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We apply the non-local chiral quark model to study vector and axial
pion-to-photon transition amplitudes that are needed as a nonperturbative
input to estimate the cross-section of pion annihilation into the real and
virtual photon. We use a simple form of the non-locality that allows to
perform all calculations in the Minkowski space and guaranties polynomi-
ality of the TDAs. We note only residual dependence on the precise form of
the cut-off function, however vector TDA that is symmetric in skewedness
parameter in the local quark model is no longer symmetric in the non-local
case. We calculate also the transition form-factors and compare them with
existing experimental parametrizations.

PACS numbers: 11.30.Rd, 12.39.Fe, 14.40.Aq

1. Introduction

Exclusive processes involving hadrons factorize in the Bjorken limit into
a hard cross-section and a soft hadronic matrix element that cannot be calcu-
lated in perturbative QCD. Those matrix elements encode nonperturbative
information on the hadronic structure. Recently Pire and Szymanowski [1]
introduced new objects of this type that describe pion-to-photon (π2γ) tran-
sition in the presence of the qq̄ operator that in the following will be denoted
by Γ . Depending on the nature of Γ one can define vector or axial transition
distribution amplitudes (VTDA or ATDA, respectively). In their original
work Pire an Szymanowski discussed hadron–antihadron scattering process
HH̄ → γ∗γ where the virtual photon supplies the hard scale allowing for
perturbative treatment, whereas the other photon is on mass-shell. As the
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simplest case, to avoid complications with spin or multiquark bound states,
one may take pions as initial hadrons. Although experimentally difficult to
access [2], ππ scattering is of particular theoretical interest, since pions are
Goldstone bosons of broken SU(2) chiral symmetry and their properties are
to large extent determined by the symmetry (breaking) alone rather than
by the complex phenomenon of confinement.

Indeed, there exists in the literature a variety of chiral models which
involve both constituent quarks and pion degrees of freedom. In Ref. [3]
Tiburzi used simple constituent quark model to discuss properties of the π2γ
TDAs. Similar model with Pauli–Villars regularization has been recently
used by Courtoy and Noguera [4] to calculate π2γ TDAs for different ranges
of kinematical variables. Finally Ruiz Arriola and Broniowski [5] employed
the Spectral Quark Model (SQM) for the same purpose.

One of the important ingredients of the low energy models is regulariza-
tion. Even though π2γ TDAs are formally finite, regularization cannot be
simply dropped out, since it defines the scale of applicability above which
the models do not apply. In this paper we calculate π2γ TDAs in the
semibosonized Nambu–Jona-Lasinio model known also as the Chiral Quark
Model (χQM) with a non-local regulator. This model has been previously
used to calculate pion [6], pion and kaon [7] distribution amplitudes (DA)
and generalized parton distributions (GPD) together with two-pion distri-
bution amplitudes [8]. Direct comparison of local and non-local versions of
the model allows to determine the influence of the non-local regulator. In
most cases rather sharp curves obtained within the local model are smoothed
down; also the endpoint behavior of various distributions is made continuous.
This phenomenon is at best illustrated by the example of the pion distribu-
tion amplitude which in the local model is constant over the whole support,
whereas the non-local regulator forces it to vanish in the endpoints [9, 10].
It is, therefore, of interest to investigate the role of the non-local regulator
for the π2γ TDAs introduced above.

One has to remember that the χQM, although devised to describe chiral
physics of Goldstone bosons, has been widely used to incorporate baryons as
chiral solitons both in local (for review see e.g. Ref. [11]) and non-local [12]
cases. Generally the results of these studies show that the soliton ceases
to exist for too small constituent quark mass M . The critical value of M
depends on the details of the given model, however it is of the order of
300 MeV or a bit less. Typical values ofM that fit well the hyperon spectrum
may be as high as 420 MeV [13]. In the present paper we adopt two distinct
values of M : 350 MeV and 225 MeV. The latter, as we shall see in Sect. 6,
fits well the slope of the π2γ transition form-factor. It is, however, excluded
if one wants to describe baryons as chiral solitons.
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Our results can be in short summarized as follows: it seems that π2γ
TDAs are quite robust as far as different regularization schemes (including
no cut-off at all) are concerned. On the one hand this is a welcome feature
for phenomenology, one can use them with a large degree of confidence. On
the other hand they cannot be used to distinguish between different models.
However, as we shall discuss in Sect. 5.2, the ξ-symmetry of the VTDA is
no longer present in the non-local model, and the results for ξ < 0 differ
more from the results of the local model, than the ones for ξ > 0 (where ξ
is the skewedness parameter to be defined in Sect. 4). We shall also see that
the normalizations of VTDA and ATDA which are equal in the local model
become different in the non-local case.

In the next section we shall discuss different chiral quark models existing
in the literature in the context of π2γ TDAs. Subsequently in Sect. 3 we
give a short overview of the non-local model used in the present paper. We
shall work in a symmetric kinematics that is introduced in Sect. 4 together
with the definitions of the TDAs in question. Calculations and results are
presented in Sect. 5. We summarize and give our conclusions in Sect. 6.
Technical details can be found in Appendices A–C.

2. Quark models and the transition amplitudes

In order to estimate transition amplitudes one may try to construct phe-
nomenological ansatze that satisfy general conditions such as gauge invari-
ance and anomaly structure, Lorentz invariance that in our case is equiv-
alent to polynomiality, etc. For special limiting cases these ansatze reduce
to known form factors or structure functions (see e.g. Ref. [14], or in the
context of π2γ TDAs Ref. [3]). Alternatively one may try to resort to some
kind of nonperturbative calculations. Usually a good starting point is a con-
stituent quark model where all nonperturbative effects are parametrized in
terms of a constituent quark mass and a chirally invariant meson–quark
coupling (Local Chiral Quark Model — LχQM). As quite useful first ap-
proximation such model has been used in Refs. [9,10] to describe pion light
cone distribution amplitude or two pion distribution amplitudes [15]. The
results of the LχQM seem rather trivial. For example pion light cone dis-
tribution amplitude is constant and does not vanish in the endpoints [6, 9],
similarly the isoscalar skewed pion distribution amplitude is just a super-
position of the Θ functions [6]. While LχQM satisfies Ward identities, it
violates Lorentz invariance by the necessary transverse UV cut-off.

