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A mean field calculation is carried out to obtain the equation of state
(EoS) of nuclear matter from a density dependent M3Y interaction
(DDM3Y). The constants of density dependence of the effective interac-
tion are obtained by reproducing the saturation energy per nucleon and
the saturation density of the symmetric nuclear matter (SNM). In this
work, the energy variation of the exchange potential is treated properly
in the negative energy domain of nuclear matter in contrast to an earlier
work where it was assumed to vary negligibly inside nuclear fluid. The EoS
of SNM, thus obtained, is not only free from the superluminosity problem
but also provides good estimate of nuclear incompressibility. The DDM3Y,
whose density dependence is determined from nuclear matter calculation,
provides excellent description for proton radioactivity.

PACS numbers: 21.65.–f, 23.50.+z, 21.30.Fe, 21.65.Mn

1. Introduction

High baryonic density behaviour of nuclear matter has recently received
new impetus with the new accelerator facility (FAIR) coming up at GSI
Darmstadt. The stiffness of a nuclear EoS is characterised by nuclear in-
compressibility [1] which can be extracted experimentally. Nuclear incom-
pressibility [2,3] also determines the velocity of sound in nuclear medium for
predictions of shock wave generation and propagation. The EoS is of funda-
mental importance in the theories of nucleus–nucleus collisions at energies
where the nuclear incompressibility K0 comes into play as well as in the
theories of supernova explosions [4]. A widely used experimental method is
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the determination of the nuclear incompressibility from the observed giant
monopole resonances (GMR) [5, 6]. Other recent experimental determina-
tions are based upon the production of hard photons in heavy ion colli-
sions [7] and from isoscalar giant dipole resonances (ISGDR) [8–10]. From
the experimental data of isoscalar giant monopole resonance (ISGMR) con-
clusion can be drawn that K0 ≈ 240 ± 20MeV [11]. The general theoretical
observation is that the non-relativistic [12] and the relativistic [13] mean
field models [14] predict for the bulk incompressibility for the SNM, K0, val-
ues which are significantly different from one another, viz. ≈ 220–235MeV
and ≈ 250–270MeV, respectively. Theoretical EoS for the SNM that predict
higher K0 values ≈ 300MeV are often called “stiff” EoS whereas those EoS
which predict smaller K0 values ≈ 200MeV are termed as “soft” EoS.

In the present work, we show that the theoretical description of nu-
clear matter using the density dependent M3Y-Reid–Elliott effective inter-
action [15,16] gives a value of nuclear incompressibility which is in excellent
agreement with values extracted from experiments. The velocity of sound
does not become superluminous since the energy dependence is treated prop-
erly for the negative energy domain of nuclear matter. The microscopic
proton–nucleus interaction potential is obtained by folding the density of
the nucleus with DDM3Y effective interaction whose density dependence is
determined completely from the nuclear matter calculations. The quantum
mechanical tunneling probability is calculated within the WKB framework
using these nuclear potentials. These calculations provide reasonable esti-
mates for the observed proton radioactivity lifetimes.

2. The nuclear equation of state for symmetric nuclear matter

In the present work, density dependence of the effective interaction,
DDM3Y, is completely determined from nuclear matter calculations. The
equilibrium density of the nuclear matter is determined by minimizing the
energy per nucleon. In contrast to our earlier calculations for the nuclear
EoS where the energy dependence of the zero range potential was treated as
fixed at a value corresponding to the equilibrium energy per nucleon ǫ0 [17]
and assumed to vary negligibly with ǫ inside nuclear fluid, in the present
calculations the energy variation of the zero range potential is treated more
accurately by allowing it to vary freely but only with the kinetic energy
part ǫkin of the energy per nucleon ǫ over the entire range of ǫ. This is not
only more plausible, but also yields excellent result for the incompressibility
K0 of the SNM which no more suffers from the superluminosity problem
associated with non-relativistic EoS [1–3,12, 14, 17].

