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A study of non-static spherically symmetric space-times according to
their proper affine vector fields is given by using holonomy and decom-
posability, the rank of the 6 × 6 Riemann matrix and direct integration
techniques. It is shown that when the above space-times admit proper
affine vector fields, they turn out to be static and spherically symmetric.
In the non-static cases affine vector fields are just Killing vector fields.
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1. Introduction

In this paper we study the proper affine vector fields in non-static spher-
ically symmetric space-times by using holonomy and decomposability, the
rank of the 6 × 6 Rieman matrix and direct integration techniques. The
affine vector field which preserves the geodesic structure and affine param-
eter of a space-time carries significant information and rises interest in the
Einstein’s theory of general relativity. It is, therefore, important to study
this symmetry. Let (M,g) be a space-time with M a smooth connected
Hausdorff four dimensional manifold and g a smooth metric of Lorentz sig-
nature (−,+,+,+) on M . The curvature tensor associated with g, through
Levi–Civita connection Γ, is denoted in component form by Ra

bcd. The usual
covariant, partial and Lie derivatives are denoted by a semicolon, a comma
and the symbol L, respectively. Round and square brackets denote the usual
symmetrization and skew-symmetrization, respectively. The space-time M
will be assumed non-flat in the sense that the Riemann tensor does not
vanish over any non-empty open subset of M .
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A vector field X on M is called an affine vector field if it satisfies

Xa;bc = RabcdX
d , (1)

where Rabcd = gafRf
bcd = gaf (Γ f

bd,c −Γ f
bc,d +Γ f

ceΓ e
bd −Γ f

edΓ
e
bc). If one decom-

poses Xa;b on M into its symmetric and skew-symmetric parts

Xa;b = 1
2hab + Gab ,

(

hab(≡ Xa;b + Xb;a) = hba , Gab = −Gba

)

(2)

then equation (1) is equivalent to

(i) hab;c = 0 , (ii) Gab;c = RabcdX
d , (iii) Gab;cX

c = 0 . (3)

Now, we are interested in proving equation (3) using equation (1). To prove
(3(i)) consider hab and take its covariant derivative as hab;c = Xa;bc + Xb;ac

and using equation (1) we get hab;c = (Rabcd + Rbacd)X
d, now using the fact

Rabcd = −Rbacd ⇒ hab;c = 0. To prove (3(ii)) consider equation (2) and take
its covariant derivative. Using equation (1) we get

RabcdX
d = 1

2hab;c + Gab;c . (4)

Comparing symmetric and skew-symmetric parts of the above equation (4)
we get hab;c = 0 and Gab;c = RabcdX

d. For proving (3(iii)) contract equa-

tion (4) with Xc. Using the fact RabcdX
dXc = 0 and comparing the sym-

metric and skew-symmetric parts we get Gab;cX
c = 0.

Now, we are interested in proving equation (1) using equation (3(i)).
Consider equation (2) and take its covariant derivative. Using hab;c = 0 we

get Xa;bc = Gab;c. From the Ricci identity (Xa;bc − Xa;cb = RabcdX
d) we get

Gab;c − Gac;b = RabcdX
d , (5)

similarly permuting indices a, b and c in (5) gives

Gba;c − Gbc;a = RbacdX
d , (6)

Gcb;a − Gca;b = RcbadX
d . (7)

Adding equations (5), (6) and (7) and using the property of Riemann tensor
(R[abc]d = 0) gives Xa;bc = RabcdX

d. Next we will prove equation (1) using
equation (3(ii)). Consider equation (2) and take its covariant derivative;
using Gab;c = RabcdX

d and hab;c = 0 we get Xa;bc = RabcdX
d. Equation

(3(iii)) follows from equation (3(ii)) by contracting Xc and using the fact
that RabcdX

dXc = 0. One can find the above proofs in [7].
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If hab = 2cgab, c ∈ R then the vector field X is called homothetic (and
Killing if c = 0). The vector field X is said to be proper affine if it is not
homothetic vector field and also X is said to be proper homothetic vector
field if it is not Killing vector field on M [2]. Let us define the subspace Zp

of the tangent space TpM to M at p as those k ∈ TpM satisfying

Rabcdk
d = 0 . (8)

