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We propose wormholes solutions by assuming space dependent equa-
tion of state parameter. Our models show that the existence of wormholes
is supported by phantom energy. Here, the phantom energy is character-
ized by variable equation state parameter. We show that the averaged
null energy condition (ANEC) violating phantom energy can be reduced as
desired.

PACS numbers: 04.20.Gz, 04.50.+h, 04.20.Jb

1. Introduction

A Wormhole is a ‘tunnel’ through curved space-time, connecting two
widely separated regions of our Universe or even of different universe. In
a pioneer work, Morris and Thorne [1] observed, to hold a wormhole open,
one has usually used an exotic matter, which violates the well known energy
conditions. The exotic matter is a hypothetical form of matter that violates
the weak or null energy conditions. In last few years, exotic matter has been
becoming an active area of research in wormhole physics [2]. Since all known
matters obey the null energy condition, Tµνkµkν > 0, where Tµν is the energy
stress tensor and kµ any null vector, several authors [3] have considered
scalar tensor theories to build wormhole-like space-time with the presence
of ordinary matter in which scalar field may play the role of exotic matter.
In an interesting paper, Vollick has shown how to produce exotic matter
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using scalar field [4]. Recent astrophysical observations indicated that the
Universe at present is accelerating. There are different ways of evading this
unexpected behavior. Most of these attempts focus on Alternative gravity
theories or the supposition of existence of a hypothetical dark energy with
a positive energy density and a negative pressure [5].

The matter with the property, energy density, ρ > 0 but pressure
p < −ρ < 0 is known as Phantom Energy. The idea of phantom was
proposed by Caldwell [6] to describe acceleration state of the Universe. As
phantom energy violates the null energy condition what is needed to sup-
port traversable wormholes. So phantom energy may play a possible role for
constructing wormhole-like space-time.

Several authors have recently discussed the physical properties and char-
acteristics of traversable wormholes by taking Phantom Energy as source [7].
Recent observational analysis involving X-ray luminosity of galaxy clusters
and SNe type Ia data suggests that we live in a flat Universe and its present
acceleration stage is driven by a dark energy component whose equation of
state may evolve in time [8]. Several authors have studied cosmological mod-
els assuming variable equation of state parameter [9]. Since in the literature
of wormhole physics, this dark energy component is known as phantom en-
ergy, in this article, we propose wormhole solutions supported by phantom
energy where equation of state parameter is a function of radial coordinate
rather than a constant. The present work falls into two categories. In the
first one, we provide phantom energy matter sources that produce wormhole-
like geometry. In this category, we discuss two toy models. In the second one,
we are trying to search phantom energy matter sources that produce some
specified wormhole-like structures. In this category, we provide two specific
toy models of wormholes. In all cases, we have established a matching of
each interior wormhole metric with an exterior Schwarzschild metric.

The layout of the paper is as follows: In the second section, we shall
present the model of our system. In Section 3, we shall provide four toy
models of the wormholes. Section 4 is devoted to a brief summary and
discussion.

2. The models and the basic equations

We consider the model, which is characterized by the exotic equation of
state,

p

ρ
= −w(r) , (1)

where w(r) is a positive function of radial coordinate.



Wormholes with Varying Equation of State Parameter 27

A static spherically symmetric Lorentzian wormhole can be described
by a manifold R2XS2 endowed with the general metric in Schwarzschild
co-ordinates (t, r, θ, φ) as

ds2 = −e2f(r)dt2 +
1

[

1 − b(r)
r

]dr2 + r2dΩ2
2 , (2)

where, rǫ(−∞,+∞).
To describe a wormhole, the redshift function f(r) should be finite and

the shape function obeys the following properties

b(r0) = r0 , (3)

where r0 is the throat of the wormhole.

b′(r0) < 1 , (4)

b(r) < r , r > r0 . (5)

Also the space-time is asymptotically flat i.e.
b(r)
r → 0 as | r |→ ∞.

According to Morris and Thorne [1], we assume f = constant, to make
the problem simpler. This assumption implies that a traveller feels a zero
tidal force. This supposition would help for an advanced engineer to con-
struct a traversable passage.

Using the Einstein field equations Gµν = 8πTµν , in orthonormal reference
frame (with c = G = 1) , we obtain the following stress energy scenario,

ρ(r) =
b′

8πr2
, (6)

p(r) =
1

8π

[

− b

r3

]

, (7)

ptr(r) =
1

8π

(

1 − b

r

)[

(−b ′r + b)

2r2(r − b)

]

, (8)

where ρ(r) is the energy density, p(r) is the radial pressure and ptr(r) is the
transverse pressure.

