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1. Introduction

The Standard Model (SM) based on the gauge group SU(3)× SU(2)L×
U(1)Y is phenomenologically quite successful in the description of phenom-
ena around the electroweak scale. However, it is widely believed that new
physics beyond the SM takes place above certain energy scale. In a class
of new physics models, the SM gauge group is embedded in a larger gauge
group. Such a model often predicts an electrically neutral massive gauge
boson, referred as Z ′. There are many example models such as the left-right
symmetric model [1] and Grand Unified Theories based on the gauge groups
SO(10) [2] and E6 [3] (for a review, see for example [4–6]).

At the hadron collider a Z ′ boson could be observed as a resonance
in the Drell–Yan process. Current direct search of Z ′ bosons for several
models has been performed by the CDF Collaboration at the Tevatron in
the e+e− decay channel with the use of the di-electron invariant mass and
angular distributions. No evidence of a signal has been found and 95% CL
lower limits of the Z ′ mass are set to be in the range from 650 to 900GeV
[7]. Recently studies about measurement of Z ′ bosons at the Large Hadron
Collider (LHC) has been performed [8–10].

If a Z ′ boson mass lies around TeV scale, it could be discovered at the
LHC. Once a Z ′-like resonance is observed, the next task is to precisely
measure its properties, such as mass, spin, couplings to the SM particles etc.
The spin of the Z ′ boson affects angular distributions and spin configurations
for outgoing particles produced by Z ′ decays. A good tool to study the
spin configuration is a top–antitop quark pair. Since the top quark with
mass in the range of 175GeV [11] decays electroweakly before hadronization
takes place [12], a spin polarization of the top–antitop quark pair is directly
transferred to its decay products. Therefore, there are significant angular
correlations between the top quark spin axis and the direction of motion of
the decay products.

The spin correlations for the hadronic top–antitop pair production pro-
cess have been extensively studied in the quantum chromodynamics (QCD)
[13–15]. It is found that there is a spin asymmetry between the produced
top–antitop pairs, namely, the number of produced top–antitop quark pairs
with both spin up or spin down (like pair) is different from the number of
pairs with the opposite spin combinations (unlike pair). If the top quark
is coupled to new physics beyond the SM, it could alter the top–antitop
spin correlations. Therefore, the top–antitop spin correlations can provide
useful information to test not only the SM but also a possible new physics
at the hadron collider. The LHC has a big advantage to study the top spin
correlations, since it will produce almost 10 millions of top quarks a year.
In Refs. [16] and [17], effects of the Kaluza–Klein gravitons on the top spin
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correlations in the brane world models at the LHC were studied and sizable
deviations of the top spin correlations from the SM one were found1.

The purpose of this paper is to investigate effects of the Z ′ boson on
the top–antitop pair production and its spin correlations. In addition to the
SM processes, the Z ′ boson gives rise to a new contribution for the top–
antitop pair production process in the s-channel and alters the top–antitop
pair production cross-section and the top spin correlations from the SM
ones. Choosing a kinematical region of top invariant mass around the Z ′

resonance pole, we find their sizable deviations from those of the SM.
This paper is organized as follows. In the next section, we briefly re-

view the top spin correlations. In Section 3, we present a model with the
Z ′ boson. In Section 4, we derive the invariant amplitudes for the polar-
ized top–antitop pair production processes mediated by the Z ′ boson in the
s-channel. We show the results of our numerical analysis in Section 5.
Section 6 is devoted to conclusions. Appendices ensemble formulas we use
in the calculation.

2. Spin correlation

At hadron collider, the top–antitop quark pair is produced through the
processes of quark–antiquark pair annihilation and gluon fusion:

i→ t+ t̄ , i = qq̄, gg . (2.1)

The former is the dominant process at the Tevatron, while the latter is domi-
nant at the LHC. The produced top–antitop pairs decay before hadronization
takes place. The main decay modes in the SM involve leptonic and hadronic
modes:

t→ bW+ → bl+νl, bud̄, bcs̄ , (2.2)

where l = e, µ, τ . The differential decay rates to a decay product f = b,
l+, νl, etc. at the top quark rest frame can be parameterized as