Let us stress that the UV cut-off is not merely a regulator, on the con-
trary, it defines the applicability domain of the model that is clearly devised
as low energy approximation to QCD. It should be therefore applied also
to the quantities that are formally finite in this limit. However, as we shall
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shortly explain in some more detail, the explicit UV cut-off results in a vi-
olation of the polynomiality which is essential for the transition amplitudes
that are discussed in this paper. Clearly a more sophisticated regulator is
needed.

One might expect that a more sophisticated regularization which pre-
serves Lorentz invariance would result in a more realistic shape of the pion
distribution amplitude. This is, however, not necessarily the case. Gauge
invariant regulator is provided for example by the Spectral Quark Model
(SQM) Refs. [5,16], where the constituent quark mass M is traded for a spec-
tral parameter ω, and all physical quantities are given in terms of integrals
over dω with some a priori unknown spectral density ρ(ω). Spectral density
ρ(ω) must satisfy a number of relations that follow from the QCD Ward
identities; explicit realizations of the model with explicit form of ρ(ω) are
also known [16]. Although at first sight theoretically attractive, SQM yields
phenomenological results that are very similar to the naive LχQM described
above.

Similarly in Ref. [17] a Pauli–Villars regularized Nambu–Jona-Lasinio
model was applied to calculate both pion distribution amplitude (DA) and
parton distributions in the pseudoscalar mesons. Again pion DA at the
input scale is given as a step function and does not vanish in the endpoints.
Evidently a form factor in the quark–pion vertex is needed to “soften” the
shape of the (generalized) distribution amplitudes.

An attractive and simple way out is provided by the Non-Local Chiral
Quark Model (NLχQM) where the quark–pion coupling is given in terms
of a momentum dependent constituent quark mass M (p). For small p,
M(p) → M ∼ 350 MeV, whereas for p → ∞, M(p) → 0. This suppression
of large momenta (remember that the constituent quark mass M(p) acts not
only as a mass parameter in the propagators, but also — more importantly
— as a quark–meson coupling) is enough to make the pion distribution
amplitude vanish in the endpoints [6].

Momentum dependent constituent mass M(p) preserves polynomiality,
however it violates QCD Ward identities. The latter can be easily under-
stood by the following example. Consider Dirac equation with a momentum
dependent mass M(p):

(/p−M(p)) u(p) = 0 (1)

and the electromagnetic current

jµ = u(p+ q)γµu(p) . (2)

Naive current conservation reads

qµj
µ = u(p+ q) [(/p+ /q) − /p]u(p)

= [M(p+ q) −M(p)] u(p+ q)u(p) 6= 0 . (3)
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Modifications of the electromagnetic current jµ that make the current
conserved have been proposed in Refs. [18–27]. The discussion of the low
energy theorems in the context of the instanton model leading to the mo-
mentum dependent constituent quark mass with special emphasis on axial
anomaly can be found in Ref. [28]. Although these modifications, supplied by
an appropriate requirements of the absence of kinematical singularities [19]
fix the longitudinal part of the pertinent non-local vertices, the transverse
part remains undetermined. When one wishes to consider electromagnetic
processes, it is necessary to assume some model for the transverse part.
Therefore for the purpose of the present work we do not consider such mod-
ifications, although we acknowledge the fact that such a study is certainly
required. Below we give an argument in favor of such a procedure that fol-
lows from the parametrical dependence of the current nonconservation in
the instanton model of the QCD vacuum.

A non-local model leading to (1) can be “derived” from QCD in the in-
stanton model of the QCD vacuum [29]. In this model the vacuum is filled
with interacting instantons that stabilize in a configuration where the mean
instanton radius ρ ∼ 1/(600 MeV), whereas the typical instaton separation
R ∼ 1/(300 MeV). The instanton packing fraction (ρ/R)4 is a dynami-
cal small parameter of the model. The model allows to calculate M(p) in
Euclidean space. Setting M(p) = MF 2(p) we have

Finst(p) = 2z [I0(z)K1(z) − I1(z)K0(z)] − 2I1(z)K1(z) , (4)

where z = pρ/2 andM is the constituent mass at zero momentum. Therefore
(schematically)

M(p+ q) −M(p) = M
[

F 2((p + q)ρ) − F 2(pρ)
]

≃ M
qρ

2

dF 2(z)

dz
. (5)

Eq. (5) may be viewed as an expansion in the inverse momentum Qinst =2/ρ
corresponding to the typical instanton size. Hence for small momentum
transfers (and this is certainly the domain of the present model) the non-
conservation of the vector current is parametrically small in the inverse in-
stanton size Qinst. Therefore in the following we shall use local currents,
such as (2), rather than the non-local extensions, allowing for the violation
of Ward identities at the level of q/Qinst. The price we pay for that is the
wrong normalization of the pertinent form factors, since it is fixed by the
axial anomaly. However, the dependence on the kinematical variables is al-
most identical as in the models that preserve Ward identities. We shall come
back to this point in Sect. 6. Finally, let us stress that despite the fact that
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our currents do not satisfy Ward identities the amplitudes we calculate are
gauge invariant, in the sense that they vanish when contracted with on-shell
photon momentum.

3. Non-local chiral quark model

In order to provide non-local nonperturbative regulator we employ semi-
bosonized Nambu–Jona-Lasinio model defined by the following action de-
scribing quark interaction with an external meson field U [29, 30]:

SI = M

∫

d4kd4l

(2π)8
ψ̄(k)F (k)Uγ5(k − l)F (l)ψ(l) (6)

and Uγ5(x) can be expanded in terms of the pion fields:

Uγ5(x) = 1 +
i

Fπ
γ5τAπA(x) − 1

2F 2
π

πA(x)πA(x) + . . . . (7)

M is a constituent quark mass of the order of 350 MeV and F (k) is a
momentum dependent function such that F (0) = 1 and F (k2 → ∞) → 0.
In what follows, for comparison, we will consider also M = 225 MeV.