It is important to note that the time-like vector field ta ≡ t,a, where

t,a =
∂t

∂xa
≡

∂x0

∂xa

satisfying tat
a = −1 is covariantly constant, that is ta;b = 0, if and only if the

components of the Christoffel symbol Γ a
bc are zero whenever any of a, b or c

takes the value zero. Now, we are interested in proving the above result. It
follows from the definition that t0 = 1 and td = 0 whenever d takes the value
1, 2 or 3. Consider ta;b = 0 ⇒ ta,b − Γ c

abtc = 0. Using the fact ta,b = 0, we
get Γ c

abtc = 0. Since we are following the Einstein’s summation convention
hence c can take the values 0, 1, 2 or 3. First, consider c taking the value
1, 2 or 3. The equation Γ c

abtc = 0 is satisfied identically (here we are using
the fact tc = 0 whenever c takes the values 1, 2 or 3). Now consider c equals
zero; then the above equation (Γ c

abtc = 0) gives Γ 0
ab = 0 (here we are using

the fact t0 = 1). Now we are interested to prove the converse. Consider
Γ 0

ab = 0 or −Γ c
abtc = 0 (since we have t0 = 1 and tc = 0 for c = 1, 2 or 3)

which can be written as ta,b − Γ c
abtc = 0 (because ta,b = 0) which implies

ta;b = 0.

2. Affine vector fields

Suppose that M is a simple connected space-time. Then the holonomy
group of M is a connected Lie subgroup of the identity component of the
Lorentz group and is thus characterized by its subalgebra in the Lorentz
algebra. These have been labeled into fifteen types R1–R15 [1]. It follows
from [2] that the only such space-times which could admit proper affine
vector fields are those which admit nowhere zero covariantly constant second
order symmetric tensor field hab. This forces the holonomy type to be either
R2, R3, R4, R6, R7, R8, R10, R11 or R13 [2]. A study of the affine vector
fields for the above holonomy type can be found in [2]. It follows from [3]
that the rank of the 6 × 6 Riemann matrix of the above space-times which
have holonomy type R2, R3, R4, R6, R7, R8, R10, R11 or R13 is at most
three. Hence for studying affine vector fields we are interested in those cases
when the rank of the 6 × 6 Riemann matrix is less than, or equal to three.
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3. Main results

Consider a non-static spherically symmetric space-time in the usual co-
ordinate system (t, r, θ, φ) (labeled by (x0, x1, x2, x3)) with line element [4]

ds2 = −eA(t,r)dt2 + eB(t,r)dr2 + r2(dθ2 + sin2 θdφ2) . (9)

The above space-time admits three linearly independent Killing vector fields
which are

cos φ
∂

∂θ
− sinφ cot θ

∂

∂φ
, sin φ

∂

∂θ
+ cos φ cot θ

∂

∂φ
,

∂

∂φ
. (10)

The non-zero independent components of the Riemann tensor are

R0101 =
1

4

[

eA(t,r)(A2
r(t, r) + 2Arr(t, r)) − eB(t,r)(B2

t (t, r) + 2Btt(t, r)

−At(t, r)Bt(t, r)) − eA(t,r)Ar(t, r)Br(t, r)
]

≡ α1 ,

R0202 =
r

2
eA(t,r)−B(t,r)Ar(t, r) ≡ α2 ,

R0303 =
r

2
eA(t,r)−B(t,r)Ar(t, r) sin2 θ ≡ α3 ,

R1212 =
r

2
Br(t, r) ≡ α4 ,

R1313 =
r

2
Br(t, r) sin2 θ ≡ α5 ,

R2323 = r2 sin2 θ(1 − e−B(t,r)) ≡ α6 ,

R0212 =
r

2
Bt(t, r) ≡ α7 ,

R0313 =
r

2
Bt(t, r) sin2 θ ≡ α8 .

Writing the curvature tensor with components Rabcd at p as a 6×6 symmetric
matrix as [5]

