of non-
-diffractive particle production.

Our basic tool is the unitarity condition which connects all channels at a given energy.
We obtain the relation between the diffractive and non-diffractive channels from unitarity,
using the method of overlap matrix developed by Biatas and Van Hove (1965) and by Biatas
and Zalewski (1966). This is described in Section 2. We investigate further the obtained
relationship by assuming the Uncorrelated Jet Model for non-diffractive particle produc-
tion. The genera!l formulation is described in Section 3 and some specific realization of
the model in Sections 4 and 5. In Sections 6 and 7 we discuss briefly the general properties
of diffractive production in our model. Finally, in Section 8 we summarize our conclusions.

2. Diffractive dissociation and non-diffractive channels

In this Section we would like to discuss to what extent diffractive dissociation can be
estimated if the non-diffractive part of the interaction is known.

To begin with, we have to define what we mean by these two classes of interactions.
It seems that the most striking feature which would help in identification of diffractive
and non-diffractive parts of the scattering matrix is their energy dependence. Thus we
propose to identify an “exclusive” process as diffractive if the energy dependence of its
cross-section is similar to that of elastic scattering. Other processes, for which the cross-
-section drops with increasing energy according to a power law or faster are called non-
-diffractive. It is not clear whether there is in nature a clear separation between these two
classes of processes and indeed the study of the *border line” between them is interesting.
Nevertheless we feel that such a distinction makes sense, at least in the first approxi-
mation.

Thus our problem may be stated as follows: suppose we have a correct description

! This is sometimes expressed by saying that both elastic scattering and diffractive dissociation are
dominated by the exchange of the Pomeranchuk singularity.
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of all channels with cross-sections that fall rapidly when the energy increases. Can we
estimate the scattering amplitudes for other channels?

A similar problem was treated in a different context by Biatas and Van Hove (1965)
and by Bialas and Zalewski (1966) and we follow their treatment here. Thus we assume that
the production of particles at high energies is dominated by “non-diffractive” processes
which have two basic characteristics:

(i) all exclusive processes tend to zero at high energies according to power law or
faster. The inclusive single particle spectra show scaling behaviour;

(ii) the total non-diffractive cross-section, i.e. the sum of all exclusive cross-sections
is a slowly varying function of the energy.

It is clear that such a non-diffractive interaction implies the absorption of the incident
hadron waves. Qur problem is to find how this absorption is reflected in the scattering
amplitude, that is to say, what shadow effects are implied by it. We expect that shadow
scattering contributes mainly to the elastic channel and a few other channels of low multi-
plicity. Thus, at reasonably high energies, most of the channels (high multiplicity channels)
are practically not influenced by shadow corrections and, consequently, they are correctly
described by the non-diffractive interaction. In the infinite momentum limit such a behav-
iour leads to complete separation of diffractive and non-diffractive channels. This property
of diffractive dissociation (which should of course be checked a posteriori for consistency)
allows us to find the shadow elastic and inelastic scattering by the method of Bialas and
Van Hove (1965). We repeat its basic ideas here.

Let us denote the T-matrix describing the non-diffractive interaction by Ty and the
full T-matrix by T. Furthermore, let us denote the states which are not influenced by
shadow scattering by N> and the states to which shadow scattering contributes, by | D).
Thus we have

{N\TyID> = {NIT|D), @10

(D'|Ty|D) # {D'|T|Dj. (2.2)

Our problem is to calculate the energy-independent part of (D'|T\D) if {N|\Ty|D) and
{D'|Ty|D) are known. This can be done by using the unitarity condition. From the matrix
element of the unitarity condition

(Tt—T) = T'T (2.3)
between the two states (D’'| and |D) we obtain
iKD"\THD)y~(D'|T|D)) =
= DZ (D'iTHD"y {D"|T|D> + ) (D'|TYNY (N|T|D}. (2.4)
With the abbreviations

(D'|S|D) = {D'|D)y+i{(D"\T\D> 2.5)
and

(D'|FID} = ; (D'|TYNY {NIT|D) = ; (D'|TINY {N|TyID> (2.6)
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Eq. (2.4) can be written in the form
StS = 1-F 2.7

in the subspace of |D) states.

The matrix {(D'|F|D) is called the overlap matrix. It summarizes the effect of the non-
-diffractive channels on the diffractive channels. The general solution of Eq. (2.7) is (Bialas
and Zalewski 1966)

S = Q1-F)'3, 2.9

where Q is an arbitrary unitary matrix. The @ matrix describes the transitions D — D'
if there is no coupling to non-diffractive channels. Since we would like to study only this
part of the transition D — D’ which is induced by the presence of non-diffractive channels,
we take?

Q=1 2.9
and, consequently

{D'|T|D) oy i{D'| (1—/1=F) |D). (2.10)

This formula represents the solution of our problem. Indeed, it gives explicitly the high-
-energy limit of the transition matrix elements {D’'|T|D) in terms of the non-diffractive
matrix elements (N|Ty|D). One obvious and important consequence of formula (2.10)
is that diffractive and non-diffractive interactions cannot be treated entirely independently
in a consistent model of strong interactions.

We see two drawbacks in this approach. Firstly it does not guarantee the unitarity
of the whole S-matrix. Secondly, it assumes that the diffractive and non-diffractive channels
can be separated, i.e. that there is no strong interference between them.

Finally, let us note that there exists also another possibility of calculating of the
diffractive production from unitarity condition, the so-called unitarization procedure
(Auerbach et al. 1972, Aviv et al. 1972, Baker and Blankenbecler 1972, Fulco and Sugar
1973, Neff 1973, Skard and Fulco 1973, Sugar 1973). In unitarization procedures both
diffractive and non-diffractive amplitudes are calculated from the known Born terms.
In contrast, in the overlap matrix approach presented here the diffractive production is
calculated from the known non-diffractive interactions.