Note that (6) provides both momentum dependent mass of the quark
fields and the non-local quark–meson coupling. Pions act at this stage only
as auxiliary fields being — by equations of motion — objects composed from
quark–antiquark fields. Kinetic term for pions appears only after integrating
out the quark fields [30, 31] and the proper normalization is obtained by an
appropriate choice of the cut-off function F (k). Here, following Refs. [6, 9]
we wish to perform all calculations in the Minkowski space. To this end we
choose:

F (k) =

( −Λ
2
n

k2 − Λ2
n + iǫ

)n

(8)

which reproduces reasonably well (4) for k2 < 0. Numerical values of Λn

for different choices of M are given in Table 1 of Ref. [6] and Table I of the
present paper. Scale Λn should not be confused with the typical momentum
scale Q0 (which for the original shape of F (k) given by Eq. (4) is equal to
Qinst = 2/ρ), that can be defined as the value of the momentum for which
F (Q0) = const, say 1/2. Then

Q0(n) = Λn

√

n
√

2 − 1 (9)

and does not exceed 2 GeV for the highest values of Λn.
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TABLE I

Values (in MeV) of Λ in function of n for M = 350 and 225 MeV.

n 1 2 3 5

M = 350 MeV 1156 1727 2155 2819
M = 225 MeV 2121 3125 3880 5060

Ansatz (8), apart from being close to the instanton motivated func-
tion (4), is very practical for calculations in the Minkowski space. In-
deed, it introduces a number of complex poles in the complex momentum
plane, that can be analytically integrated over in the light cone coordinates.
Light cone coordinates are defined by two null vectors: ñ = (1, 0, 0, 1) and
n = (1, 0, 0,−1). In this kinematical frame any four vector v can be decom-
posed as:

vµ =
v+

2
ñµ +

v−

2
nµ + vµ

T (10)

with v+ = n · v, v− = ñ · v and the scalar product of two four vectors
reads:

v · w = 1
2v

+w− + 1
2v

−w+ − ~vT · ~wT . (11)

Therefore

k2 − Λ
2
n = k−k+ − ~k 2

T − Λ
2
n . (12)

The integration measure in the light-cone coordinates takes the following
form:

d4k = dk+ dk−d2~kT/2 . (13)

Looking at (12) we see that (8) generates a n-th degree pole in the k− plane
that can be easily integrated over. The details can be found in Ref. [6] and
in Sect. 5.

4. Definitions and kinematics

We use the definitions of pion TDAs from [3] (our definitions include
additional i phase factor)

∫

dλ

2π
eiλXp+ ×

〈

γ (P2, ε)

∣

∣

∣

∣

d

(

−λ
2
n

)

γµu

(

λ

2
n

)
∣

∣

∣

∣

π+ (P1)

〉

= i
ie

2
√

2Fπp+
εµναβε∗νpαqβ V (X, ξ, t) , (14)
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∫

dλ

2π
eiλXp+ ×

〈

γ (P2, ε)

∣

∣

∣

∣

d

(

−λ
2
n

)

γµγ5u

(

λ

2
n

)∣

∣

∣

∣

π+ (P1)

〉

= i
e

2
√

2Fπp+
Pµ

2 (q · ε∗) A (X, ξ, t) + . . . , (15)

where V (X, ξ, t) and A (X, ξ, t) are vector and axial TDA, respectively, (we
use Fπ = 93 MeV). We shall use the following symmetric parametrization of
momenta:

P1µ = (1 + ξ)
p+

2
ñµ + (1 − ξ)

p2

2p+
nµ − 1

2
qT
µ ,

P2µ = (1 − ξ)
p+

2
ñµ + (1 + ξ)

p2

2p+
nµ +

1

2
qT
µ , (16)

where pT = 0, with

pµ =
1

2
(P1 + P2)µ =

p+

2
ñµ +

p2

2p+
nµ . (17)

Here ξ denotes skewedness. Momentum transfer reads:

qµ = (P2 − P1)µ = −ξp+ñµ + ξ
p2

p+
nµ + qT

µ . (18)

Note that q2 is related to p2. Indeed, using the on mass-shell condition (for
mπ = 0):

0 = P 2
1 = P 2

2 =
(

1 − ξ2
)

p2 − 1
4~q

2
T = p2 + 1

4q
2

we arrive at:
4p2 = −q2 = −t > 0 . (19)

Considering the momentum transfer squared:

q2 = t = −4ξ2p2 − ~q 2
T , or − 4ξ2p2 =

(

t+ ~q 2
T

)

, (20)

and inverting (20), we get an important constraint:

~q 2
T = −(1 − ξ2)t > 0 → −1 < ξ < 1 . (21)

One has to note, that the lower limit for ξ depends on the order of limits at
t = 0 and mπ 6= 0 [4]. We have avoided this ambiguity by keeping mπ = 0
from the very beginning.

Photon polarization vector satisfies ε∗ · P2 = 0. Dots in Eq. (15) stand
for parts which are structure independent and thus irrelevant in our consid-
erations [3,4]. In general TDAs do not posses any symmetry properties in ξ
and X — in contrary to GPD’s [3].
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One can define flavor diagonal VTDAs Vu (X, ξ, t) and Vd (X, ξ, t) by re-
placing in definition (14) π+ by π0 and taking operators u

(

−λ
2n
)

γµu
(

λ
2n
)

and d
(

−λ
2n
)

γµd
(

λ
2n
)

, respectively. On the other hand matrix element
〈

γ (P2, ε)
∣

∣ψ (0) γµψ (0)
∣

∣π0 (P1)
〉

, where ψ are now iso-doublets, is param-

eterized by the pion–photon transition form factor controlling γ∗γ → π0

processes. Therefore one can derive the sum rule [1] relating this form fac-
tor to Vu (X, ξ, t) and Vd (X, ξ, t). Its normalization is fixed by axial anomaly
connected with the Ward identity relating matrix elements for transition of
axial current to two photons with a similar matrix elements of a pseudo-
scalar current. This normalization together with the conventions of Eq. (14)
gives the normalization condition for the VTDA:

1
∫

−1

dX V (X, ξ, t = 0) =
Nc

2π2
(Qu +Qd) =

1

2π2
, (22)

which is independent of M and of ξ. The latter is related to the polynomial-
ity which states that the n-th moment of the TDAs in X is a polynomial in ξ
of degree not higher than n. Normalization (22) is automatically satisfied in
the local chiral quark model which in the chiral limit (i.e. for mπ = 0) gives
the normalization of the ATDA of Eq. (15) equal to the one of the VTDA:

1
∫

−1

dX A (X, ξ, t = 0) =
Nc

6π2
(Qu −Qd) =

1

2π2
. (23)

Note, however, that (23) is not fixed by the anomaly. This will be important
in the non-local model where the two normalizations are not equal any more.