Using the conservation of stress energy tensor T
µν
;ν = 0, one can obtain

the following equation

p′ +
2

r
p − 2

r
ptr = 0 . (9)

Now from equation (1), by using (6) and (7), one gets,

p

ρ
= −w(r) = − b

rb′
. (10)
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3. Toy models of wormholes

Now, we will discuss several toy models of wormholes:

Specialization 1: w(r) = w(constant).
Now consider the special case, w(r) = w(constant), then equation (10)

yields,
b = b0r

1/w (11)

[b0 is an integration constant].
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Fig. 1. Diagram of the shape function of the wormhole.

Since the space-time is asymptotically flat i.e.
b(r)
r → 0 as | r |→ ∞,

then the equation (11) is consistent only when w > 1.
The throat of the wormhole occurs at

r = r0 = b
w/(w−1)
0 . (12)

Now we match the interior wormhole metric to the exterior Schwarzschild
metric. To match the interior to the exterior, we impose the continuity of
the metric coefficients, gµν , across a surface, S, i.e. gµν (int)|S = gµν (ext)|S .

[This condition is not sufficient to different space-times. However, for
space-times with a good deal of symmetry (here, spherical symmetry), one
can use directly the field equations to match [10].]

The wormhole metric is continuous from the throat, r = r0 to a finite
distance r = a. Now we impose the continuity of gtt and grr,

gtt(int)|S = gtt(ext)|S ,

grr(int)|S = grr(ext)|S
at r = a [i.e. on the surface S] since gθθ and gφφ are already continuous.
The continuity of the metric then gives generally

e2f
int(a) = e2f

ext(a) and grr(int)(a) = grr(ext)(a) .



Wormholes with Varying Equation of State Parameter 29

Hence one can find

e2f =

(

1 − 2GM

a

)

(13)

and 1 − b(a)
a =

(

1 − 2GM
a

)

i.e. b(a) = 2GM . This implies b0a
1/w = 2GM .

Hence,

a =

(

2GM

b0

)w

(14)

i.e. matching occurs at a =
(

2GM
b0

)w
.

The interior metric r0 < r ≤ a is given by

ds2 = −
[

1 − b0a
(1−w)/w

]

dt2 +
dr2

[

1 − b0r(1−w)/w
] + r2

(

dθ2 + sin2 θdφ2
)

.

(15)
The exterior metric a ≤ r < ∞ is given by

ds2 = −
[

1 − b0a
1/w

r

]

dt2 +
dr2

[

1 − b0a1/w

r

] + r2
(

dθ2 + sin2 θdφ2
)

. (16)

Here, one can see that the null energy condition is violated, p + ρ < 0
and consequently all the other energy conditions. Now we will check whether
the wormhole geometry is, in principle, suffered by arbitrary small amount
averaged null energy condition (ANEC) violating phantom energy. The
ANEC violating matter can be quantified by the integrals I =

∮

ρdV ,
I =

∮

(pi + ρ)dV . In the model, we have assumed that the ANEC vio-
lating matter is related only to p (radial pressure), not to the transverse

components [as one can see from field equations (6)–(8), ptr =
(

−1+w(r)
2

)

ρ

and w(r) > 1].
According to Visser et al. [11], the information about the ‘total amount’

of ANEC violating matter in the space-time is given by the integral,

I =

∮

(p + ρ)dV = 2

∞
∫

r0

(p + ρ)4πr2dr (17)

[dV = r2 sin θdrdθdφ, factor two comes from including both wormhole
mouths].

From the field equations, one can get,

p + ρ =
1

8πr

(

1 − b

r

)

[

ln
1

(

1 − b
r

)

]′

. (18)
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Hence,

I =

[

(r − b) ln

(

r

r − b

)]∞

r0

−
∞
∫

r0

[

(1 − b′) ln

(

r

r − b

)]

dr . (19)

For the first expression, we see that, at the throat r0, b(r0) = r0, the
boundary term at r0 vanishes. Now we consider the boundary term at
infinity.