Rabcd =















α1 0 0 0 0 0
0 α2 0 α7 0 0
0 0 α3 0 α8 0
0 α7 0 α4 0 0
0 0 α8 0 α5 0
0 0 0 0 0 α6















. (11)

As mentioned in Section 2, the space-times which admit proper affine vector
fields have holonomy type R2, R3, R4, R6, R7, R8, R10, R11 or R13 and the
rank of the 6 × 6 Riemann matrix is at most three. Therefore, we are only
interested in those cases when the rank of the 6 × 6 Riemann matrix is less
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than, or equal to three. In general, for any 6 × 6 symmetric matrix there
exist total forty one possibilities when the rank of the 6×6 symmetric matrix
is less or equal to three, that is, twenty possibilities for rank three, fifteen
possibilities for rank two and six possibilities for rank one. Suppose the rank
of the 6× 6 Riemann matrix is one. Then there is only one non-zero row or
column in (11). If we set five rows or columns identically zero in (11) then
there exist six possibilities when the rank of the 6×6 Riemann matrix is one.
In these six possibilities five give the contradiction and only one will arise
which is given in case (G). For example, consider the case when the rank of
the 6×6 Riemann matrix is one i.e. α2 = α3 = α4 = α5 = α6 = α7 = α8 = 0
and α1 6= 0. The constraints α2 = α3 = α4 = α5 = α6 = α7 = α8 = 0 ⇒
B(t, r) = 0 and Ar(t, r) = 0. Subsituting back in (11) one has α1 = 0
which gives contradiction (here we assume that α1 6= 0). So this case is not
possible. Now consider another case when the rank of the 6 × 6 Riemann
matrix is one i.e. α1 = α3 = α4 = α5 = α6 = α7 = α8 = 0 and α2 6= 0.
The constraints α1 = α3 = α4 = α5 = α6 = α7 = α8 = 0 implay B(t, r) = 0
and Ar(t, r) = 0. Subsituting back in (11) one has α2 = 0 which gives
contradiction (here we assume that α2 6= 0). Hence again this case is not
possible. By similar analysis we come to the conclusion that there are all
together five possibilities when the rank of the 6×6 Riemann matrix is three
or less which are:

(C) Rank = 3, α1 = α2 = α3 = α7 = α8 = 0, α4 6= 0, α5 6= 0 and α6 6= 0.

(D) Rank = 3, α1 = α4 = α5 = α7 = α8 = 0, α2 6= 0, α3 6= 0 and α6 6= 0.

(E) Rank = 3, α4 = α5 = α6 = α7 = α8 = 0, α1 6= 0, α2 6= 0 and α3 6= 0.

(F) Rank = 2, α1 = α4 = α5 = α6 = α7 = α8 = 0, α2 6= 0 and α3 6= 0.

(G) Rank = 1, α1 = α2 = α3 = α4 = α5 = α7 = α8 = 0 and α6 6= 0.
We will consider each case in turn.

Case C

In this case α1 = α2 = α3 = α7 = α8 = 0, α4 6= 0, α5 6= 0, α6 6= 0,
the rank of the 6 × 6 Riemann matrix is 3 and there exists a unique (up to
a multiple) number where zero time-like vector field ta = t,a satisfies ta;b = 0.
From the Ricci identity Ra

bcdta = 0. From the above constraints we have
Ar(t, r) = 0 and Bt(t, r) = 0 ⇒ A(t, r) = α(t) and B(t, r) = β(r). The line
element can, after a rescaling of t, be written in the form

ds2 = −dt2 + eβ(r)dr2 + r2(dθ2 + sin2 θdφ2) . (12)

The above space-time is clearly 1 + 3 decomposable. Affine vector fields in
this case [2] are

X = (c7t + c8)
∂

∂t
+ X

′

, (13)
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where c7, c8 ∈ R and X
′
is a homothetic vector field in the induced geometry

on each of the three dimensional submanifolds of constant t. The completion
of case C requires finding an homothetic vector fields in the induced geometry
of the submanifolds of constant t. The induced metric gαβ (where α, β =
1, 2, 3) with non-zero components is given by

g11 = eβ(r) , g22 = r2 , g33 = r2 sin2 θ . (14)