Moreover, we have the following sum rules relating vector and axial-
vector form factors with the relevant TDAs

1
∫

−1

dX D (X, ξ, t) =
2
√

2Fπ

mπ
FD (t) = 2

√
2FπF

χ
D (t) , (24)

where D stands for V or A. In the chiral limit, which is considered in this
paper, we define Fχ

V (t) = FV (t) /mπ and similarly for FA.
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5. Transition distribution amplitudes in the chiral quark model

Using effective action (6) we obtain the following expressions for the
matrix elements (14) and (15):

∫

dλ

2π
eiλXp+ ×

〈

γ (P2, ε)

∣

∣

∣

∣

d

(

−λ
2
n

)

Γ
µu

(

λ

2
n

)∣

∣

∣

∣

π+ (P1)

〉

= −
√

2eMNc

Fπ
(QdMµν

1 +QuMµν
2 ) ε∗ν , (25)

where Γ
µ is either γµ or γµγ5, Nc is number of colors, Qu and Qd are charges

of quarks u and d respectively. Two amplitudes M1 and M2 depicted in
Fig. 1 are defined as (we omit iǫ prescription in fermion propagators):

Mµν
1 =

∫

d4k

(2π)4
δ
(

k+ − (X − 1) p+
)

F (k)F (k + P1)

×Tr

{

1

/k + /P2 −M (k + P2)
Γ

µ 1

/k + /P1 −M (k + P1)
γ5

1

/k −M (k)
γν

}

,(26)

Mµν
2 =

∫

d4k

(2π)4
δ
(

k+ − (X + 1) p+
)

F (k)F (k − P1)

×Tr

{

1

/k − /P1 −M (k − P1)
Γ

µ 1

/k − /P2 −M (k − P2)
γν 1

/k −M (k)
γ5

}

.(27)

k

Γ

γν γ5

k = k +k2 = k + P1

P1P2

P2 1

π+
u

d
−

Qd

k

Γ

γν γ5

k1 = k − Pk = k −

P1

1

P2

P2

π+

u

d
−Qu

2
' '

Fig. 1. Feynman diagrams for M1 and M2. Traces should be taken opposite to

the momentum flow denoted by arrows. Time flows from right to left.
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5.1. Local case

First we calculate TDAs neglecting the mass dependence upon p, i.e.

we set M (p) = M . It was already done within a very similar model in
Ref. [4], where the calculations were performed in the Minkowski space
with Pauli–Villars regularization. In another approach partially discussed in
Refs. [6, 8–10] one uses the light cone coordinates (10) with the integration
measure given by Eq. (13), performing first integration over dk− and then
over dk2

T with the transverse cut-off Λ
2. The latter is chosen to normalize ap-

propriately Fπ or alternatively to normalize the pion distribution amplitude
to 1. Introducing transverse cut-off in the integrals defining TDAs would
violate Lorentz invariance and, as a consequence, polynomiality. This can
be nicely illustrated by considering the integral

I =

∫

d4k

(2π)4
1

(k2 −M2) ((k + P2) −M2) ((k + P1) −M2)
(28)

which is related to the zeroth moment of the vector TDA and expanding it
for small t:

I =
−i

8(2π)2

{

∫

dk2
T

(k2
T +M2)2

+
t

4

∫

dk2
T

M2

(k2
T +M2)4

+
t

12
ξ2
∫

dk2
T

2k2
T −M2

(k2
T +M2)4

+ . . .

}

. (29)

Now, in order to make ξ2 dependent term vanish

Λ2
∫

0

dk2
T

2k2
T −M2

(k2
T +M2)4

= − Λ
2

(M2 + Λ2)3
(30)

we have to choose Λ
2 = ∞, what leads to:

I =
−i

8(2π)2M2

{

1 +
t

12M2
+ . . .

}

, (31)

where . . . denote higher powers of t.
So in order to preserve polynomiality we have to work with an infinite

transverse cut-off. In this case it is very useful to switch to Euclidean space
and use Schwinger representation for scalar propagators, following Ref. [5].
This allows to obtain analytical results in a very simple way. We shall be
using TDAs calculated in the local model as a reference when discussing the
results in the non-local case.
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Calculating traces and combining definitions (14), (15) with (25) we get

V (X, ξ, t) = i16M2Ncp
+ (QdK1 +QuK2) , (32)

A (X, ξ, t) = − i

q · ε∗ 16M2Ncp
+ (QdJ1 +QuJ2) , (33)

where

K1,2 =

∫

d4k

(2π)4
× δ (k+ − (X ∓ 1) p+)
(

(k ± P1)
2 −M2

)(

(k ± P2)
2 −M2

)

(k2 −M2)
, (34)

J1,2 =

∫

d4k

(2π)4
× δ (k+ − (X ∓ 1) p+) (∓2k + q) · ε∗
(

(k ± P1)
2 −M2

)(

(k ± P2)
2 −M2

)

(k2 −M2)
(35)

with the upper signs referring to subscript “1” and the lower signs to “2”.
Taking the same steps as in [5], we get

K1,2 =
−i

(4π)2 p+

1
∫

0

dy

1−y
∫

0

dz

× δ
(

y (1 + ξ) p+ + z (1 − ξ) p+ ± (X ∓ 1)
) 1

M2 − yzt
, (36)

J1,2 =
±iq · ε∗

(4π)2 P+

1
∫

0

dy

1−y
∫

0

dz

× δ
(

y (1 + ξ) p+ + z (1 − ξ) p+ ± (X ∓ 1)
) 1 − 2y

M2 − yzt
. (37)

While obtaining the second equation we used n · ε∗ = 0 (in the light-cone
gauge), what made that expression finite. Let us notice that from these
formulae it is obvious that TDAs satisfy polynomiality condition. Simple
integration over Feynman parameters leads to the final result, which we
quote in Appendix A.