The constants of density dependence are determined by reproducing the
saturation conditions. It is worthwhile to mention here that due to attrac-
tive character of the M3Y forces the saturation condition for cold nuclear
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matter is not fulfilled. However, the realistic description of nuclear matter
properties can be obtained with this density dependent M3Y effective inter-
action. Therefore, the constants of density dependence have been obtained
by reproducing the saturation energy per nucleon and the saturation nucle-
onic density of the cold SNM. Based on the Hartree or mean field assumption
and using the DDM3Y interaction, the expression for the energy per nucleon
for symmetric nuclear matter ǫ is given by

ǫ =

[

3~
2k2

F

10m

]

+

[

ρJv00C(1 − βρn)

2

]

, (1)

where Fermi momentum kF = (1.5π2ρ)
1

3 , m is the nucleonic mass equal to
938.91897MeV/c2 and Jv00 represents the volume integral of the isoscalar
part of the M3Y interaction supplemented by the zero-range potential having
the form

Jv00 = Jv00(ǫ
kin) =

∫ ∫ ∫

tM3Y
00 (s, ǫ)d3s

= 7999
4π

43
− 2134

4π

2.53
+ J00(1 − αǫkin) [MeV fm3] , (2)

where J00 = −276 [MeV fm3] and ǫkin = 3~
2k2

F/(10m) is the kinetic energy
part of the energy per nucleon ǫ given by Eq. (1).

The isoscalar tM3Y
00 and the isovector tM3Y

01 components of M3Y interac-
tion potentials [16] supplemented by zero range potentials are given by

tM3Y
00 (s, ǫ) = 7999 exp(−4s)

4s −2134 exp(−2.5s)
2.5s −276(1−αǫ)δ(s) and tM3Y

01 (s, ǫ) =

−4886 exp(−4s)
4s +1176 exp(−2.5s)

2.5s +228(1−αǫ)δ(s), respectively, where the en-
ergy dependence parameter α = 0.005/MeV. The DDM3Y effective NN
interaction is given by v0i(s, ρ, ǫ) = tM3Y

0i (s, ǫ)g(ρ) where the density depen-
dence g(ρ) = C(1− βρn) and the constants C and β of density dependence
have been obtained from the saturation condition ∂ǫ

∂ρ = 0 at ρ = ρ0 and

ǫ = ǫ0 where ρ0 and ǫ0 are the saturation density and the saturation energy
per nucleon, respectively. Eq. (1) can be differentiated with respect to ρ to
yield equation

∂ǫ

∂ρ
=

[

~
2k2

F

5mρ

]

+
Jv00C

2
[1 − (n + 1)βρn] − αJ00C[1 − βρn]

[

~
2k2

F

10m

]

. (3)

The equilibrium density of the cold SNM is determined from the saturation
condition. Then Eq. (1) and Eq. (3) with the saturation condition ∂ǫ

∂ρ = 0

can be solved simultaneously for fixed values of the saturation energy per
nucleon ǫ0 and the saturation density ρ0 of the cold SNM to obtain the values
of β and C. The constants of density dependence β and C, thus obtained,
are given by
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β =

[

(1 − p) +
(

q − 3q
p

)]

ρ−n
0

[(

3n + 1) − (n + 1)p + (q − 3q
p

)] , (4)

where p = [10mǫ0]/[~
2k2

F0
], q = 2αǫ0J00/J

0
v00 with J0

v00 = Jv00(ǫ
kin
0 ) which

means Jv00 at ǫkin = ǫkin
0 , the kinetic energy part of the saturation energy

per nucleon of SNM, kF0
= [1.5π2ρ0]

1/3 and

C = −
[2~

2k2
F0

]

5mJ0
v00ρ0

[

1 − (n + 1)βρn
0 −

q~2k2

F0
(1−βρn

0
)

10mǫ0

] , (5)

respectively. It is quite obvious that the constants of density dependence C
and β obtained by this method depend on the saturation energy per nucleon
ǫ0, the saturation density ρ0, the index n of the density dependent part and
on the strengths of the M3Y interaction through the volume integral J0

v00.