3. Uncorrelated Jet Model

The method of estimating the diffractive production presented in Section 2 is illustrated
here using the Uncorrelated Jet Model for non-diffractive production. There are several
reasons for this choice of the model. Firstly, it is interesting to understand how the cor-
relations between particles produced non-diffractively influence the diffractive channels.

2 The assumption (2.9) is analogous to neglecting the real part of the elastic amplitude in calculation
of elastic scattering.
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For this the predictions of the Uncorrelated Jet Model are useful. Secondly, as was already
shown by de Groot and Ruijgrok (1971) and by Sivers and Thomas (1972), the Uncorrelated
Jet Model provides a reasonable description of the inclusive properties of non-diffractive
particle production and, consequently, can perhaps be treated as a good first approxima-
tion to high-multiplicity events. Thirdly, the Uncorrelated Jet Model is the simplest
model without short-range order. In models without short-range order the Pomeranchuk
singularity is a cut rather than a pole (see e.g. Sivers 1972 for a discussion of this point).
Thus the UM is convenient for studying the properties of the Pomeranchuk cut. Finally,
the calculations in the Uncorrelated Jet Model are relatively simple.

A fairly general discussion of the Uncorrelated Jet Model, applied to the high-energy
proton-proton data was given recently by de Groot and Ruijgrok (1971) and by de Groot
(1971). We follow rather closely their treatment, apart from some technical details. Thus
we assume that our non-diffractive transition matrix Ty is given in the standard form of
the Uncorrelated Jet Model:

Ty = 8(P-P)T,S,, (3.1)

where P is the total four momentum and P is the operator of the total four-momentum of
the system of particles. Further

Jd3k4 Py Pk d*kp

T =
" E, E; E; Ep

Yolkas kp, ke, kp)bT (k)b (kp)b(k Dbks)  (3.2)

is the operator responsible for the interaction between the nucleons. Here b(k) and b*(k)
are annihilation and creation operators of the nucleons with momentum K, yo(k 4, kg, k¢, kp)
is the corresponding transition amplitude 3. The operator S, describes the uncorrelated
emission and absorption of mesons,

& ?
5. = oxp (1 | et T +1 [ et 2F) -
& &
= ¢ " exp (,- '{ o(q)at(q) _E_q) exp (i f@*(q)a(ﬂ ?q) ’

dqg
V= V(k.{, kB: k(." kD) = fIQ(Q)iz 'TE'_ . (3’3)
Here a'(q) and a(q) are creation and annihilation operators of mesons with momentum g.
They satisfy the commutation relations

[a(q), a'(¢)] = Es®Xq—¢). (3.9

Further, g(q) and p*(g) are the probability amplitudes for creation and for annihilation.
They may depend in general on nucleon momenta

o(q) = 0(q; k4, kg, ke, kp)- 3.35)

3 We limit ourselves to nucleon-nucleon interactions. The nucleon quantum numbers are neglected.
Consequently we adopt the commutation relation [b(k), b1(K’)] = E® (k—K’).
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Thus, in this model the meson wave functions depend on the nucleon momenta. However,
the nucleon-nucleon transition amplitude depends neither on the momenta nor on the
number of emitted mesons. The numerical factor exp (— ¥/2) can be absorbed into these
transition amplitudes:

-vV/2
Yo = P = poe” 2. (3.6)
The overlap matrix elements can be written in the form

<Qb oo dns kCa leFlkAa kB> =

= 25(4)(kA+kB“q1”_ eoo =gqy—kc—kp) {qy, ..y Gns ke, kplAlky, k), 3.7

where the matrix elements {q,, ..., gy, k¢, kpldik,, kgD, to the second order in F, represent
the amplitudes for diffractive scattering (see Eq. 2.10)
In Appendix B it is shown that

<ql, cees dNs kC, kD'A{kA’ k8> =

N
= i¥ ;0 (- Y oay,) - eq1,)0i(qu,, ) -+ ei(din) X

(ﬁ)combinations
x¢i“'f(kA+kB_ql"+1- e —qlN) (38)
with

D;.(R) = D(R; ky, kp, k¢, kp) =

1 (dk, d°k
= “f : 2 w*(kes kps ks k)w(k s kg, ky, k) x
2 ) kot koo

5 L[ s Em :d3Qj x

X 'fé R—=Q1— .. =Qu—k—k3) Qr(Qj)Qi(Qj)- 3.9
m! E;
m=0 j=1

In this formula we distinguish between 0;(Q;) = 0(Q;; k4, kg, k1, k) and ¢¢(Q;) =
= o(Q; k¢, kp, k1, k;) which may be different in general case.
A special case of formula (3.8) is the elastic overlap function (Van Hove 1964)

Ckes kplAlky, ky = Pk +kg; ky, kg, ke, kp). (3.10)

From this formula we see the physical meaning of the function @, _(R) entering the general
expression (3.8) for the overlap matrix: @ is an elastic overlap fupction corresponding
to the imaginary part of the generalized elastic amplitude describing the transition
(k4> ks) = (k¢, kp) at the total energy-momentum equal to R. It is important to realize
that these generalized elastic amplitudes describe non-physical elastic scattering: indeed,
the total energy-momentum vector R need not be equal to k,+ kg and/or kc+kp. Conse-
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quently, these amplitudes cannot be determined directly from experimental data and must
be estimated from model calculations based on the formula (3.9).

The general structure of the basic formula (3.8) can be conveniently represented by
the diagrams in Figure 1 for the production of 0, 1 and 2 particles.