The transition form factor we get in the local model recovers the normal-
ization required by the axial anomaly. Its analytical form — calculated long
time ago in Ref. [32] in more general kinematics — is given in Appendix B.

5.2. Non-local case

In this section we take full momentum dependence of the constituent
quark mass in integrals (26) and (27). The calculations will be done in
the Minkowski space. We use method of evaluating the contour integrals
developed in Refs. [6, 8].
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We start from VTDA. When evaluating the trace we find not only struc-
tures proportional to εµναβε∗νpαqβ, which are needed, but εµναβε∗νnαP1β and

εµναβε∗νnαP2β as well. However they vanish when contracted with nµ, thus
they are unphysical in the sense that they do not give contribution to the
observables. We obtain expressions of the following form

K1,2 =

∫

d4k

(2π)4
δ (k+ − (X ∓ 1) p+)F (k)F (k ± P1)

D (k ± P1)D (k ± P2)D (k)

× 1

M
{A1,2M (k ± P1) +B1,2M (k ± P2) +C1,2M (k)} , (38)

where
D (p) = p2 −M2 (p) + iǫ . (39)

Fuctions A1,2, B1,2, C1,2 depend on X, ξ, t and integration variable ~kT.
Their explicit form is given in Appendix C.

Next, we have to take mass dependence on momentum given by (8). We
choose Λn for given n in such a way that pion DA calculated in the present
model is normalized to unity. Pertinent values of Λn are listed in Table I.

Introducing dimensionless variables κ = k/Λ, P̄1 = P1/Λ, P̄2 = P2/Λ,
r = M/Λ and using

u±1,2 =
(

κ± P̄1,2

)2 − 1 + iǫ , (40)

u3 = κ2 − 1 + iǫ , (41)

we get

K1,2 =
1

2MΛ3

∫

d2κTdκ
−dκ+

(2π)4
δ (κ+ − (X ∓ 1) p+)

G
(

u±1
)

G
(

u±2
)

G (u3)

×
{

A1,2

(

u±1
)n (

u±2
)4n (

u±3
)3n

+B1,2

(

u±1
)3n (

u±2
)2n (

u±3
)3n

+ C1,2

(

u±1
)3n (

u±2
)4n (

u±3
)n
}

, (42)

where G (u) = u4n+1 + u4n − r2. Polynomial G (u) can be alternatively

written in a factorized form G (u) =
∏4n+1

i=1 (u− zi) , where zi are roots of
equation G (u) = 0 and can be found numerically. Note, that if r = 0
(i.e. Λ → ∞) we have 4n degenerate solutions equal to zero and one equal
to −1. If Λ becomes finite the degeneracy is lifted and we have 4n + 1
solutions which in general are complex. Integration over dκ− has to be
done by the residue theorem, thus we have to find the poles in κ− complex
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plane. However, because of the imaginary part of zi
′s, the poles can cross

the standard integration contour. This may result in non-vanishing of the
TDAs in unphysical regions. To avoid this, the integration contour has
to be modified. Detailed discussion of these problems is given in [6] and
Appendix C. After performing the contour integrals we get:

K1,2 =
i

2Λ3p̄+

4n+1
∑

i,j,k=1

fifjfk

∫

d2κT

(2π)3

×
A1,2z

p1,2

i z
r1,2

j z
s1,2

k +B1,2z
a1,2

i z
b1,2

j z
c1,2

k + C1,2z
d1,2

i z
e1,2

j z
g1,2

k

(α1,2zi − zj + β1,2) (γ1,2zi − zk + ρ1,2)
, (43)

where

fi =
4n+1
∏

j 6=i

(zi − zj)
−1 . (44)

Here powers of zi-s (denoted by Latin characters), as well as the explicit
form of the functions α1,2, β1,2, γ1,2, ρ1,2 depend on the region of X (see
Appendix C). It should be pointed out that expressions denoted by Greek
characters contain second power of κT, while functions A1,2, B1,2, C1,2 are
of first order in κT. Therefore, the integration over d2κT = κTdκTdθT is
finite. Integral over dθT can be done analytically by integration over a unit
circle, while integral dκT can be performed numerically.

In the non-local model we cannot recover the required normalization (22)
for finite Λ. This can be understood as a consequence of the regularization
that does not respect axial anomaly. Therefore we impose the proper nor-
malization (22) by multiplying the VTDA by a suitable correction factor NV

as given in Table II.

TABLE II

Correction factors NV for VTDA for M = 225 and 350 MeV and different values
of n.

M n = 1 n = 2 n = 3 n = 5

225 MeV 1.151 1.148 1.147 1.146
350 MeV 1.487 1.490 1.490 1.491

Results for VTDA are shown in Figs. 2 and 3 for constituent masses
M = 350 and 225 MeV respectively. We observe that the ”non-local” curves
are less sharp than in the local case and that their shape depends slightly
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Fig. 2. Vector TDAs in the non-local model: (a) for n = 1 and ξ = 0.2 (dashed),

ξ = 0.5 (solid), ξ = 0.8 (dashed–doted); (b) for n = 1 and ξ = −0.2 (dashed),

ξ = −0.5 (solid), ξ = −0.8 (dashed–doted). Comparison of the local model: (c) for

ξ = 0.5 (dashed) with the non-local model for n = 1 (solid) and n = 5 (dashed–

doted); (d) for ξ = −0.5 (dashed) with the non-local model for n = 1 (solid) and

n = 5 (dashed–doted). All plots are made for constituent quark massM = 350 MeV

and t = −0.1 GeV2.

on n. Also the maxima are shifted from X = ±ξ, where they were placed in
the local case. The non-local model has the feature that VTDAs are no more
ξ-symmetric and for ξ < 0 it gives results that are more peaked than in the
local case and with the middle zero in a different position. The deviation
from the local model is stronger for larger constituent masses.