3. The incompressibility of symmetric nuclear matter

The incompressibility or the compression modulus of symmetric nuclear
matter, which is a measure of the curvature of an EoS at saturation density

and defined as k2
F

∂2ǫ
∂k2

F

|kF=kF0
, measures the stiffness of an EoS. The ∂2ǫ

∂ρ2 is

given by

∂2ǫ

∂ρ2
=

[

−
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2k2
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[
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2

]

−αJ00C[1 − (n + 1)βρn]
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2k2

F
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]
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[

αJ00C(1 − βρn)~2k2
F
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(6)

and therefore the incompressibility of the cold SNM can be theoretically
obtained as

K0 =k2
F

∂2ǫ

∂k2
F

∣

∣

∣

∣

∣
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0 )~2k2
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10m
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. (7)

The calculations are performed using the values of the saturation density
ρ0 =0.1533 fm−3 [2] and the saturation energy per nucleon ǫ0 =−15.26MeV
[18] for the SNM obtained from the co-efficient of the volume term of Bethe–
Weizsäcker mass formula [19, 20] which is evaluated by fitting the recent
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experimental and estimated atomic mass excesses from Audi–Wapstra–Thi-
bault atomic mass table [21] by minimizing the mean square deviation incor-
porating correction for the electronic binding energy [22]. In a similar recent
work, including surface symmetry energy term, Wigner term, shell correc-
tion and proton form factor correction to Coulomb energy also, av turns out
to be 15.4496MeV [23] (av = 14.8497MeV when A0 and A1/3 terms are also
included). Using the usual values of α = 0.005MeV−1 for the parameter of
energy dependence of the zero range potential and n = 2/3, the values ob-
tained for the constants of density dependence C and β and the SNM incom-
pressibility K0 are 2.2497, 1.5934 fm2 and 274.7MeV, respectively. The sat-
uration energy per nucleon is the volume energy coefficient and the value of
−15.26±0.52MeV covers, more or less, the entire range of values obtained for
av for which now the values of C = 2.2497±0.0420, β = 1.5934±0.0085 fm2

and the SNM incompressibility K0 = 274.7 ± 7.4MeV.

The theoretical estimate K0 of the incompressibility of infinite SNM
obtained from present approach using DDM3Y is about 270MeV. The the-
oretical estimate of K0 from the refractive α–nucleus scattering is about
240–270MeV [24, 25] and that by infinite nuclear matter model (INM) [26]
claims a well defined and stable value of K0 = 288 ± 20MeV and present
theoretical estimate is in reasonably close agreement with the value obtained
by INM which rules out any values lower than 200MeV. Present estimate for
the incompressibility K0 of the infinite SNM is in good agreement with the
experimental value of K0 = 300±25MeV obtained from the giant monopole
resonance (GMR) [5] and with the recent experimental determination of K0

based upon the production of hard photons in heavy ion collisions which
led to the experimental estimate of K0 = 290 ± 50MeV [7]. However, the
experimental values of K0 extracted from the isoscalar giant dipole reso-
nance (ISGDR) are claimed to be smaller [10]. The present non-relativistic
mean field model estimate for the nuclear incompressibility K0 for SNM us-
ing DDM3Y interaction is rather close to the theoretical estimates obtained
using relativistic mean field models and close to the lower limit of the older
experimental values [5] and close to the upper limit of the recent values [6]
extracted from experiments.

Considering the status of experimental determination of the SNM in-
compressibility from data on the compression modes ISGMR and ISGDR
of nuclei it can be inferred [11] that due to violations of self consistency
in HF–RPA calculations of the strength functions of giant resonances re-
sult in shifts in the calculated values of the centroid energies which may be
larger in magnitude than the current experimental uncertainties. In fact,
the prediction of K0 lying in the range of 210–220MeV was due to the use of
a not fully self-consistent Skyrme calculations [11]. Correcting for this draw-
back, Skyrme parmetrizations of SLy4 type predict K0 values in the range
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of 230–240MeV [11]. Moreover, it is possible to build bona fide Skyrme
forces so that the SNM incompressibility is close to the relativistic value,
namely 250–270MeV. Therefore, from the ISGMR experimental data the
conclusion can be drawn that K0 ≈ 240 ± 20MeV. The ISGDR data tend
to point to lower values [8–10] for K0. However, there is consensus that
the extraction of K0 is in this case more problematic for various reasons. In
particular, the maximum cross-section for ISGDR decreases very strongly at
high excitation energy and may drop below the current experimental sensi-
tivity for excitation energies [11] above 30 and 26MeV for 116Sn and 208Pb,
respectively. The present value of 274.7 ± 7.4MeV for the incompressibility
K0 of SNM obtained using DDM3Y interaction is, therefore, an excellent
theoretical result.