A vector field X
′
is a homothetic vector field if it satisfies

LX′gαβ = 2cgαβ , c ∈ R . (15)

One can expand (15) and using (14) gets

β
′

X1 + 2X1
,1 = 2c , (16)

eβX1
,2 + r2X2

,1 = 0 , (17)

eβX1
,3 + r2 sin2 θX3

,1 = 0 , (18)

1

r
X1 + X2

,2 = c , (19)

X2
,3 + sin2 θX3

,2 = 0 , (20)

1

r
X1 + cot θX2 + X3

,3 = c . (21)

Equation (16) gives

X1 = ce−
β

2

∫

e
β

2 dr + e−
β

2 A1(θ, φ) , (22)

where A1(θ, φ) is a function of integration. Substituting the value of X1 in
(17) and (18) gives

X2 = −A1
θ(θ, φ)

∫

1

r2
e

β

2 dr + A2(θ, φ) ,

X3 =
A1

φ(θ, φ)

sin2 θ

∫

1

r2
e

β

2 dr + A3(θ, φ) , (23)

where A2(θ, φ) and A3(θ, φ) are functions of integration. Considering equa-
tion (20) differentiating with respect to r one finds

A1(θ, φ) = sin θB1(φ) + B2(θ) ,
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where B1(φ) and B2(θ) are functions of integration. Substituting back into
(22) and (23) gives

X1 = ce−
β

2

∫

e
β

2 dr + e−
β

2 (sin θB1(φ) + B2(θ)) ,

X2 = −(cos θB1(φ) + B2
θ (θ))

∫

1

r2
e

β

2 dr + A2(θ, φ),

X3 =
B1

φ(φ)

sin θ

∫

1

r2
e

β

2 dr + A3(θ, φ) . (24)

Now consider equation (19) and differentiate with respect to φ to get

sin θB1
φ(φ)

(

e−
β

2

r
+

∫

1

r2
e

β

2 dr

)

+ A2
θφ(θ, φ) = 0 .

Differentiating with respect to r we get B1
φ(φ)((e−

β

2 /r)
′
+ e

β

2 /r2) = 0 and
there exist two possible cases:

(1) B1
φ(φ) = 0 ,

((

e−
β

2

r

)′

+
1

r2
e

β

2

)

6= 0 ,

(2) B1
φ(φ) 6= 0 ,

((

e−
β

2

r

)
′

+
1

r2
e

β

2

)

= 0 .

(1) In this subcase we have B1
φ(φ) = 0 and ((e−

β

2 /r)
′
+e

β

2 r2) 6= 0. Equation

B1
φ(φ) = 0 ⇒ B1(φ) = c1, where c1 ∈ R thus we have (from (24))

X1 = ce−
β

2

∫

e
β

2 dr + e−
β

2 (c1 sin θ + B2(θ)) ,

X2 = −(c1 cos θ + B2
θ (θ))

∫

1

r2
e

β

2 dr + A2(θ, φ) ,

X3 = A3(θ, φ) .

A straightforward calculation shows that a homothetic vector field exists if
and only if

1

r
e−

β

2

∫

e
β

2 dr = 1 ,
(

⇒

∫

e
β

2 dr = re
β

2

)

,

which upon differentiation with respect to r gives β = const. One then easily
see from equation (11) that the rank of 6×6 Riemann matrix is reduced to 1
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or zero, giving us a contradiction (since we are assuming that the rank of
6 × 6 Riemann matrix is 3). Thus no proper homothetic vector field exists
in the induced geometry. Therefore, it admits Killing vector fields which are

X1 = 0 ,

X2 = (c1 sin φ + c2 cos φ) ,

X3 = cot θ(c1 cos φ − c2 sinφ) + c3 , (25)

where c1, c2, c3 ∈ R. Thus, from (25) and (13) affine vector fields in this
case are

X0 = (c7t + c8) , X2 = (c1 sin φ + c2 cos φ) ,

X1 = 0 , X3 = cot θ(c1 cos φ − c2 sin φ) + c3 . (26)

One can write the above equation after subtracting Killing vector fields as

X = (t, 0, 0, 0) . (27)