It is seen that the elastic amplitude is given by the elastic overlap function. Next,
the single pion production amplitude is the difference of two terms. The first term may
be interpreted as the creation of the meson followed by off-shell absorptive elastic scattering

Fig. 1. Graphical representation of the structure of the diffractive shadow amplitudes

of nucleons. The second term represents the off-shell absorptive elastic scattering of
nucleons followed by the creation of the meson. This structure is identical with that suggested
by Good and Walker (1960). Then the two meson diffractive production amplitude is
given by four terms corresponding to absorptive nucleon scattering and meson creation
in four possible orderings. This simple structure is rather suggestive and may be more
general than the model used for its derivation.

To summarize, we have shown that the diffractive production of particles in the Uncor-
related Jet Model is fully determined by

a) the probability amplitudes for creation of mesons and

b) the generalized elastic amplitudes for scattering of two nucleons.

We think that this result is appealing and can perhaps serve as a starting point in
phenomenological applications.

One important point is still to be noticed. The contribution of the diffractive amplitude
(3.8) to the inelastic scattering N ¢ 0 vanishes if the generalized elastic amplitudes
D(R; ky, kg, ke, kp) do not depend on R and if

2d D) = o(Q) = (D). (3.11)
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Indeed, in such a case we can write

<ql’ cees Ny kC9 kDIFlkAs kB> =

N
Y* N
= i"o(qy), .-, e(qN)P(ky, ks, ke, kp) (- ( ) (3.12)
4 . n

n=0

N
N

E (—1)"( )= 0. (3.13)
n

n=0

Thus, we see that in Uncorrelated Jet Model without energy-momentum conservation there
is no diffractive production if o(Q) does not depend on nucleon momenta. In fact, after
removing the d-function from Eq. (3.9), function @;_(R) does not depend on R and, as
shown above, all shadow contributions vanish for N # 0. The inelastic shadow (i.e.
diffractive) scattering is then generated by long-range correlations between nucleons and
pions caused by energy and momentum conservation.

The diffractive production may be generated even without energy and momentum
conservation if the meson functions ¢ depend on nucleon variables k. Indeed, neglecting
the energy momentum conservation, we obtain from Egs (3.8) and (3.9) the following
formula for diffractive amplitude*

However, for N # 0

N
b1y s dns ke, kplAlk g, kg) = i"P(kp+kp) Uo (0i(9) — 0(qx))- (3.14)

In the following Sections we discuss a few examples of possible behaviour of the
meson wave functions and generalized elastic amplitudes, as well as their consequences
for the diffractive production of particles.

For convenience we collect here some formulae for the cross-sections, in terms of the
amplitudes used in this paper.

The total inelastic cross-section:

8n?

M klab

Ckyas kpldlky, kg (3.15)

Otot =

(M is the nucleon mass).
Diffractive production of N pions (N =0, 1,...):

4n* 1
T m6(4)(kA+kB“"kc'—kD_q1_' b _qN)x

do =
Mk, N!

d’ke d°k, d’q d’q
% ks Kpy @y ooy qulAlky, kgd|? — —2 222 AN 3.16
[Kke, kps a4 qulAlk 4, kg)| E. E, E, Ex ( )

4 We are indebted to Prof. Th. Ruijgrok for pointing out this formula to us.
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Non-diffractive production of N pions:

4n* 1 @
= Mk ﬁé (katkg—kc—kp—Qs— ... —Qn)%
lab .

do

Phe &Pkp d°Q, 0y

X |<Q1, ceey QN, kc, kD|T|kA, ka)lz EC ED E1 EN

(3.17)

Formula (3.16) contains, as a special case, the cross-section for elastic scattering. Matrix
clements of the operators 4 and 7 are given by formula (3.8) and by

Q15 s Ons kes kpltlky, kgy = w(ky, kg, ke, kD)iNQi(Ql) Qi(sz)‘é (3.18)

4. Non-diffractive processes

Up to now, our discussion was fairly general and did not depend on special properties
of the meson and nucleon wave functions. To proceed further, we have to specify them
a little better. Fortunately, some of these properties are determined by the known experi-
mental features of the inclusive distributions. To guarantee the scaling behaviour of the
single particle spectra, the meson wave function ¢ will be taken as the function of trans-
verse momentum and of the Feynman scaled longitudinal momentum?

0(q; ka kg, ki, k3) = 0(q,, X), 4.1)
where /s is the total CMS energy available in the collision
s = (kq+kg)* 4.2)
and

a
NG

The transverse direction is measured in the centre of mass frame of the (k +kp) system
with respect to the direction of vector k4. It follows from Eq. (4.1) that

x = @4.3)

3
V= ffi-E—q lo(g)l? = Alog—, (4.4)
So
where
A= [d*q lo(g ,x = 0)? 4.5)

S This is not the most general form of g which assures scaling. We ignore the possible dependence on
the nucleon variables (except for the direction of the incident nucleons) in order to simplify the discussion.
No essential feature of the model is lost by this simplification.
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and s, is a constant depending on the detailed shape of o(g). From Eqs (3.6) and (4.4) we
see that the nucleon-nucleon scattering amplitude has the form

s —A/2
W(kys kg, ke, kp) = (s—) Yo(k4 kg, kys k). (4.6)
0
We assume that the function v, factorizes
okas ka3 ki, ka) = ELEE E; E(w 4 w1)E(Wp, Ws). (4.7)
Here w,, wg, wy, w, denote the four-vectors
w=(k,,x, ¢ (4.8)
and
X=—=, &= . 4.9
s NG

The form (4.7) is suggested by the requirement that the total cross-section is a slowly
varying function of the incident momentumS®,

From Eqs (4.6) and (4.7) we see that the high-energy behaviour of the nucleon-nucleon
amplitude is

pky kg; kiy kp) ~ st 742, (4.10)

The same high-energy behaviour characterizes the amplitudes for non-diffractive particle
production, as seen from Eq. (4.1) and (3.17). Thus we see that

o= 1-—42 @.11)

plays a role of the trajectory of the leading Regge singularity which determines the non-
-diffractive nucleon-nucleon interaction’.