Let us denote as χ the contribution into this term from infinity. Then,

χ = lim
r→∞

(r − b) ln

[

r

r − b

]

. (20)

This can be rewritten as

χ = lim
r→∞

r

(

1 − b

r

)

ln

[

r

r − b

]

. (21)

Now, as in this limit the quantity b
r is small, we may expand the logarithm as

ln
(

1 − b
r

)

= − b
r + ..., where only the main term is retained. Neglecting here

the term b
r in parentheses, one obtains χ = b(∞). Here, b(∞) = ∞. Hence,

in this case the total amount of ANEC violating matter is infinitely large.
This case is not physically interesting.

Specialization 2: w(r) = Arn

In this case, we consider w(r) = Arn, where n and A are two positive
constants. For this consideration, equation (10) gives,

b = exp

(

B − 1

Anrn

)

, (22)

where B is an integration constant.
We assume, throat of the wormhole occurs at r = r0, then b(r0) = r0

implies

B =
1

Anrn
0

+ ln r0 . (23)

So, the shape function takes the following form as

b = exp

(

1

Anrn
0

+ ln r0 −
1

nArn

)

. (24)
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Since, n > 0, w > 1, for all r > r0 > [ 1
A ]1/n. So the assumption

w(r) = Arn is justified to explore the phantom energy with r dependent

equation of state. Here the space time is asymptotically flat i.e.
b(r)
r → 0 as

| r |→ ∞.
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Fig. 2. Diagram of the shape function of the wormhole.

From the graph (Fig. 3), one can also note that when r > r0, G(r) < 0

i.e. b(r) − r < 0. This implies b(r)
r < 1 when r > r0. Also, from the graph,

we see that G is a decreasing function of r for r ≥ r0 and hence G′(r) < 0 for
r ≥ r0. In other words, b′(r0) < 1 i.e. flare-out condition has been satisfied.
Thus obtained shape function would represent a wormhole structure.

Now we can match this interior wormhole metric with exterior Schwarz-
schild metric at a, where

a =





1

An
(

1
Anrn

0

+ ln r0

2GM

)





1/n

.
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Fig. 3. Throat occurs where G(r) cuts r axis i.e. at r = 1.5 (choosing suitably the

parameters as r0 = 1.5, A = 4 and n = 2).

Here the interior metric r0 < r ≤ a is given by

ds2 = −



1 −
exp

(

1
Anrn

0

+ ln r0 − 1
nAan

)

a



 dt2

+
dr2



1 −
exp

„

1

Anrn
0

+ln r0−
1

nAan

«

r





+ r2(dθ2 + sin2 θdφ2) . (25)

The exterior metric a ≤ r < ∞ is given by

ds2 = −



1 −
exp

(

1
Anrn

0

+ ln r0 − 1
nAan

)

r



 dt2

+
dr2



1 −
exp

„

1

Anrn
0

+ln r0−
1

nAan

«

r





+ r2(dθ2 + sin2 θdφ2) . (26)

In this case, we are interested in measuring the total amount of ANEC
violating matter. We consider the wormhole field deviates from the throat
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out to a radius a. Thus the total amount of ANEC violating matter is
matching the interior solution to an exterior space-time at a. Then the
volume integral takes the value,

I = [b(a) − a]

[

ln

(

1 − b(a)

a

)]

+ (a − r0)

−(a ln a − r0 ln r0) − [b(a) − a]

[

ln

(

a − b(a)

e

)]

+[b(a) ln a − b(r0) ln r0] − ln
a

r0
− 1

An2

(

1

an
− 1

rn
0

)

+ . . . . (27)

This implies that the total amount of ANEC violating matter depends
on several parameters, namely, a, n,A, r0. If we kept the parameters n, r0, A

fixed, then the parameter a plays a significant role in reducing the total
amount of ANEC violating matter. Thus total amount of ANEC violating
matter can be made small by taking suitable position, where interior worm-
hole metric will match the exterior Schwarzschild metric. This proves that
it is possible to construct a wormhole with small amount of phantom energy
characterized by variable equation of state parameter.

Specialization 3: Specific shape function: b(r) = D
(

1 − A
r

) (

1 − B
r

)

.

Consider the specific form of the shape function as

b(r) = D

(

1 − A

r

)(

1 − B

r

)

, (28)

where A,B and D(> 0) are arbitrary constants.
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Fig. 4. Diagram of the shape function of the wormhole.

For this case, the equation of state parameter function takes the form

w(r) =
[(r − A)(r − B)]

[(A + B)r − 2AB]
. (29)
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Fig. 5. Diagram of the equation of state parameter. Here r cannot be taken arbi-

trarily large. The figure is limited by values ≤ a, where interior wormhole metric

will match with exterior Schwarzschild metric.