1

Γ

dΓ

d cos θf
=

1

2
(1 + κf cos θf ) , (2.3)

where Γ is the partial decay width of the respective decay channel and θf is
the angle between the top quark polarization and the direction of motion of
the decay product f . The coefficient κf called the top spin analyzing power
is a constant between −1 and 1. The ability to distinguish the polarization of

1 There are also several studies of effects of new physics on the top spin correlations at
e
+

e
− collider [18] and photon collider [19].
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the top quark evidently increases with κf . The most powerful spin analyzer
is a charged lepton, for which κl+ = +1 at tree level [20]. Other values of
κf are κb = −0.41 for the b-quark and κνl

= −0.31 for the νl, respectively.
In hadronic decay modes, the role of the charged lepton is replaced by the
d̄ or s̄ quark.

Now we see how top spin correlations appear in the chain of processes
of i → tt̄ and decay of the top quarks. The total matrix element squared
for the top–antitop pair production (2.1) and their decay channels (2.2) is
given by

|M|2 ∝ Tr[ρRiρ̄] = ρα′αR
i
αβ,α′β′ ρ̄β′β (2.4)

in the narrow-width approximation for the top quark. Here the subscripts
denote the top and antitop spin indices, and Ri denotes the density ma-
trix corresponding to the production of the on-shell top–antitop quark pair
through the process i in (2.1):

Ri
αβ,α′β′ =

∑

initial spin

M(i→ tαt̄β)M∗(i→ tα′ t̄β′) , (2.5)

where M(i → tαt̄β) is the amplitude for the top–antitop pair production.
The matrices ρ and ρ̄ are the density matrices corresponding to the decays of
polarized top and antitop quarks into some final states at the top and antitop
rest frame, respectively. In the leptonic decay modes, the matrices ρ, which
lead to (2.3), can be obtained as (see, for instance, [21])

ρα′α = M(tα → bl+νl)M∗(tα′ → bl+νl) =
Γ

2
(1 + κf~σ · ~qf )α′α , (2.6)

where qf is the unit vector of the direction of motion of the decay product f .
The density matrix for the polarized antitop quark is obtained by replacing
κf → −κf in (2.6) if there is no CP violation. In the SM, there is no CP
violation in the top quark decay at the leading order. In the model presented
in the next section, there is no contribution to break CP symmetry at the
leading order, and thus this relation holds.

A way to analyze the top–antitop spin correlations is to see the angu-
lar correlations of two charged leptons l+l− produced by the top–antitop
quark leptonic decays. In the following, we consider only the leptonic decay
channels. Using (2.4)–(2.6) and integrating over the azimuthal angles of the
charged leptons, we obtain the following double distribution [13, 14]

1

σ

d2σ

d cos θl+d cos θl−
= 1

4 (1 +B1 cos θl+ +B2 cos θl−−C cos θl+ cos θl−) .(2.7)
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Here σ denotes the cross-section for the process of the leptonic decay modes,
and θl+(θl−) denotes the angle between the top (antitop) spin axis and the
direction of motion of the antilepton (lepton) at the top (antitop) rest frame.
In what follows, we use the helicity spin basis which is almost optimal one
to analyze the top spin correlation at the LHC2. In this basis, the top (an-
titop) spin axis is regarded as the direction of motion of the top (antitop)
in the top–antitop center-of-mass system. The coefficients B1 and B2 are
associated with a polarization of the top and antitop quarks, and C encodes
the top spin correlations, whose explicit expression is given by

C = Aκl+κl− , κl+ = κl− = 1 , (2.8)

where the coefficient A represents the spin asymmetry between the produced
top–antitop pairs with like and unlike spin pairs defined as

A =
σ(t↑t̄↑) + σ(t↓t̄↓) − σ(t↑t̄↓) − σ(t↓t̄↑)

σ(t↑t̄↑) + σ(t↓t̄↓) + σ(t↑t̄↓) + σ(t↓t̄↑)
. (2.9)

Here σ(tαt̄β) is the cross-section of the top–antitop pair production at parton
level with denoted spin indices.