Clearly, in this case the above space-times (12) admit proper affine vector
fields.
(2) In this subcase we have ((e−β/2/r)

′
+ eβ/2/r2) = 0 ⇒ eβ = a2/(a2 − r2),

where a ∈ R − {0}. The line element can, after a rescaling of t, be written
in the form

ds2 = −dt2 +
a2

a2 − r2
dr2 + r2(dθ2 + sin2 θdφ2) . (28)

The above space-time is the well known Einstein static space-time. Affine
vector fields in this case are [6]

X0 = (c7t + c8) ,

X1 =

√

(

1 −
r2

a2

)

(sin θ(c2 cos φ + c3 sin φ) + c1 cos θ) ,

X2 =
1

r

√

(

1−
r2

a2

)

(cos θ(c2 cos φ+c3 sinφ)−c1 sin θ)+(c4 cos φ+c5 sin φ) ,

X3 =
1

r sin θ

√

(

1−
r2

a2

)

(−c2 sin φ+c3 cos φ)+cot θ(−c4 sin φ+c5 cos φ)+c6 ,

(29)

where c1, c2, c3, c4, c5, c6, c7, c8 ∈ R. One can write the above equation (29)
after subtracting Killing vector fields as in (27). This completes the case (C).
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Case D

In this case α1 = α4 = α5 = α7 = α8 = 0, α2 6= 0, α3 6= 0, α6 6= 0,
the rank of the 6 × 6 Riemann matrix is 3 and there exists a unique (up to
a multiple) number with zero vector field ra = r,a solution of equation (8)
and ra;b 6= 0. From the above constraints we have Ar(t, r) 6= 0, Br(t, r) = 0,
Bt(t, r) = 0 and A2

r(t, r)+2Arr(t, r) = 0. Equations Br(t, r) = 0, Bt(t, r) = 0
and A2

r(t, r) + 2Arr(t, r) = 0 implay B(t, r) = λ(6= 0, 1) ∈ R and A =
ln(rU1(t) +U2(t))

2, where U1(t) and U2(t) are numbers where functions of
integration vanish. The subcase when U2(t) = 0 will be considered later.
The line element can be written in the form

ds2 = − (rU1(t) + U2(t))
2 dt2 + eλdr2 + r2

(

dθ2 + sin2 θdφ2
)

. (30)

Substituting the above information into the affine equations and after some
calculation one finds that affine vector fields in this case are

X0 = 0 , X2 = (c1 sin φ + c2 cos φ) ,

X1 = 0 , X3 = cot θ(c1 cos φ − c2 sin φ) + c3 , (31)

where c1, c2, c3 ∈ R. Affine vector fields in this case are Killing vector fields.
Now consider the special case when U2(t) = 0. The line element can,

after a rescaling of t, be written in the form

ds2 = −r2dt2 + eλdr2 + r2
(

dθ2 + sin2 θdφ2
)

. (32)

Affine vector fields in this case are

X0 = c4 , X2 = (c1 sin φ + c2 cos φ) ,

X1 = c5r + c6 , X3 = cot θ(c1 cos φ − c2 sin φ) + c3 , (33)

where c1, c2, c3, c4, c5, c6 ∈ R. One can write the above equation (33) after
subtracting Killing vector fields as

X = (0, c5r + c6, 0, 0) . (34)

Clearly, in this case the above space-times (32) admit proper affine vector
fields.
Case E

In this case α4 = α5 = α6 = α7 = α8 = 0, α1 6= 0, α2 6= 0, α3 6= 0, the
rank of the 6×6 Riemann matrix is 3 and there exists no non-trivial solution
of equation (8). From the above constraints we get B(t, r) = 0, Ar(t, r) 6= 0
and A2

r(t, r) + 2Arr(t, r) 6= 0. The line element can be written in the form

ds2 = −eA(t,r)dt2 + dr2 + r2
(

dθ2 + sin2 θdφ2
)

. (35)
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Substituting the above information into the affine equations and after some
calculation one finds that affine vector fields in this case are Killing vector
fields which are given in equation (31).
Case F