5. General properties of diffractive amplitudes at high energies

Having specified the principal scaling properties of the nucleon and meson wave
functions we can now discuss the high-energy behaviour of the diffractive amplitudes (3.8).
We confine ourselves to the case of the forward scattering of the nucleons. The dependence
on the transverse momenta of nucleons is much more complicated and requires rather

6 The discussion of this point is given by de Groot and Ruijgrok (1971). These authors include also
a logarithmic factor in the nucleon-nucleon amplitude, in order to obtain the constant total cross-section.
We neglect this factor since it does not make any qualitative difference.

7 It is interesting to note that our model is a specific example of the models of the high-energy inter-
actions discussed recently by Harari (1972). Indeed, for 2 — 0 we have & — 1 i.e. vector exchange between
two interacting nucleons. As 4 (which plays the role of the zN coupling constant) increases, the exchanged
trajectory decreases. The Pomeranchuk singularity stays always at @p = 1 and its position has nothing to
do with the value of A. This mechanism is caused by the fact that the part of the S-matrix responsible for the
production of mesons (S, given by Eq. (3.3)) is represented by a unitary operator.
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involved arguments, as is already known from the work on elastic scattering (Michejda
1967, 1968, de Groot and Ruijgrok 1971).
If the nucleons scatter forward, then according to our assumption (4.1)

0dq) = 0iq) = o) 5.1
and calculations simplify considerably. Using Eg. (3.8) we have
Gys - Qns Kes kpl Al s kgy = iM0(gy) - o(qn)Fn{®}, (5.2)
where
N
Fyl®} = n;) (-1 ) D(ky+keg—qy,,,— - — ). (5-3)

(']:[) combinations

The further discussion is greatly simplified by observation that Fy{®} can be approximately
written in the form

0
F{®} = (=D, .., g (6R‘“ SR (b(R))R - +
=KA B
+ higher order terms in g, ..., gi™. 5.9

Since the generalized elastic amplitude is a function of x = ¢;/\/s and x, = go/+/s rather
than g and g, the formula (5.4) is a good approximation for small |x|. In this approxima-
tion the diffractive amplitudes are determined entirely by the behaviour of the function
&(R) in the vicinity of the point R = k,+kp.
In Appendix A we show that at high energies the generalized elastic amplitude can
be written as
Z4/2 Z-/

I 2
O(R) = VEEECEy stH(A) | dx, | dxy(Z,—2x)"'x
0 0

X (Z_ —2x2)’1_1 j dzli__dszJ_é*(WC’ Wl)é(w,{’ Wl) X

X E¥(Wp, wo)e(wg, wy) exp [ (R —ky | —k, | )?/Q%]/Q%, (5.5
where
R,+R
Z, = OJE ! (5.6)
and
‘Q‘z
Q? = ik’ log (::.—2) . CN))
{07
Here
QZ = (R, —k1o—k20)2 _(Rn —km “‘k2“)2 (5.8)

and Q3, H(A), x and s, are known constants.
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As was already pointed out in Section 3, the dependence of the generalized elastic
amplitude (5.5) on R is a consequence of the energy and momentum conservation. This
can be seen explicitly in formula (5.5). The factors (Z, —2x,), (Z_-—2x,) and the integration
limits reflect the conservation of energy and longitudinal momentum. The factor

Q7% exp [—(RJ_—ku.—kz_L)z/Qz] (5.9)

reflects the conservation of the transverse momentum (see Appendix A and de Groot
(1972) for a discussion of these points).

To obtain the formula for the diffractive amplitude we have to perform differentiation
of @ given by Eq. (5.5) with respect to R. The inspection of Eq. (5.5) shows that such
a differentiation provides two types of contributions to the diffractive amplitude:

(2) those which at large s and fixed configuration of particles (i.e. fixed x,, ..., xy
and ¢y, ..., gy) behave like elastic amplitude, and

(b) those which at large s and fixed configuration of particles reveal the additional
negative powers of

Q% = ix? log (s/so)- (5.10)

The terms of the type (a) arise by differentiation with respect to Z, and Z_ (i.e. R
and Ro). Thus they describe this part of the diffraction dissociation which is induced by
conservation of the total energy and longitudinal momentum. At high energies (neglecting

-1
s . . . .
the corrections of the order (log (-—)) these contributions can be written in the

So
form
SR R
{1 s Ans ks kplAilky, k) = \/EAEBECED Q2 X
0
x 2V|x110(g,) --- 1xnle(@gh P (xR ~P(xp), (5.11)
where
ak
h(f(x) = 52? [h:(Zs, x)][z*=1 (5.12)

and h_(x) are given by Egs (A.8)and (A.9) of the Appendix A. Here N denotes the number
of produced particles and k denotes the number of particles moving to the right, i.e. with
x > 0. The characteristic feature of the amplitude (5.11) is that it vanishes for x; = 0, for
any i. Thus it describes the production of fast particles, with large longitudinal momenta.