In the SM, at the lowest order of αs, the spin asymmetry is found to
be A = +0.319 for the LHC3. At the LHC in the ATLAS experiment, the
spin asymmetry of the top–antitop pairs will be measured with a precision
of several percent, after one LHC year at low luminosity (10 fb−1) [24].

3. A simple model with Z
′ boson

As a simple example which includes a Z ′ boson, we consider a model
based on the gauge group SU(3)× SU(2)× U(1)1× U(1)2 [4–6]. In order
to realize the gauge symmetry breaking U(1)1× U(1)2 → U(1)Y, where
U(1)Y is the SM hypercharge group, we introduce a scalar field Φ in the
representation (1,1,+1,−1). The covariant derivative for the scalar field is
given by

DΦ
µ = ∂µ − ig1B1µ + ig2B2µ , (3.1)

where gi and Biµ (i = 1, 2) is the gauge coupling constant and the gauge bo-

son of U(1)i. Once Φ develops a vacuum expectation value (〈Φ〉 = vΦ/
√

2),

2 Recently another spin basis was constructed, which has a larger spin correlation than
the helicity basis at the LHC [22].

3 The parton distribution function set of CTEQ6L [23] has been used in our calcula-
tions. The resultant spin asymmetry somewhat depends on the parton distribution
functions used.



98 M. Arai et al.

the gauge symmetry is broken down to U(1)1× U(1)2 → U(1)Y. Associ-
ated with this gauge symmetry breaking, the mass eigenstates of two gauge
bosons are described as

Bµ = B1µ cosφ+B2µ sinφ , (3.2)

Z2µ = −B1µ sinφ+B2µ cosφ , (3.3)

where φ is the mixing angle defined as tan φ = g1/g2, Bµ is the massless
U(1)Y gauge boson and Z2µ is the Z ′ boson with mass

M2
Z2

=

(

g′

sinφ cosφ

)2

v2
Φ . (3.4)

Here, the SM U(1)Y gauge coupling constant is defined through the relation
1/g′2 = 1/g2

1 + 1/g2
2 .

For a fermion with a charge (Y1f , Y2f ) under U(1)1× U(1)2, the interac-
tion term with Bµ and Z2µ is given by

Lint = ψ̄fγ
µψf

[

g′YfBµ + g′ (−Y1f tan φ+ Y2f cot φ)Z2µ

]

, (3.5)

where Yf = Y1f+Y2f . In our following analysis, we assume for simplicity that
under the gauge group, the quarks and leptons in each generation have quan-
tum numbers, q = (3,2, 1/6, 0), uR = (3,1, 2/3, 0), dR = (3,1,−1/3, 0),
L = (1,2,−1/2, 0), eR = (1,1,−1, 0) and νR = (1,1, 0, 0).

After the spontaneous breaking of the electroweak symmetry SU(2)×
U(1)Y to the electromagnetic subgroup U(1)EM, the neutral current inter-
actions for the SM leptons and quarks are written as4

LNC = Jµ
EMAµ + Jµ

Z1
Z1µ + Jµ

Z2
Z2µ . (3.6)

Here JEM and JZ1
are the SM electromagnetic and neutral currents

Jµ
EM =e

∑

f

Qf ψ̄fγ
µψf , Jµ

Z =
∑

f

ψ̄fγ
µ(gf

L,1PL + gf
R,1PR)ψf , (3.7)

where e = g sin θW = g′ cos θW, Qf is the electric charge of fermion f and

gf
L,1 and gf

R,1 are the chiral couplings given by (see also Appendix B)

gf
L,1 =

e

cos θW sin θW
(T f

3L −Qf sin2 θW) , gf
R,1 = −eQf tan θW , (3.8)

4 Although the mixing between the SM Z and Z
′ bosons, in general, emerges through

the electroweak symmetry breaking, here we assume a negligibly small mixing, which
is required by the current precision measurements. This situation is achievable in
some models even when the Z

′ boson mass is small (see, for a concrete example, [25]).
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with the third component of weak isospin for the left chiral component of

ψf , T f
3L (T u

3L = +1/2 for up-type and T d
3L = −1/2 for down-type fermions).