We will now verify whether the particular choice of the shape function

would represent the wormhole structure. One can easily see that b(r)
r → 0

as | r |→ ∞.
Throat of the wormhole occurs at r = r0 , where r0 satisfies the following

equation b(r0) = r0 i.e. r3
0 − Dr2

0 + (A + B)Dr0 − ABD = 0.
The solution of this equation is

r0 = S + T +
D

3
, (30)

where

S =
[

R +
√

Q3 + R2
]1/3

and T =
[

R −
√

Q3 + R2
]1/3

,

Q =
3D(A + B) − D2

9
, R =

27ABD + 2D − 9D2(A + B)

54
.

Since r0 is a root of the above equation, then by standard theorem of algebra,
either g(r) ≡ b(r) − r < 0 for r > r0 and g(r) > 0 for r < r0 or g(r) > 0 for
r > r0 and g(r) < 0 for r < r0. Let us take the first possibility and one can
note that for r > r0 , g(r) < 0, in other words, b(r) < r. But when r < r0,
g(r) > 0, this means, b(r) > r, which violates the wormhole structure given
in Eq. (2).

Now we are matching our interior wormhole metric with the exterior
Schwarzschild metric at a where

a =
AD + BD +

√

(AD + BD)2 − 4ABD(D − 2GM)

2(D − 2GM)
.
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Here the interior metric r0 < r ≤ a is given by

ds2 = −
[

1 − D

a

(

1 − A

a

)(

1 − B

a

)]

dt2

+
dr2

[

1 − D
r

(

1 − A
r

) (

1 − B
r

)] + r2(dθ2 + sin2 θdφ2) . (31)

The exterior metric a ≤ r < ∞ is given by

ds2 = −
[

1 − D

r

(

1 − A

a

)(

1 − B

a

)]

dt2

+
dr2

[

1 − D
r

(

1 − A
a

) (

1 − B
a

)] + r2(dθ2 + sin2 θdφ2) . (32)

In this case, the total amount of ANEC violating matter in space-time
with a cutoff of the stress energy at a is given by

I = D + [a − b(a)]

[

1 + ln

(

1 − b(a)

a

)]

+ (a − r0) − D ln
a

r0

−D(A + B)

(

1

a
− 1

r0

)

− 2ABD

(

1

a2
− 1

r2
0

)

. (33)

This implies that the total amount of ANEC violating matter depends
on several parameters, namely, a,A,B,D, r0. If we kept the parameters
A,B,D, r0 fixed, then the parameter a plays a significant role in reducing
the total amount of ANEC violating matter. Thus total amount of ANEC
violating matter can be made small by taking a suitable position, where
interior a wormhole metric will match the exterior Schwarzschild metric.
This proves that it is possible to construct a wormhole with small amount
of phantom energy characterized by variable equation of state parameter.

According to Morris and Thorne [1], the r co-ordinate is ill-behaved near
the throat, but proper radial distance

l(r) = ±
r

∫

r+

0

dr
√

1 − b(r)
r

(34)

must be well behaved everywhere i.e. we must require that l(r) is finite
throughout the space-time.

For our model, (taking B = 0), one can determine the proper distance
through the wormhole as

l(r) =
√

r2 − Dr + DA +
D

2
ln

[

2
√

r2 − Dr + DA + 2r − D

2r0 − D

]

. (35)
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The radial proper distance is measured from r0 to any r > r0. Note that
on the throat r = r0, l = 0.
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Fig. 6. Diagram of the radial proper distance (D = 2, A = −4, r0 = 4).

Specialization 4: Specific shape function: b(r) = A tanh Cr.

Now we make the specific choice for the shape function as

b(r) = A tanh Cr , (36)

where A (> 0) and C are arbitrary constants.
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Fig. 7. Diagram of the shape function of the wormhole.

Using the equation (10), one gets

w(r) =
C

2r
sinh 2Cr . (37)

It is easy to verify that the above particular choice of the shape function

would represent the wormhole structure. Here, b(r)
r → 0 as | r |→ ∞ and

throat occurs at r = r0 for which b(r0) = r0 i.e. A tanh Cr0 = r0.
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Fig. 8. Diagram of the equation of state parameter. Here r cannot be taken arbi-

trarily large. The figure is limited by values ≤ a, where interior wormhole metric

will match the exterior Schwarzschild metric.