The terms of kind (b) arise by differentiating of the factor (5.9) with respect to R .
Thus they describe this part of the diffraction dissociation which is induced by transverse
momentum conservation. The leading terms of this kind are of the form

(Gyy oo dns s kplAglk gy kg> = NE EgEEp x

@, 2N

X = —ghi(Zs =1L, xh (Z- = 1, xp)C(qy 5 s 4n ) (5.13)
QO QO
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where

C@sys - dyy) = ]_x; G5, " i) @ioyy " Qi )- (5.14)
Jm

1t is seen that, indeed, for fixed x,, ..., Xy, ¢1, ..., gn, the amplitude (5.13) has additional
factor @5~ which makes it vanish at high energies. However when integrated over momenta
of final particles, the amplitude (5.13) gives contribution to the diffractive cross-section
which at high energies behaves like that of the elastic scattering. Thus the amplitudes
(5.13) cannot be ignored in the high-energy limit. The reason for such a behaviour is that
the amplitude (5.13) does not vanish at small x;. Consequently, the integral over phase-
-space increases logarithmically, providing compensation of the factor Q5" (see e.g. de
Groot (1972) for the discussion of the high-energy behaviour of the phase-space integral).
Thus the amplitude (5.13) describes the production of the slow particles.

To conclude this Section we emphasize again that the amplitude for diffractive produc-
tion in our model is a sum of terms describing the production of fast particles (small missing
masses to the nucleon) and those describing the production of slow particles (large missing
masses to the nucleon)®. These terms have different origin: the first one reflects the conserva-
tion of total energy and longitudinal momentum, the second one originates from trans-
verse momentum conservation. Also their properties are rather different. Some of them
are discussed in next two Sections.

6. Non-scaling part of the diffractively excited spectrum

In this Section we list briefly some properties of the diffractive dissociation processes
described by the amplitude (5.11). As already noted, this part of the diffractive amplitude
describes the production of fast particles in the centre-of-mass frame.

(i) Factorization

The amplitude (5.11) satisfies the factorization condition
{q15 s Gns ks kplAylky, kg) <kc = ky, kp = kglAlky, k) =

{1y <oy Q> ks kp = kplAilky, k) Qs 15 ---» Ans ke = ka, kplAylky, kg).  (6.1)

Relation (6.1) implies that the study of the production of particles with, say, x > 0 is suf-
ficient for the determination of the behaviour of the diffractive production of fast particles
at high energies. It should be stressed, however, that this factorization property of the
amplitude is valid only up to the terms which decrase as inverse powers of Q2, i.e. inverse
powers of log (s/sg). Thus one may expect important corrections to factorization even at
quite high energies.

8 There are of course also mixed terms in which some particles are fast and others are slow.
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(ii) Multiplicity distribution

From formula (5.11) we obtain the differential cross-section for production of N
particles with x > 0

doy nis | Pol® 4V

d*k, cd%k  p ke, =kp,=0 Mk, Q4 NI

X 1h(5)(xc =3 —X;— ... —xN)llelg(ql){z XNEQ(QNNZ X
X|h_(xp = — %)]252(q1l+ ey )dxy, ., dedqul, ey dquN. (6.2)

The multiplicity distribution of the diffractively produced system is obtained by
integrating Eq. (6.2) over dx, ..., dxy d*q,, ..., d*q, y with the conditions

x;>0and x,+ ... +xy <1 (6.3)

The main property of the multiplicity distribution obtained in this way is that it falls
sharply at large N. It can be shown that for a wide class of the nucleon-nucleon probability

o0
amplitudes all moments of the multiplicity distribution exist, i.e. all sums ) onN* are
N=0
finite. This means that the multiplicity distribution of diffractively produced fast particles
does not change appreciably with increasing incident energy.

To illustrate this point we have calculated the multiplicity distribution for several
examples of nucleon-nucleon scattering amplitudes &(w;, w,) which determine the function
h(Z, x.) by formula (A.9). The results of these calculations show that only single particle
production is important. For A = 2 the production of two particles is down by more
than one order of magnitude compared to single particle production®. This dominance
of single pion production processes seems to be consistent with eXisting data: it is well
known that in most cases the diffractively excited system with low mass consists of two
particles: a pion and another particle or resonance®. Although in a simplified model we
can discuss neither the resonance production nor their possible quantum numbers,
we expect that the dominance of single pion produciion will hold also in more realistic
models, thus providing an explanation of this important experimental fact.

(iii) Mass spectrum

From the previous discussion it is clear that the mass distribution is determined almost
completely by the channel with only one pion produced. For this channel it is not difficult
to transform the momentum distribution (6.2) into the mass distribution. The obtained

9 The value of parameter A can be estimated from the energy dependence of the exclusive non-diffrac-
tive amplitudes (as seen from Eq. (4.10)) and from the high-energy behaviour of the average multiplicity
of non-diffractive channels (de Groot and Ruijgrok 1971) by formula {#> = 4 log (s/5o). The experimental
data onenergy dependence of exclusive cross-section (Hofmokl and Wroblewski 1970, Hansen, Kittel
and Morrison 1971) indicate that 4 ~ 2 (de Groot and Ruijgrok 1971). This is not inconsistent with the
recent data on energy dependence of the average multiplicity (see e.g. Antinucci er al. 1973).

t0 E.g. in pp collisions the most important diffractive channels at energies up to 30 GeV are
pp+ — (Nm)+p and p-+p — (dm)+p.
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formula shows that the mass distribution do/d.#* for the single pion production channel
is energy independent, i.e. it does not scale. Furthermore, at large .42 we have

do

i N/ 6.9

i.e. the distribution falls off rather sharply for high-mass excitations. The precise determi-
nation of the shape of the mass distribution requires further assumptions on the shape
of the amplitude (5.11).