The current JZ2
is given as

Jµ
Z2

= g′
∑

f

(−Y1f tanφ+ Y2f cotφ)ψ̄fγ
µψf

=
∑

f

ψ̄fγ
µ(gf

L,2PL + gf
R,2PR)ψf , (3.9)

where the chiral couplings gf
L,2 and gf

R,2 are explicitly given in Appendix B.
In the following analysis, we fix the mixing angle φ as tanφ = 1, for sim-
plicity.

4. Scattering amplitude

In this section we calculate the squared invariant amplitudes for qq̄ → tt̄
and gg → tt̄ processes. First we calculate qq̄ → tt̄ process. In this process,
top quark pairs are produced via the s-channel photon, Z boson and Z ′

boson exchanges. An amplitude for quark annihilation process is given by

M(qq̄ → tt̄) = MQCD + MNC . (4.1)

Here MQCD denotes the QCD process and MNC is the contribution of the
neutral current. Since there is no interference between the QCD process and
the neutral current process, the squared amplitude is simply written as

|M|2 = |MQCD|2 + |MNC|2 . (4.2)

The helicity amplitude of the QCD process, MQCD, is given by (for one
flavor initial state)

|M(qq̄ → t↑t̄↑)|2 = |M(qq̄ → t↓t̄↓)|2 =
g4
s

9
(1 − β2

t ) sin2 θ , (4.3)

|M(qq̄ → t↑t̄↓)|2 = |M(qq̄ → t↓t̄↑)|2 =
g4
s

9
(1 + cos2 θ) , (4.4)

where q(q̄) denotes an initial (anti)quark, gs is the strong coupling con-

stant, βt =
√

1 − 4m2
t/s, mt is the top quark mass, θ is the scattering

angle between incoming quark and outgoing top quark, and
√
s is energy

of colliding partons. The helicity amplitude of the neutral current process,
MNC(qq̄ → tt̄), is described by

|MNC(qq̄ → tδ t̄γ)|2 =

(

1

2

)2
∑

α,β

|MNC(α, β; δ, γ)|2 , (4.5)
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where MNC(α, β; δ, γ) is the decomposition of the helicity amplitude with
respect to the initial spin and α(δ) and β(γ) denote initial (final) spin states
for quark and antiquark, respectively. The form is described by

MNC(+,−;±,±) = ∓s
√

1 − β2
t sin θ

×
[

(eQf )(eQt)

s
+

2
∑

i=1

gf
R,i

2

gt
L,i + gt

R,i

s−M2
Zi

+ iMZi
ΓZi

]

, (4.6)

MNC(−,+;±,±) = ∓s
√

1 − β2
t sin θ

×
[

(eQf )(eQt)

s
+

2
∑

i=1

gf
L,i

2

gt
L,i + gt

R,i

s−M2
Zi

+ iMZi
ΓZi

]

, (4.7)

MNC(+,−; +,−) = −s(1 + cos θ)

×
[

(eQf )(eQt)

s
+

2
∑

i=1

gf
R,i

2

(1 − βt)g
t
L,i + (1 + βt)g

t
R,i

s−M2
Zi

+ iMZi
ΓZi

]

, (4.8)

MNC(+,−;−,+) = s(1 − cos θ)

×
[

(eQf )(eQt)

s
+

2
∑

i=1

gf
R,i

2

(1 + βt)g
t
L,i + (1 − βt)g

t
R,i

s−M2
Zi

+ iMZi
ΓZi

]

, (4.9)

MNC(−,+;+,−) = s(1 − cos θ)

×
[

(eQf )(eQt)

s
+

2
∑

i=1

gf
L,i

2

(1 − βt)g
t
L,i + (1 + βt)g

t
R,i

s−M2
Zi

+ iMZi
ΓZi

]

, (4.10)

MNC(−,+;−,+) = −s(1 + cos θ)

×
[

(eQf )(eQt)

s
+

2
∑

i=1

gf
L,i

2

(1 + βt)g
t
L,i + (1 − βt)g

t
R,i

s−M2
Zi

+ iMZi
ΓZi

]

, (4.11)

with the decay widths of Z1 and Z2 bosons given by

ΓZi
= Γ (Zi → f f̄) =

MZi

96π

∑

f

βf
i

×
{(

3+
(

βf
i

)2
)(

(

gf
L,i

)2
+
(

gf
R,i

)2
)

+6

(

1−
(

βf
i

)2
)

gf
L,ig

f
R,i

}

, (4.12)

where MZi
is the mass of the gauge boson Zi, β

f
i =

√

1 − 4m2
f/M

2
Zi

, mf is

the mass of the fermion f . The explicit form of ΓZi
for each decay mode

is given in Appendix C. The sum in Eq. (4.12) does not include the right-
handed neutrinos since their masses are naturally around vR.