[If one chooses A = 2 and C = 1, the graph of the function F (r) = b(r)−r

indicates the point r0 where F (r) cuts the ’r’ axis. From the graph, one can

also note that when r > r0, F (r) < 0 i.e. b(r)− r < 0. This implies b(r)
r < 1

when r > r0.]
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Fig. 9. Throat occurs where F (r) cuts r axis.

Now matching this interior metric of wormhole with the exterior
Schwarzschild metric at a, where a = 1

2C ln A+2GM
A−2GM , one gets, the interior

metric r0 < r ≤ a as

ds2 = −
[

1 − A tanh Ca

a

]

dt2 +
dr2

[1 − A tanh Cr
r ]

+ r2(dθ2 + sin2 θdφ2) . (38)

Here the exterior metric a ≤ r < ∞ is given by

ds2 = −
[

1 − A tanh Ca

r

]

dt2 +
dr2

[1 − A tanh Ca
r ]

+ r2(dθ2 + sin2 θdφ2) . (39)
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In this case, the amount of ANEC violating matter in the space-time
with a cutoff of the stress energy at a is given by

I = A + [a − A tanh Ca] ln a + (a − r0)

−A
[

C(a − r0) −
C3

9
(a3 − r3

0) +
2C5

75
(a5 − r5

0)

− . . .
(−1)n−1Bn22n(22n − 1)

(2n − 1)(2n!)
C2n−1(a2n−1 − r2n−1

0 ) + . . .
]

+(a − A tanh Ca) ln[(a − A tanh Ca) − 1] ,

where, Bn is the Bernoulli number.
Also, in this case, if we treat the parameters A,C, r0 as fixed constants,

then total amount of ANEC violating matter can be reduced to small quan-
tity by taking a suitable position, where interior wormhole metric will match
the exterior Schwarzschild metric. In other words, this type of wormhole can
be constructed with small quantity of ANEC violating phantom energy ma-
terial.

4. Concluding remarks

Our aim in this paper is to provide a prescription for obtaining a worm-
hole where stress energy tensor is characterized by phantom energy with
variable equation of state parameter. We have provided several toy models
according to this new proposal. In the first two models we have considered
phantom energy sources that give birth to wormhole-like structure, whereas
in the last two models, we have considered specific forms of the shape func-
tions of wormhole and tried to search for matter sources ( phantom like )
that generate the above wormhole structures.

As mentioned above, to be a wormhole solution, the condition b′(r0) < 1
is to be imposed. Now for the first case, b′(r0) = 1

w < 1, since w > 1, corre-

sponding to solution (11). For the second case, b′(r0) < 1 implies r0 > ( 1
A)

1

n

, corresponding to solution (22) and for the last cases, one has to assume

r0 > (A + B)±
√

(A + B)2 − 3AB and r0 > 1
C cosh−1

√
AC, corresponding

to the solutions (28) and (30), respectively. We have established a match-
ing each of four interior wormhole metrics with the exterior Schwarzschild
metric.

Except model 1, all the other models reveal the fact that one may con-
struct wormholes with small amounts of phantom energy as desired which
is characterized by a variable equation of state parameter.

The effective mass inside the radius r is defined by M(r) = b(r)
2 and

the limit, limr→∞ M(r) = M , if exists, represents the asymptotic wormhole
mass seen by an distant observer. In the first case, this limit does not exist
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whereas for the last three cases, one can see that M exists and is equal

to 1
2 exp

(

1
Anrn

0

+ ln r0

)

for the second case and to D
2 and A

2 for the last

cases. This implies that a distant observer could not see any difference of
gravitational nature between the wormhole and a compact mass ‘M ’.

The assumption for the redshift function to be constant implies the
tidal gravitational force experienced by a traveller to be zero. Thus one
of the traversibility condition is satisfied, in other words, our wormholes are
traversable. Hence our wormholes containing small amount of exotic matter
in spite of they are traversable for human beings.

The specializations 2–4 are taken from intuition and simplicity from the
mathematical point of view. Since the proposed phantom energy is char-
acterized by variable EoS parameter, so there are thousands numbers of
choices that may be considered. Before selecting the specializations 2–4, we
are dealing with several choices but we find these are the physically accept-
able wormhole models (i.e. satisfying all the characteristics of wormhole as
well as supported by small amount of ANEC violating matter). We hope
scientists would be motivated by our approach and in future, will try to find
sophisticated way for constructing wormholes.
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of India for providing financial support. M.K. has been partially supported
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