In this case we have α1 = α4 = α5 = α6 = α7 = α8 = 0, α2 6= 0, α3 6= 0,
the rank of the 6 × 6 Riemann matrix is 2 and there exists a unique (up to
a multiple) number with zero vector field ra = r,a solution of equation (8)
and ra;b 6= 0. From the above constraints we have Ar(t, r) 6= 0, B(t, r) = 0
and A2

r(t, r) + 2Arr(t, r) = 0. Equation A2
r(t, r) + 2Arr(t, r) = 0 implay

A = ln(rP1(t)+P2(t))
2, where P1(t) and P2(t) are numbers where functions

of integration vanish. The subcase when P2(t) = 0 will be consider later.
The line element can be written in the form

ds2 = −(rP1(t) + P2(t))
2dt2 + dr2 + r2

(

dθ2 + sin2 θdφ2
)

. (36)

Substituting the above information into the affine equations and after some
lengthy calculation one finds that affine vector fields in this case are given
in equation (31).

Now consider the special case when P2(t) = 0. The line element can,
after a rescaling of t, be written in the form

ds2 = −r2dt2 + dr2 + r2
(

dθ2 + sin2 θdφ2
)

. (37)

Using the above information into the affine equations one finds that affine
vector fields in this case are given in equation (33).

Case G

In this case we have α1 = α2 = α3 = α4 = α5 = α7 = α8 = 0, α6 6= 0
and the rank of the 6× 6 Riemann matrix is 1. From the above constraints
we have Ar(t, r) = 0, Br(t, r) = 0 and Bt(t, r) = 0. Equations Br(t, r) = 0
and Bt(t, r) = 0 ⇒ B(t, r) = η(6= 0, 1) ∈ R. Here, there exist two linear
independent solutions ta = t,a and ra = r,a of equation (8). The vector field
ta is covariantly constant, whereas ra is not covariantly constant. The line
element can, after a rescaling of t, be written in the form

ds2 = −dt2 + eηdr2 + r2
(

dθ2 + sin2 θdφ2
)

. (38)

Affine vector fields in this case are

X0 = c7t + c8r + c9 , X2 = (c1 sin φ + c2 cos φ) ,

X1 = c4t + c5r + c6 , X3 = cot θ(c1 cos φ − c2 sin φ) + c3 , (39)

where c1, c2, c3, c4, c5, c6, c7, c8, c9 ∈ R. One can write the above equa-
tion (39) after subtracting Killing vector fields as

X = (c7t + c8r + c9, c4t + c5r + c6, 0, 0) . (40)

Clearly, in this case the above space-time (38) admits proper affine vector
fields.
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4. Summary

In this paper a study of non-static spherically symmetric space-times
according to their proper affine vector fields is given. A different approach is
adopted to study proper affine vector fields in the above space-times by using
holonomy and decomposability, the rank of the 6 × 6 Riemann matrix and
direct integration techniques. From the above we obtain the following results:

(i) The case when the rank of the 6 × 6 Riemann matrix is three and
there exists a unique number with zero independent time-like vector
field which is a solution of equation (8) and is covariantly constant.
This is the space-time (12) and (28) and it admits proper affine vector
fields (see case C).

(ii) The case when the rank of the 6 × 6 Riemann matrix is three or two
and there exists a unique number with zero independent vector field
which is a solution of equation (8) and is not covariantly constant.
This is the space-time (30) and (36) and it admits affine vector fields
which are Killing vector fields (for details see cases D and F).

(iii) The case when the rank of the 6 × 6 Riemann matrix is three or two
and there exists a number with zero independent vector field which
is the solution of equation (8) and is not covariantly constant. These
are the space-times (32) and (37) and they admit proper affine vector
fields (see equation (33)).

(iv) The case when the rank of the 6× 6 Riemann matrix is one and there
exist two numbers with zero independent solution of equation (8) but
only one independent covariantly constant vector field. This is the
space-time (38) and it admits proper affine vector fields (see case G).

(v) The case when the rank of the 6 × 6 Riemann matrix is three and
there exist a number of non-trivial solution of equation (8). This is
the space-time (35) and it admits affine vector fields which are Killing
vector fields (for details see case E).
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