Influence of Z ′ Boson on Top Quark Spin Correlations at . . . 101

For the squared amplitude for the QCD process with the gg initial state,
we have

|M(gg → t↑t̄↑)|2 = |M(gg → t↓t̄↓)|2

=
g4
s

96
Y(βt, cos θ)(1−β2

t )(1 + β2
t + β2

t sin4 θ) , (4.13)

|M(gg → t↑t̄↓)|2 = |Mgg → t↓t̄↑)|2

=
g4
sβ

2
t

96
Y(βt, cos θ) sin2 θ(1 + cos2 θ) . (4.14)

Here Y(βt, θ) is defined by

Y(βt, cos θ) =
7 + 9β2

t cos2 θ

(1 − β2
t cos2 θ)2

. (4.15)

Using above formulas, we calculate the double distribution (2.7) includ-
ing the Z ′ contributions. Explicit calculation tells us that the transverse
polarization is vanishing, i.e. B1 = B2 = 0 while the spin asymmetry A is
altered from the SM one.

5. Numerical results

Here we show various numerical results and demonstrate interesting
properties of measurable quantities in our model. In our analysis we use
the parton distribution function of CTEQ6L [23] with the factorization scale
Q = mt = 175GeV and αs(Q) = 0.1074. We choose MZ2

= 900GeV to be
consistent with the current experimental results [7]. In the whole analysis,
the center of mass energy of the colliding protons, ECMS, is taken to be
14TeV at the LHC.

Fig. 1 shows the cross-sections of the top–antitop pair production through
uū → tt̄ and dd̄ → tt̄ at the parton level as a function of parton center-of-
mass energy

√
s = Mtt̄ =

√

(pt + pt̄)2, where pt(pt̄) is a momentum of
(anti)top quark. The figure exhibits the large peak corresponding to the
resonant production of Z ′ boson.

The dependence of the cross-section on the top–antitop invariant mass
Mtt̄ is given by

dσtot(pp→ tt̄)

d
√
s

=
∑

a,b

1
∫

−1

d cos θ

1
∫

s

E
2
CMS

dx1
2
√
s

x1E
2
CMS

fa(x1, Q
2)

× fb

(

s

x1E
2
CMS

, Q2

)

dσ(tt̄)

d cos θ
. (5.1)
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t
t̄
)

[p
b
]

Fig. 1. The dependence of the cross-section of the top–antitop quark pair pro-
duction by quark pair annihilation and gluon fusion on the center-of-mass energy
of colliding partons Mtt̄. The solid and dashed lines correspond to the results of
the quark annihilation and gluon fusion for the SM, respectively. The dotted and
dash-dotted lines correspond to the results of uū→ tt̄ and dd̄→ tt̄, respectively.

Fig. 2 depicts the result of the differential cross-section (5.1). Here, the
decomposition of the total cross-section into the like (t↑t̄↑ + t↓t̄↓) and unlike
(t↑t̄↓ + t↓t̄↑) top–antitop spin pairs is also shown. The deviation from the
SM around the resonant pole is large only for unlike top–antitop spin pairs,
because of the helicity conserving interactions between the Z ′ boson and
the SM fermions. Note that the resonance of Z ′ will be firstly measured
in the leptonic process pp → µ+µ− since the background is quite small.

300 400 500 600 700 800 900 1000 1100 1200
10

−2

10
−1

10
0

Mtt̄ [GeV]

dσ
t
o
t
/d
M

t
t̄

[p
b
/G

eV
]

Fig. 2. Differential cross-section (5.1) as a function of the top–antitop invariant
mass Mtt̄. The solid and dashed lines correspond to the results of the SM and our
model. The breakdown of the differential cross-sections into the like (dotted) and
the unlike (dash-dotted) top–antitop spin pair productions are also depicted.
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300 400 500 600 700 800 900 1000 1100 1200
−0.5

0

0.5

Mtt̄ [GeV]

A
(M

t
t̄
)

Fig. 3. Spin asymmetry A as a function of the top–antitop invariant mass Mtt̄. The
solid line corresponds to the SM, while the dashed line corresponds to our model.