Finally, let us note that formula (6.4) describing the tail of the mass-spectrum is valid
for all channels, with arbitrary number of the produced pions. This can be seen as follows.
Noting that

N
2 2 2 2
ot 2 MHEL Z i TU 6.5)
Xc X;
i=1
we see from Eq. (6.2) that the average value of #2 in any channel is finite!!. Thus do/d.#?
must fall faster than .#-*. On the other hand, the average of .#* has a logarithmic diver-
gence at x; = 0 due to terms (u2+¢?)?/x2. This indicates that indeed do/d.#*~ M- for
any multiplicity.

This result shows that the amplitude (5.11) is responsible for the diffractive excitation
of low mass systems. It shows also that this part of the excitation spectrum does not
scale. We remind the reader that this part of the spectrum originates from the conservation
of energy and longitudinal momentum in non-diffractive interactions.

In closing this Section we would like to stress again that the results discussed here
are valid only in the high-energy limit. The corrections are of the order (log s)~* and thus
may be important even at high energies.

7. Diffractive production of high missing masses

We review here the characteristic properties of the diffractive amplitude 4, given
by Eq. (5.13). This part of the amplitude originates from the transverse momentum conser-
vation in non-diffractive interactions and describes the production of slow (“wee”) pions,
i.e. excitation of high-mass systems.

As already indicated the energy dependence of the integrated cross-section for the
diffractive production of N wee pions

ns
I = Mklabf[<q15 <oes N> kC’ kDiAZIkA’ kB)lz X
a3 dqy d*kc d’k
X8 (g, + ... +qy+ke+kp—k —kg) 45 Gd4nd ke d K (7.1)

E, Ey Ec E,

1t provided AM(xc = 0) = 0. This condition follows from a realistic requirement that the nucleon
wave function vanishes for slow nucleons in CMS.
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is the same as that of the elastic cross section. Thus the diffractive production of wee
pions provides a finite fraction of the total diffractive cross-section in the high-energy
limit, and may therefore influence considerably the high-energy behaviour of the inclusive
spectra. Furthermore we note that since the number of terms in Eq. (5.14) increases consider-
ably with increasing N, the multiplicity distribution of “wee” pions is expected to extend
to fairly large multiplicities.

For fixed (large) mass of the diffractively excited system (consisting of one nucleon
and N wee pions) the cross-section behaves like

do—N ~ O elastic a (lOg '//lZ)N—1

da* " (logs)t " MP
where ay are constant coefficients depending on details of the model. Thus for fixed mass
of the diffractively excited system the production of wee pions falls as inverse power of
logarithm with respect to elastic cross-section. However, as already discussed, the integral
of doldM? over #? gives contribution depending on energy in the same way as elastic
scattering. By comparing Eqs (6.4) and (7.2) we see that the high-mass tail of the diffractive
excitation spectrum is dominated by production of wee pions. As energy increases, the
region where the wee pion production is important moves towards higher masses.

One observation can still be made on the distribution of transverse momenta of wee
pions: since the amplitude (5.13) contains products (q;,, *qj,) .- (@jy_,s *Gjw,) the
distribution of wee pionsis additionally damped in the region of small transverse momenta.
This damping has two effects. Firstly, it reduces significantly the cross-section for diffractive
production of wee pions. Secondly, it makes the transverse momentum distribution of
wee pions produced by diffractive mechanism different from those produced by non-
~diffractive mechanism.

To simplify the discussion, we consider only the case in which all pions are wee:
X; = X35 = ...xy = 0. Formula (5.2) predicts, however, also the existence of mixed
events, in which some pions are fast and other are slow. These events behave in the way
similar to the one described above.

Until now we discussed only the behaviour of the individual channels described by
the amplitude (5.13). Itis, however, very interesting to consider also the inclusive diffrac-
tive process, i.e. the sum over all diffractive channels for production of wee pions. Using
Eq. (7.2) we obtain the following formula for missing mass distribution of inclusive diffrac-
tive excitation in the triple Regge region

do 1 log 4*\N™?
2 = ) NaN =
d.# A log s log s

. (7.2)

1 , (log #*
= — U . 7.3)
A% log s log s
Here
dU :
U'(z) = diz) and U(z) = ¥, ayz" 7.4)

is related to the generating function of the multiplicity distribution.
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To study the scaling properties of the spectrum we introduce the scaling variable

../I{Z

{= (7.5)

s

Distribution (7.3) can be written in the form

do 1 lo
b v+ -—“”5) (7.6)
d¢ {logs logs
and we see that its scaling properties are determined by the behaviour of the function
U'(z) in the vicinity of the point z = 1.
If the function U’(z) is analytic at z = 1, all moments of the multiplicity distribution

(determined by derivatives of U(z) at z = 1) are finite in the high energy limit. In this
case the missing mass distribution has the form

do 1 an
At~ Clogs )
i.e. it does not scale. The violation of scaling is, however, only logarithmic.
If we would like the distribution (7.6) to scale, i.e. to be only a function of {2, the
function U’(z) must have a simple pole at z = 1. In such a case the mass distribution takes

the form

do 1

I | (1.8)
ac ¢

Furthermore, all the moments of the multiplicity distribution tend to infinity at high

energies. It can be shown that (barring factors like log log s) the correlation parameters

behave like
fu ~ (log s)". (7.9

8. Conclusions

We have shown that the overlap matrix formalism can be used for the calculation
of the diffractive production of particles. In this approach the diffractive production
is generated as a shadow of non-diffractive interactions. This shadow is described by the
inclastic elements of the overlap matrix.