The constant of density dependence β = 1.5934 ± 0.0085 fm2, which has
the dimension of cross-section for n = 2/3, can be interpreted as the isospin
averaged effective nucleon–nucleon interaction cross-section in ground state
symmetric nuclear medium. For a nucleon in ground state nuclear matter
kF ≈ 1.3 fm−1 and q0 ∼ ~kFc ≈ 260MeV and the present result for the “in
medium” effective cross-section is reasonably close to the value obtained from
a rigorous Dirac–Brueckner–Hartree–Fock [27] calculations corresponding to
these kF and q0 values, which is ≈ 12mb. Using the value of the constant
of density dependence β = 1.5934 ± 0.0085 fm2 corresponding to the stan-
dard value of the parameter n = 2/3 along with the nucleonic density of
0.1533 fm−3, the value obtained for the nuclear mean free path λ is about
4 fm which is in excellent agreement [28] with that obtained using another
method.

4. Proton radioactivity lifetimes using effective interaction

whose density dependence is determined from nuclear matter

calculation

Microscopic proton–nucleus interaction potentials VN(R) are obtained
by single folding the density of the nucleus with M3Y effective interaction
supplemented by a zero-range potential for exchange along with the density
dependence:

VN(R) =

∫

ρ(~r)v00[|~r − ~R|] d3r , (8)

where ~R and ~r are, respectively, the co-ordinates of the emitted proton and
a nucleon belonging to the residual daughter nucleus with respect to its
centre. The density distribution function ρ used for the daughter nucleus,
has been chosen to be of the spherically symmetric form given by

ρ(r) = ρ0/[1 + exp((r − c)/a)] , (9)
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where c = rρ(1−π2a2/3r2
ρ), rρ = 1.13A

1/3
d , a = 0.54 fm and the value of ρ0 is

fixed by equating the volume integral of the density distribution function to
the mass number Ad of the residual daughter nucleus. The distance between
a nucleon belonging to the residual daughter nucleus and the emitted proton
is s = |~r− ~R| while the interaction potential between any such two nucleons
v00(s) appearing in Eq. (8) is given by the DDM3Y effective interaction.
The total interaction energy between the proton and the residual daughter
nucleus E(R) = VN(R)+VC(R)+~

2l(l+1)/(2µR2), the sum of the nuclear in-
teraction energy, the Coulomb interaction energy and the centrifugal barrier.
Here µ = MpMd/MA is the reduced mass, Mp, Md and MA are the masses
of the proton, the daughter nucleus and the parent nucleus, respectively, all
measured in the units of MeV/c2. Assuming spherical charge distribution
for the residual daughter nucleus, the proton–nucleus Coulomb interaction
potential VC(R)=(Zde2/2Rc)[3 − (R/Rc)

2] for R ≤ Rc, = Zde2/R other-
wise, where Zd is the atomic number of the daughter nucleus. The touching
radial separation Rc between the proton and the daughter nucleus is given
by Rc = cp + cd where cp and cd have been obtained using expression for c
provided after Eq. (9). The energetics allow spontaneous emission of protons
only if the released energy Q = [MA − (Mp + Md)]c2 is a positive quantity.