The information of the pole will be then confirmed in the top–antitop quark
production. Furthermore, it should be useful to observe large deviation of
the top spin correlation as we will discuss below.

Now we show the result for the spin asymmetry A in Fig. 3 as a function
of the center-of-mass energy of colliding partons. As expected, deviation
from the SM is enhanced around the Z ′ boson resonance pole. In Fig. 4,
we show the spin asymmetry A as a function of the Z ′ boson mass MZ2

,
after integration with respect to Mtt̄ in the range 2mt ≤ Mtt̄ ≤ ECMS.

800 900 1000 1100 1200 1300
0.31

0.312

0.314

0.316

0.318

0.32

MZ2

A

 

 

Fig. 4. Spin asymmetry A as a function of MZ2
.

For MZ2
& 900GeV, deviation from the SM is less than a few percent. In

order to enhance the deviation of the spin asymmetry from the SM one, we
impose the selection criteria MZ2

− 50GeV < Mtt̄ < MZ2
+ 50 GeV for
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the range of the integration. Table I presents values of the spin asymmetry
for three chosen masses MZ2

= 900, 1100 and 1300GeV. We see sizable
deviations from the SM ones.

TABLE I

Spin asymmetry A and tt̄ total cross-section for the top–antitop events without the
constraint on the invariant mass (second and third column) and with the invariant
mass cut in the range MZ2

− 50 GeV < Mtt̄ < MZ2
+ 50 GeV (from fourth to

seventh column) for various values of MZ2
. The values in the fifth and seventh

column correspond to the SM, while in the other columns correspond to our Z ′

model. The last line shows the SM results.

MZ2
[GeV] A σ [pb] A(cut) A(cut)

SM σ(cut) [pb] σ
(cut)
SM [pb]

900 0.315 491 −0.199 −0.114 12.8 11.4
1100 0.317 490 −0.331 −0.232 4.65 3.99
1300 0.317 490 −0.430 −0.319 1.91 1.57
SM 0.319 489 — — — —

The corresponding values of the total cross-section5 imply statistically
sufficient number of events in the selected kinematical range (under assump-
tion of integral luminosity L = 10 fb−1 for one LHC year at low luminosity
and L = 100 fb−1 for one LHC year at high luminosity).

6. Conclusions

We studied top–antitop pair production and its spin correlation in the Z ′

model at the LHC. In this model, in addition to the SM processes, there is
a new contribution to the top–antitop pair production process mediated by
an electrically neutral gauge boson Z ′ in the s-channel. We calculated the
squared invariant amplitudes for the top–antitop pair production including
the new contribution from the Z ′ boson and showed numerical results for the
top pair production cross-section and the top spin correlations. We found
that after integration with respect to Mtt̄ for the full range 2mt ≤ Mtt̄ ≤
ECMS, the deviation of the spin asymmetry A from the SM result is very
small, below the estimated sensitivity of the ATLAS experiment [24]. When
we imposed the selection criteria MZ2

− 50GeV < Mtt̄ < MZ2
+ 50GeV

for the range of the integration, the deviation of the spin asymmetry from
the SM one is remarkably enhanced (around 50% of the SM value), even
if the total cross-sections are almost the same. By using the same analysis

5 Cross sections in Table I are computed in the leading order. In the SM, NLO contri-
butions significantly increase the total cross-section, nevertheless the spin asymmetry
is insensitive to NLO contributions [15].
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performed in [24], we can estimate the sensitivity for our model. In Ref. [24],
it is shown that the spin asymmetry of the top–antitop pairs in the SM will
be measured with a precision of 6% after one LHC year at low luminosity,
10 fb−1. In our model, for instance, for the case of MZ2