In the case of axial TDAs the algebraical steps are the same. The com-
plication is that after evaluating the trace we have to retain only terms
proportional to Pµ

2 (q · ε∗), since all other terms are structure independent
or gauge artifacts. General expression is similar to (43), but now functions
A, B, C contain also second power of κT. However, the integration over dκT

is finite because of the property:

4n+1
∑

i=1

zm
i fi =

{

0 if m < 4n

1 if m = 4n
(45)

(see again [6] and Appendix C).
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Fig. 3. Vector TDAs in the non-local model: (a) for n = 1 and ξ = 0.2 (dashed),

ξ = 0.5 (solid), ξ = 0.8 (dashed–doted); (b) for n = 1 and ξ = −0.2 (dashed),

ξ = −0.5 (solid), ξ = −0.8 (dashed–doted). Comparison of the local model: (c) for

ξ = 0.5 (dashed) with the non-local model for n = 1 (solid) and n = 5 (dashed–

doted); (d) for ξ = −0.5 (dashed) with the non-local model for n = 1 (solid) and

n = 5 (dashed–doted). All plots are made for constituent quark massM = 225 MeV

and t = −0.1 GeV2.

Numerical results for the ATDAs are shown in Figs. 4 and 5 for con-
stituent masses M = 350 and 225 MeV respectively. W see again that to a
good accuracy all models (local and fully non-local one for different n) give
the same results both for positive and for negative ξ (note, however, small
shift of the minima in the non-local case). All curves were normalized as in
the local case according to Eq. (23), multiplying the calculated distribution
by correction factors listed in Table III. Again the deviation from the local
model is stronger for larger constituent masses.

TABLE III

Correction factors NA for ATDA for M = 225 and 350 MeV and different values
of n.

M n = 1 n = 2 n = 3 n = 5

225 MeV 1.083 1.081 1.081 1.080
350 MeV 1.217 1.219 1.219 1.219
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Fig. 4. Axial TDAs in the non-local model: (a) for n = 1 and ξ = 0.2 (dashed),

ξ = 0.5 (solid), ξ = 0.8 (dashed–doted); (b) for n = 1 and ξ = −0.2 (dashed),

ξ = −0.5 (solid), ξ = −0.8 (dashed–doted). Comparison of the local model: (c) for

ξ = 0.5 (dashed) with the non-local model for n = 1 (solid) and n = 5 (dashed–

doted); (d) for ξ = −0.5 (dashed) with the non-local model for n = 1 (solid) and

n = 5 (dashed–doted). All plots are made for constituent quark massM = 350 MeV

and t = −0.1 GeV2.

We have checked numerically that TDAs in the non-local model satisfy
polynomiality condition for first three moments. However, contrary to the
local case, even moments of VTDA are nonzero.
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Fig. 5. Axial TDAs in the non-local model: (a) for n = 1 and ξ = 0.2 (dashed),

ξ = 0.5 (solid), ξ = 0.8 (dashed–doted); (b) for n = 1 and ξ = −0.2 (dashed–

doted), ξ = −0.5 (solid), ξ = −0.8 (dashed). Comparison of the local model:

(c) for ξ = 0.5 (dashed) with the non-local model for n = 1 (solid) and n = 5

(dashed–doted); (d) for ξ = −0.5 (dashed) with the non-local model for n = 1

(solid) and n = 5 (dashed–doted). All plots are made for constituent quark mass

M = 225 MeV and t = −0.1 GeV2.

6. Summary and discussion

In the present paper we have employed chiral quark model with momen-
tum dependent constituent quark mass to calculate pion-to-photon transi-
tion distribution amplitudes. Before we briefly summarize our results let
us discuss the main features of the model. We have chosen momentum
dependence in the simple form given in Eq. (8) which for Euclidean mo-
menta resembles M(p) obtained within the instanton model of the QCD
vacuum. This form of M(p) allows to perform all integrations directly in
the Minkowski space and has been previously applied to calculate pion [6]
and kaon [25] distribution amplitudes and two pion distributions as well as
generalized parton distribution of the pion [8]. The main technicality that
we wish to mention, consists in the proper choice of the integration contour
in the loop momentum k− which is discussed in Appendix C and can be also
found in Ref. [6].
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Proper choice of the integration contour guaranties that the TDAs are
real and have proper support in kinematical variables X and ξ defined in
Sect. 4 and satisfy polynomiality.

Throughout this paper we have used momentum dependent mass that
acts as an UV cutoff and, at the same time, as the quark form factor within
the pion. The latter is very important for making the pion DA vanish in
the endpoints [6, 9]. Indeed, similar calculation of the photon DA yields
distribution that is discontinuous in the endpoints [10] reflecting the point-
like nature of the quark–photon coupling.

Although we have used momentum dependent mass, we have not mod-
ified currents accordingly [18–27], and as a consequence our model violates
QCD Ward identities. This violation is however “mild” as it occurs at the
level qρ/2 where ρ is the mean instanton radius (5). Nevertheless violation of
the axial Ward identity results in the wrong normalization of the vector TDA
which is fixed by the axial anomaly. In order to get over this deficiency we
have simply corrected normalization of VTDA to the value obtained in the
local model which does satisfy axial Ward identity. The correction factors
(model results should be multiplied by NV or NA to obtain normalization
of Eqs. (22), (23)) are given in Tables II and III and may seem large. Lo-
cal limit can be obtained by pushing artificially Λ → ∞ in (8). Obviously
the same procedure applied to the pion DA would yield pion DA constant,
but with an infinite norm. In that case correction factor would be infinite
(modulo some regularization such as a transverse cutoff for example). On
this scale correction factors of the order of 1.5 are not excessively large.

Despite the fact that Ward identities are not satisfied our amplitudes are
gauge invariant, i.e. they vanish when contracted with photon momentum.

Normalization of axial TDAs is not fixed by the anomaly. However, in
order to compare them with local model we used correction factors fixing
normalization given by (23). This normalization overshoots experiment by
approximately a factor of 2. Such a large mismatch is common to local quark
models [5]. The correction procedure used in this paper to maintain normal-
izations (22) and (23) is to large extent arbitrary. Taking normalizations as
they come out (i.e. without correction factors NV,A) would shift the axial
transition form factor at t = 0 towards the experimental value. At the same
time VTDA would loose correct normalization. The latter, however, should
be attributed to the violation of the Ward identities in the present version
of the model and it is the violation of the axial anomaly which is responsible
for the wrong normalization in the vector case. Clearly, only a complete
calculation with the non-local currents might resolve this discrepancy.