In the present work, the half life of the parent nucleus decaying via
proton emission is calculated using the WKB barrier penetration probability.
The assault frequency ν is obtained from the zero point vibration energy
Ev = 1

2~ω = 1
2hν. The decay half life T of the parent nucleus (A,Z) into

a proton and a daughter (Ad, Zd) is given by

T = [(h ln 2)/(2Ev)][1 + exp(K)] , (10)

where the action integral K within the WKB approximation is given by

K = (2/~)
∫ Rb

Ra
[2µ(E(R) − Ev − Q)]1/2dR where Ra and Rb are its 2nd and

3rd turning points determined from the equations E(Ra) = Q+Ev = E(Rb).
The isovector or the symmetry component of the DDM3Y folded potential
V Lane

N (R) [29] has been added to the isoscalar part of the folded potential
whose results have already been presented in Table I. The nuclear potential
VN(R) of Eq. (8), therefore, has been replaced by VN(R)+V Lane

N (R) [30] where

V Lane
N (R)=

∫ ∫

[ρ1n(~r1)−ρ1p(~r1)][ρ2n(~r2)−ρ2p(~r2)]v01[|~r2− ~r1+ ~R|]d3r1d
3r2 ,

(11)
where the subscripts 1 and 2 denote the daughter and the emitted nuclei, re-
spectively, while the subscripts n and p denote neutron and proton densities,

respectively. With simple assumption that ρ1p=[Zd

Ad
]ρ and ρ1n=[ (Ad−Zd)

Ad
]ρ,

and for the emitted particle being proton ρ2n(~r2)−ρ2p(~r2)=−ρ2(~r2)=−δ(~r2),
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TABLE I

Comparison between experimentally measured and theoretically calculated half
lives of spherical proton emitters. The experimental Q values, half lives and l
values are from Ref. [35]. The results of the present calculations using the isoscalar
and isovector components of DDM3Y folded potentials are compared with the
experimental values. Experimental errors in Q values [35] and corresponding errors
in calculated half lives are inside parentheses.

Parent l Q 1st tpt 2nd tpt 3rd tpt Exp. this work
AZ ~ MeV R1[fm] Ra[fm] Rb[fm] log10 T (s) log10 T (s)
105Sb 2 0.491(15) 1.43 6.69 134.30 2.049+0.058