To study the properties of the diffractively produced systems, we have calculated
the overlap matrix in the Uncorrelated Jet Model. Our main conclusions can be summarized
as follows.

a) In the particular version of the model which we consider there is no diffractive
production without correlations in non-diffractive interactions. The energy and momentum
conservation introduces the long-range correlations which in turn generate the diffractive

12 Such a behaviour is suggested by the recent data from CERN Intersecting Storage Ring (Albrow
et al. 1972) and by the phenomenological analysis of Chan er al. (1972).
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production. These energy and momentum conservation effects do not vanish even in the
high-energy limit.

b) At high energies the conservation of transverse momentum is well separated from
conservation of energy and longitudinal momentum. As a consequence, there are two types
of diffractively produced systems. This is reflected in the two-component structure of the
diffractively excited mass spectrum which splits naturally into an approximately scaling
part and a non-scaling part.

¢) The scaling component of the mass spectrum arises from transverse momentum
conservation, and consists of slow (““wee”) particles in the CM system. The energy and
longitudinal momentum conservation generate the production of the fast particles in the
CM system, which contribute to the non-scaling part of the mass spectrum.

The detailed properties of the diffractive channels depend in our model on the assumed
properties of the meson and nucleon wave functions describing the non-diffractive inter-
actions. We have taken the mesonic wave functions depending only on transverse mo-
mentum and scaled longitudinal momentum. The nucleon wave functions were assumed
in the factorized form, depending on transverse momenta or on momentum transfer from
initial to final nucleon.

For fixed mass of the excited system, the energy dependence of the cross-section for
exclusive processes in which there are some slow (wee) particles in the CM system is differ-
ent from that of elastic scattering. They fall down faster than the elastic cross-section at the
rate (log )™~ where N is the number of wee particles produced in the given channel. How-
ever, the cross-sections in these channels integrated over mass of the excited system de-
pend on energy in the same way as the elastic scattering. The tail of the mass distri-
bution in the channel with N wee pions is of the form

doy 1 (log #*)!

oC 8.1
da#?* " (log )Y M2 ®1)
d
which, integrated up to #2% ~ s, gives IdJZL d#? ~ const.

It is seen from Eq. (8.1) that the processes of production of wee pions correspond to
the diffractive excitation of large missing masses.

The inclusive mass spectrum of the diffractively excited system (summed over all
channels with wee pions) is consistent with the scaling property suggested by recent ISR
experiments (Albrow et al. 1972) and by phenomenological analyses (see e. g. Chan ef al.
1973): depending on the details of the model, the inclusive missing mass spectrum may
either scale exactly, or only up to a factor of 1/log s.

If the inclusive mass distribution scales exactly, the model predicts that in the triple-
-Regge region its shape is of the form

iif__ 1
d. ~ {log!

2
where { is the scaling variable, { = —.
s

(8.2)
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In the Regge language such a behaviour corresponds to the exchange of the singu-
larity with intercept @ = 1, /. e. it describes the so-called triple-pomeron vertex. The loga-
rithmic factor indicates that this singularity is a cut rather than a pole, as indeed expected
in the models without short range order (see e. g. Sivers (1972), for recent discussion
and other references).

Other characteristic features of these processes are discussed in Section 7.

The diffractive production of fast particles is characterized by the amplitudes which
have the same energy dependence as the elastic amplitude, in contrast to the behaviour of
the wee particles production which was discussed up to now. Its most important properties
can be summarized as follows.

(i) Tt factorizes into parts describing right-moving and left-moving particles up to
the terms of the order l/log s.

(i) The amplitude is a function of transverse momenta and scaled longitudinal mo-
menta of all produced particles. It vanishes as x; for x; — 0, where x; is the scaled longitu-
dinal momentum of the particle. This property implies that no wee particles are produced
and that the integrated cross-section for production on N fast particles has the same
energy dependence as elastic scattering.

(iii) The mass distribution of the diffractively excited system of fast particles shows
a large (non-resonant) bump at small masses, followed by a sharp drop. For large masses,
i. e. in the triple-Regge limit the <pectrum behaves as

do
d.i?

This asymptotic behaviour at large .#2 is independent of multiplicity. Formula (8.3) shows
that the considered processes contribute to the non-scaling part of the diffractively excited
mass spectrum.

(iv) It can be shown under rather general conditions that all moments of the multi-
plicity distribution are finite and energy independent. In fact, most of the diffractive produc-
tion of fast particles goes into single pion production. This feature seems attractive, be-
cause it may perhaps serve as qualitative explanation of the experimental evidence that,
for small missing mass, the diffractive dissociation proceeds (in most of the known cases)
via two-body intermediate steps (see e. g. Morrison 1970).

in closing this Section, let us observe that the general picture of the high-energy
interactions described in this paper is the same as in the so-called two-component models
of particle production (¢f. Wilson 1970, Fiatkowski and Miettinen 1972, Frazer et al. 1972,
Harari and Rabinovici 1972, Quigg and Jackson 1972). However, in our approach the
diffractive and non-diffractive components are closely related through the unitarity condi-
tion.

Another important feature of our model is that the non-diffractive component does
not have the property of short range order. In the absence of short-range order the leading
(Pomeranchuk) singularity in diffractive scattering is a cut rather than a pole and conse-
quently our results are different from those obtained by other authors (Frazer and Snider
1973, Kajantie and Ruuskanen 1973).