Transition form factors are defined in Eq. (24). We show them in Fig. 6.
All calculations were performed for the constituent quark mass M = 350
and M = 225MeV. We find that in the case of the non-local model the
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transition form factor is more dumped than the one calculated in the local
version. However, for realistic constituent quark mass M = 350MeV it
still falls off much slower than the experimental curve parameterized by the
function [33]

F exp
πγ (t) =

Fπγ (0)

1 − t/M2
0

, (46)

where M0 = 776MeV. We could get good description of experimental data
for much lower values of constituent quark mass parameter M . This can be
easily understood from the approximate formula (31) where the slope reads

M2
0 = 12M2 →M = 225 MeV .

For that reason we have used M = 225 MeV for our calculations although
the reasonable values of the constituent masses that have been used in in
the literature — as explained in Sect. 1 — lie above 300 MeV.
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Fig. 6. Comparison of the transition form factors obtained in various versions of the

chiral quark model. Solid line represents experimental fit of Eq. (46). Dashed lines

correspond to local model, dashed–dotted lines to the non-local one with n = 1

(there is almost no n dependence). Two upper curves correspond to M = 350 MeV,

two lower ones to M = 225 MeV.

Our calculations were performed in the symmetric kinematics defined
in Sect. 4 and can be directly compared with Ref. [4]. There is qualitative
agreement between the local version of the present model and the one of
Ref. [4] (up to an overall sign of ξ for the axial case, see Ref. [34]). In
order to make comparison with [5] we have repeated their calculations in
our kinematics. The results are essentially identical to the local version
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of the present model, provided we take small constituent mass. This is
illustrated in Figs. 7 where we plot vector and axial TDAs for ξ = ±0.5 and
t = −0.3 GeV2 in SQM and local version of the present model for M = 225
and 350 MeV.
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Fig. 7. Comparison of vector (a) and axial (b), (c) TDAs obtained in the SQM

of Ref. [5] (solid) with the local version of the present model for M = 225 MeV

(dashed), M = 350 MeV (dashed–doted) and ξ = ±0.5 (a), 0.5 (b) and −0.5 (c).

Plots are made for t = −0.3 MeV.



144 P. Kotko, M. Praszałowicz

We see that the pion-to-photon transition amplitudes defined in Eqs. (14)
and (15) are quite robust. Basically their shapes do not depend on the
specific model and on the regularization used. Nevertheless some small dif-
ferences between local and non-local models can be observed. The most
prominent is the violation of the ξ-symmetry present in the local case for
the vector TDA which can be seen in Figs. 2 and 3. For negative ξ the
non-local model gives results that are more peaked than in the local case
and with the middle zero in a different position. On the other hand AT-
DAs are very close to the local case. One may be therefore confident that
the shape of the axial TDA is without doubts as shown in Figs. 4 and 5,
however normalization is not certain and should be perhaps adjusted to the
experimental value of the axial transition form factor.

From the point of view of QCD the quantities we calculate depend on
a nonperturbative scale Q0 which, however, must not be confused neither
with the constituent mass M nor with an auxiliary parameter Λ. For k2 < 0
the Ansatz (8) should imitate M(k) obtained from the instantons. And for
the latter, as explained in the Introduction, Q0 ∼ 2/ρ = 1200 MeV. It is
therefore natural to assume that Q0 is of the order of 1 GeV irrespectively
of M and Λ. The precise definition of Q0 is only possible within QCD
and in all effective models one can use only qualitative order of magnitude

arguments to estimate Q0. Discussion of this point can be found in Ref. [6].
Once the nonperturbative scale Q0 is fixed, our results should be evolved
to the hard scale characterizing given experimental setup by means of the
evolution equations discussed recently at length in Ref. [35]. This will be a
subject of a separate study.

M.P. is grateful to L. Szymanowski, W. Broniowski and E. Ruiz Arriola
for discussions. The paper was partially supported by the Polish–German
cooperation agreement between the Polish Academy of Sciences and DFG.

Appendix A

Transition distribution amplitudes in the local model

According to notation introduced in Sect. 5.1 we obtained the fol-
lowing expressions for VTDA (we quote results for positive ξ, due to the
ξ − symmetry)
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K1,2 =
−i

(4π)2 p+

{

θ (X + ξ) θ (ξ −X)
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2
√
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× ln
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∣
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∣

∣

∣
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, (A.1)

where A = (1 + ξ) t, C1,2 =
√

B1,2/A and

a1,2 =
1 ∓X

2 (1 + ξ)
, (A.2)

b1,2 =
ξ2 ∓X

2ξ (1 + ξ)
, (A.3)

B1,2 =
(X ∓ 1)2 t2

4A
− (1 − ξ)M2 . (A.4)

We remind that upper signs refer to subscript “1”. For ATDA we have
for positive ξ

J1,2 (ξ > 0) =
±iq · ε

(4π)2 p+
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∣
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and for negative ξ

J1,2 (ξ < 0) =
±iq · ε

(4π)2 p+
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We introduced above

D1 =
X − 1

1 + ξ
, D2 = −X + 1

1 + ξ
. (A.7)

All the remaining notation is the same as in the VTDA case.

Appendix B

Transition form factor in the local model

We obtain the following expression for the pion–photon transition form
factor

Fπγ (t) =
M2

2π2Fπ

1

t

[

Li2

(

1

α+

)

+ Li2

(

1

α−

)]

, (B.1)

where

α± =
1

2

(

1 ±
√

1 − 4M2

t

)

(B.2)

and Li2 (x) is the dilogarithm function, defined as Li2 (x) = −
∫ x

0
ln(1−t)

t
dt.

Appendix C

TDAs in non-local model

In Fig. 8 integration contour on the κ− complex plane is schematically
shown. As explained in more detail in main text, contour is chosen in such
a way that poles form each group cannot cross it.