−0.067 1.90(45)
109I 2 0.829(3) 1.42 6.78 83.29 −3.987+0.020

−0.022 −4.31(5)
112Cs 2 0.824(7) 1.44 6.81 88.61 −3.301+0.079

−0.097 −3.21(11)
113Cs 2 0.978(3) 1.44 6.84 73.45 −4.777+0.018

−0.019 −5.61(4)
145Tm 5 1.753(10) 3.20 6.63 56.27 −5.409+0.109

−0.146 −5.28(7)
147Tm 5 1.071(3) 3.18 6.63 88.65 0.591+0.125

−0.175 0.83(4)
147Tm∗ 2 1.139(5) 1.44 7.28 78.97 −3.444+0.046

−0.051 −3.46(6)
150Lu 5 1.283(4) 3.21 6.67 78.23 −1.180+0.055

−0.064 −0.74(4)
150Lu∗ 2 1.317(15) 1.45 7.33 71.79 −4.523+0.620

−0.301 −4.46(15)
151Lu 5 1.255(3) 3.21 6.69 78.41 −0.896+0.011

−0.012 −0.82(4)
151Lu∗ 2 1.332(10) 1.46 7.35 69.63 −4.796+0.026

−0.027 −4.96(10)
155Ta 5 1.791(10) 3.21 6.78 57.83 −4.921+0.125

−0.125 −4.80(7)
156Ta 2 1.028(5) 1.47 7.37 94.18 −0.620+0.082

−0.101 −0.47(8)
156Ta∗ 5 1.130(8) 3.21 6.76 90.30 0.949+0.100

−0.129 1.50(10)
157Ta 0 0.947(7) 0.00 7.55 98.95 −0.523+0.135

−0.198 −0.51(12)
160Re 2 1.284(6) 1.45 7.43 77.67 −3.046+0.075

−0.056 −3.08(7)
161Re 0 1.214(6) 0.00 7.62 79.33 −3.432+0.045

−0.049 −3.53(7)
161Re∗ 5 1.338(7) 3.22 6.84 77.47 −0.488+0.056

−0.065 −0.75(8)
164Ir 5 1.844(9) 3.20 6.91 59.97 −3.959+0.190

−0.139 −4.08(6)
165Ir∗ 5 1.733(7) 3.21 6.93 62.35 −3.469+0.082

−0.100 −3.67(5)
166Ir 2 1.168(8) 1.47 7.49 87.51 −0.824+0.166

−0.273 −1.19(10)
166Ir∗ 5 1.340(8) 3.22 6.91 80.67 −0.076+0.125

−0.176 0.06(9)
167Ir 0 1.086(6) 0.00 7.68 91.08 −0.959+0.024

−0.025 −1.35(8)
167Ir∗ 5 1.261(7) 3.22 6.92 83.82 0.875+0.098

−0.127 0.54(8)
171Au 0 1.469(17) 0.00 7.74 69.09 −4.770+0.185

−0.151 −5.10(16)
171Au∗ 5 1.718(6) 3.21 7.01 64.25 −2.654+0.054

−0.060 −3.19(5)
177Tl 0 1.180(20) 0.00 7.76 88.25 −1.174+0.191

−0.349 −1.44(26)
177Tl∗ 5 1.986(10) 3.22 7.10 57.43 −3.347+0.095

−0.122 −4.64(6)
185Bi 0 1.624(16) 0.00 7.91 65.71 −4.229+0.068

−0.081 −5.53(14)

(*) in the experimental Q values denotes the isomeric state.
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the Lane potential becomes V Lane
N (R) = −[ (Ad−2Zd)

Ad
]
∫

ρ(~r)v01 [|~r − ~R|]d3r

where v01(s) = tM3Y
01 (s, ǫ)g(ρ) with the isovector part tM3Y

01 = −[4886e−4s

4s −

1176e−2.5s

2.5s ] + 228(1− 0.005Qm/µ) δ(s). The inclusion of this Lane potential
causes insignificant changes in the lifetimes.

Thus half lives of the decays of spherical nuclei away from proton drip
line by proton emissions are estimated theoretically. The half life of a parent
nucleus decaying via proton emission is calculated using the WKB barrier
penetration probability. The WKB method is found to be quite satisfactory
for the α decay half life calculations of heavy [31] and superheavy elements
[32] and somewhat better than the S-matrix method [33]. For the present
calculations, the zero point vibration energies used here are given by Eq. (5)
of Ref. [34] extended to protons and the experimental Q values [35] are used.
Present calculations for half lives have been performed using C = 2.2497 and
β = 1.5934 fm2 obtained here from the nuclear matter calculations assuming
kinetic energy dependence of zero range potential and presented in Table I.
The agreement of the present calculations with a wide range of experimental
data for the proton radioactivity lifetimes is reasonable.

5. Summary and conclusion

A mean field calculation is carried out to obtain the equation of state of
nuclear matter from a DDM3Y interaction. The microscopic proton–nucleus
potential is obtained by folding the DDM3Y effective interaction with the
density of interacting nucleus. The energy per nucleon is minimized to ob-
tain ground state of the symmetric nuclear matter. The constants of density
dependence of the effective interaction are obtained by reproducing the sat-
uration energy per nucleon and the saturation density of SNM. In this work
the energy variation of the exchange potential is treated properly in the
negative energy domain of nuclear matter. The EoS of SNM, thus obtained,
is free from the superluminosity problem encountered in some previous pre-
scriptions. Moreover, the result of the present calculation for the compres-
sion modulus for the infinite symmetric nuclear matter is in better agreement
with that extracted from experiments. The results of the present calculations
using single folded microscopic potentials for the proton-radioactivity life-
times are in good agreement over a wide range of experimental data. With
the energies and interaction rates foreseen at FAIR, the compressed bary-
onic matter will create highest baryon densities in nucleus–nucleus collisions
to explore the properties of superdense baryonic matter and the in-medium
modifications of hadrons.

A.B. acknowledges the summer research fellowship provided jointly by
IAS, INSA and NASI.
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