~ MT7C. (8.3)
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APPENDIX A

High-energy behaviour of the generalized elastic amplitudes

To determine the high-energy behaviour of &;_;(R), we use the known formula for
the asymptotic behaviour of the sum of phase-space integrals (de Groot 1971, 1972, and
Bassetto, Toller and Sertorio 1971)

a 1 m d3 .
o=y [sv@-0.- .. —Q».)H 2@
m=0 Jj=1 !

o 1_15%_) Q*“ Vexp (-0 /2%, (A1)
where
Q* = 05-0j;, (A2)
H(1) = TR (A3)
and
2 g2 2
Q" = i’ log 5. (A4)

Here Q2, ii and x? are constants depending on the shape of the transverse momentum

distribution of pions.
Using Egs (A1), (3.9), (5.7) and (5.8) we obtain

s\7* —m————
?;«(R) = (;) \/EAEBECED jd3k1d3k2§*(wc, wq) X

0
x E(w 4, wl)é*(wba wy)l(wy, wo)C(R—ky—k;) =
= VE EREEp stH(A) | dx dx,d%ky | d2ky | E¥(we, w1)E(W 4, Wy) X
X E¥(wp, w2)é(wg, w,) [(Zo—x, — x2)2 "(Z” — X+ xz)le— x

x exp [—(Ry ~ky | ~ks,)}/Q7]/2%. (AS)
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Here x, ; = |k, 5 ;l//3, So is a constant and Z = R/./s. Thus the generalized elastic
amplitude can be written in the form

Z4/2 zZ../2

@, ,((R) = VELEgEEy stH(A) | dx, | dxy(Z,—2x,)*"'x
0 (1]

X(Z-=2x)" 71 [ dPky APk, EX (W, Wy)E(W 4 W1EH(Wp, Wo)E(Wg, W,) X
x exp [—(R, —k; | —k, )?/Q*]/Q% (A6)

In the high-energy limit we have @ — oo and the leading term simplifies considerably to
give the factorized form

H(l)
01-i(R) = VEEsEcEy 3 h(Z s X4 Xh-(Z-, X3y %p) +
0
+ terms of the order of 954, (A7
where
Z/2
hilZi,xpxe) = | dx(Z,=2x)""1 [ dPky | E¥(we, w)E(W4, W) (A8)
0

and

Z-/2

h_(Z._,xg xp) = j dx(Z_—2xy*"! ’. dzkzlf*(wpa w2)é(wg, w,) (A9)
0
and Q, is given by Eq. (5.19)

02 = 1? log — A10
0 = AK 108 —. ( )}

So

APPENDIX B

Calculation of the overlap matrix

In this Appendix we derive the formulae (3.7)-(3.9). Starting from Eq. (3.1) we replace
the J-function of energy and momentum conservation by its Fourier representation

. 1
S(P-P) = o j d*xe' PP = (B1)

and express the total four-momentum operator P by creation and annihilation operators
of pions and nucleons

d*k
= J 3 k,(a%(k)a(k) + bT(k)b(k)). (B2)
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Using (B1) and (B2), the Ty matrix can be written in the form

Ty Jd"xTN(x)e' iPrx (B3)

T 2ot

The Fourier transform Ty(x) factorizes into nucleon and meson paits:

Tu(x) = T,(x)S(x), (B4)
where
. [d*k
T.(x) = exp ( g k- xb"(k)b(k)) T, (BS)
and
~ [k
S.(x) = exp ( i k- xa*(k)a(k)) S,. (B6)

The overlap operator can now be written as

FE T;TN::

5 d4xd4xfe~—i(P-x—P"x’)x
(2m)

x TH T (x)SHx)S (%), (B7)

where P and P’ are the total four-momenta of initial and final state, respectively.
The most complicated part of the derivation is the calculation of the operator
St (x")S(x). The crucial step in this calculation is the identity

(% [dk "
exp (-—l J‘F g*(k)a(k)) exp (l _[—E— k- (x—xa (k)a(k)) X

(d’k
X exp <1J 3 g*(k)a(k)) =

3 3
= exp (i f;(:) o*(g)a(q) (e =) — 1)) exp (i j ”—’E'f k- (x—x')af(k)a(k))
(B8)

which can be derived from the general formula

o©

&
¢4Be 4 = z i—'A"{B} (B9)

k=0
where A and B are any operators and

A°{B} = B, A*(B} = [4, A" {B}]. (B10)
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Using Eq. (BS8), the operator SF(x") §(x) can be transformed into

SH(x)S(x) = exp &'k ze(k)z%e"""*‘*"—l)) X
FiANd k1 E(k) H

3
X exp (i j f% o(9)at(q) (e"“"""‘"—l)) %

3 3
X exp (i Jg(—;) o*(p)a(p) (e &7~ 1)) exp (i Ij—(l_ck—) k- (x—x')a*(k)a(k)) .
(BI1)

The last step is the calculation of the matrix element for production of N pions which
gives

~ ~ d’k ; 8
g1, - GNISHX)S()(0> = exp (_[E_(it) .Q(k)lz(e""("”’—l)) X

3
%x<{qy, ..r Gnl €XP (i J % (e "~ 1)9(4)(!*(4)) 0y =

N

3
- (J % ie(mlze""""_“) iNH olq) (€4 ") =1). (B12)

Jj=1

In this formula the first factor describes the elastic shadow scattering N = 0 and the
other factors are characteristic for the production. The product of the last factors is a sum
of 2% terms containing exponential depending on momenta of produced pions. Each of
these terms has a simple interpretation which is presented graphically in Fig. 1.

Eq. (B12) is a special case of the general formula

o d*k Y (e
{5 s ‘IN‘Si(X')Sn(x) Q1 s Q> = e_vexp (J‘Ek) |Q(k)!'em (x'x)) X

% exp (iP, - (x—x)) 0| H (a(g))+iog)) (€% =™ = 1)) x

k
x T1(al(@)+ig"@) (7@ =™~ 1) [0), (B13)
where
k
P.= Y0 (B14)

Inserting Eq. (B12) into Eq. (B7) and performing integration over x and x’ we obtain
the formulae (3.7)-(3.9), where we additionally distinguish explicitly between probability
amplitudes go(g) for the initial and final states.
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