Im k
-

Re k
-

r¹0

Fig. 8. Integration contour on the κ− complex plane for r = M/Λ 6= 0. When

r → 0 the poles from each group merge into one pole and contour becomes standard

semicircle.
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In the case of VTDA we have the following general formula for the inte-
grals (38)

K1,2 =
i

2Λ3p̄+

4n+1
∑

i,j,k=1

fifjfk

∫

d2κT

(2π)3
ǫ1,2

×
A1,2z

p1,2

i z
r1,2

j z
s1,2

k +B1,2z
a1,2

i z
b1,2

j z
c1,2

k + C1,2z
d1,2

i z
e1,2

j z
g1,2

k

(α1,2zi − zj + β1,2) (γ1,2zi − zk + ρ1,2)
.(C.1)

First consider ξ > 0 case. For A1,2, B1,2, C1,2 we have the following
expressions:

A1,2 = ∓1

2
(X ∓ 1) ∓ Λ

2 ~κT · ~qT
(1 + ξ) t

, (C.2)

B1,2 = ±1

2
(X ∓ 1) ∓ Λ

2 ~κT · ~qT
(1 − ξ) t

, (C.3)

C1,2 = 1 ± 2Λ2 ~κT · ~qT
(1 − ξ2) t

. (C.4)

The explicit form of α1,2, β1,2, γ1,2, ρ1,2 and ǫ1,2 depends on the region
of the support under consideration. We introduce

u1,2
a = ±(X ∓ 1) (1 − ξ) t

4Λ2p̄+ (X ± ξ)
+
κ2

T ∓ ~κT · ~̄qT + 1

p̄+ (X ± ξ)
, (C.5)

u1,2
b = ±(X ∓ 1) (1 + ξ) t

4Λ2p̄+ (X ∓ ξ)
+
κ2

T ± ~κT · ~̄qT + 1

p̄+ (X ∓ ξ)
, (C.6)

u1,2
c =

κ2
T + 1

p̄+ (X ∓ 1)
. (C.7)

In every region we have:

• −1 ≤ X < −ξ

ǫ1 = 0, ǫ2 = − 1

X + 1
, (C.8)

α2 =
X + ξ

X + 1
, γ2 =

X − ξ

X + 1
, (C.9)

β2 = p̄+ (X + ξ)
(

u2
c − u2

b

)

, (C.10)

ρ2 = p̄+ (X − ξ)
(

u2
c − u2

a

)

. (C.11)



148 P. Kotko, M. Praszałowicz

• −ξ ≤ X < ξ

ǫ1,2 = ∓ 1

X ± ξ
, (C.12)

α1,2 =
X ∓ ξ

X ± ξ
, γ1,2 =

X ∓ 1

X ± ξ
, (C.13)

β1,2 = p̄+ (X ∓ ξ)
(

u1,2
a − u1,2

b

)

, (C.14)

ρ1,2 = p̄+ (X ∓ 1)
(

u1,2
a − u1,2

c

)

. (C.15)

• ξ ≤ X ≤ 1

ǫ1 =
1

X − 1
, ǫ2 = 0 , (C.16)

α1 =
X − ξ

X − 1
, γ1 =

X + ξ

X − 1
, (C.17)

β1 = p̄+ (X − ξ)
(

u1
c − u1

b

)

, (C.18)

ρ1 = p̄+ (X + ξ)
(

u1
c − u1

a

)

. (C.19)

Powers of zi-s in the numerator can also be different in each interval.
They read

• −1 ≤ X < −ξ and ξ ≤ X ≤ 1

p1,2 = 3n, r1,2 = 4n, s1,2 = n , (C.20)

a1,2 = 3n, b1,2 = 2n, c1,2 = 3n , (C.21)

d1,2 = n, e1,2 = 4n, g1,2 = 3n . (C.22)

• −ξ ≤ X < ξ

p1 = n, r1 = 3n , s1 = 4n , (C.23)

a1 = 3n, b1 = 2n, c1 = 3n , (C.24)

d1 = 3n, e1 = n, g1 = 4n , (C.25)

p2 = n, r2 = 4n, s2 = 3n , (C.26)

a2 = 3n, b2 = 2n, c2 = 3n , (C.27)

d2 = 3n, e2 = 4n, g2 = n . (C.28)
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For negative ξ we have to change from Eqs. (C.8)–(C.19) only Eqs. (C.12)–
(C.15). Appropriate expressions read

ǫ1,2 = ∓ 1

X ∓ ξ
, (C.29)

α1,2 =
X ± ξ

X ∓ ξ
, γ1,2 =

X ∓ 1

X ∓ ξ
, (C.30)

β1,2 = p̄+ (X ± ξ)
(

u1,2
b − u1,2

a

)

, (C.31)

ρ1,2 = p̄+ (X ∓ 1)
(

u1,2
b − u1,2

c

)

. (C.32)

Also Eqs. (C.23)–(C.28) have to be replaced by

p1,2 = 4n, r1,2 = n, s1,2 = 3n , (C.33)

a1,2 = 2n, b1,2 = 3n, c1,2 = 3n , (C.34)

d1,2 = 4n, e1,2 = 3n, g1,2 = n . (C.35)

In the case of ATDA the general formula for J1,2 is the same as for
VTDA, but now we have different expressions for A1,2, B1,2, C1,2. They are

A1,2 = g∓ ± 2v∓ , (C.36)

B1,2 = −f∓ − g∓ , (C.37)

C1,2 = −2g∓ ∓ 2v∓ + f∓ ± 1 , (C.38)

where

f± = ±1 +X − 2ξΛ2~κT · ~qT
(1 − ξ2) t

, (C.39)

g± = −1

2
(X ± 1) − Λ

2~κT · ~qT
(1 + ξ) t

(C.40)

v± =
1

2 (1 − ξ) (ξ + 1)2 t2

{

8ξ (Λ~κT · ~qT)2

+2Λ
(

2ξ2 + ξ − 1
)

t (X ± 1)~κT · ~qT

+
(

ξ2 − 1
)

t
(

(ξ + 1) (X ± 1)2 t− 4Λξκ2
T

)

}

. (C.41)

Powers of zi-s are the same as in the vector case.
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