= 900GeV and
σ(cut) = 12.8pb, we will reach the same accuracy of the measurement of
the spin correlation with that of the SM when the integrated luminosity is
270 fb−1 (= 2.7 years of high luminosity LHC run). Note that it is very
rough estimation since the sensitivity of the ATLAS experiment on the spin
correlation published in [24] was estimated selecting low energetic top quarks
with Mtt̄ < 550GeV. In order to estimate the sensitivity more accurately
with a high Mtt̄ region for our case, we need Monte Carlo simulations includ-
ing the detector response. It must be the subject of next study. Finally we
compare our results with our previous analysis for Kaluza–Klein productions
in the large extra-dimensions [16] and the Randall–Sundrum model [17]. All
these models affect to reduce the spin asymmetry A from the SM results,
when new physics effects are sizable. This is because the interactions be-
tween new particles and top quarks conserve chirality and as a result the
cross-section of the top–antitop quark pair production for the unlike spin
pair is enhanced from the SM one. In our model with Z ′ boson, the situ-
ation is the same and the spin asymmetry is decreased. Although the spin
asymmetry is decreased in these models, they can be distinguishable since
they have different pole structure, which is specified via the cross-section of
the top–antitop pair production. There is a single pole in the model with
Z ′ boson while no pole exists in the large extra-dimensions and multiple
poles for the Kaluza–Klein gravitons exist in the Randall–Sundrum model.
Actually information of the pole in our model is important to observe a large
deviation of the spin correlation around the pole.

In summary, the top spin correlations is a powerful tool to reveal the
property of the Z ′ boson at the LHC.

Note added: Recently top quark pair productions and their spin cor-
relations through possible new physics s-channel resonances have been in-
vestigated in a model independent way with the use of Monte Carlo simula-
tion [26]. In their analysis, a Z ′ gauge boson couples with the same strength
to fermions as the SM Z boson. Then the peak of the Z ′ resonance pole
in the cross-section against Mtt̄ is larger than ours for the same Z ′ boson
masses. Therefore, the absolute value of the peak corresponding the Z ′ bo-
son resonance in the top spin correlation against Mtt̄ is larger than ours
and consequently their spin asymmetry is much smaller than ours. We have
checked that our results are consistent with ones in [26] when we choose the
same setting as in [26].
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Appendix A

General formula

Consider the following Lagrangian

Lf
int = eJµZµ = ψ̄fγ

µ(gf
LPL + gf

RPR)ψfZµ , (A.1)

where Zµ denotes a massive gauge boson whose mass is M . A polarized
invariant amplitude for the process f(α)f̄(β) → F (δ)F̄ (γ) is given by

M(α, β; γ, δ) =
1

p2 −M2 + iMΓZ
Jµ

in(α, β)Jout µ(γ, δ) , (A.2)

where α, β(γ, δ) denote initial(final) spin states for quark and antiquark,
respectively, and Γ is the decay width of Z boson. The currents of gauge
bosons for initial (massless) and final (massive) states are given by

Jµ
in(+,−) = −

√
sgf

R(0, 1, i, 0) , Jµ
in(−,+) = −

√
sgf

L(0, 1,−i, 0) , (A.3)

and

Jµ
out(+,+) = ω+ω−

{

gF
L(1,−sin θ, 0,−cos θ)−gF

R(1, sin θ, 0, cos θ)
}

, (A.4)

Jµ
out(−,−) = ω+ω−

{

gF
L(1, sin θ, 0, cos θ)−gF

R(1,−sin θ, 0,−cos θ)
}

, (A.5)

Jµ
out(+,−) = ω2

−g
F
L(0,−cos θ, i, sin θ)−ω2

+g
F
R(0, cos θ,−i,−sin θ) , (A.6)

Jµ
out(−,+) = ω2

+g
F
L(0,−cos θ,−i, sin θ)−ω2

−g
F
R(0, cos θ, i,−sin θ) , (A.7)

where ω2
± =

√
s/2 (1 ± βF), βF =

√

1 − (4m2
F)/s and f(F ) denotes a flavor

of initial (final) state of fermions.
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Appendix B

Couplings

The couplings for the SM Z boson:

gν
L,1 =

e

cos θW sin θW
1
2 ,

gν
R,1 = 0 , (B.1)

gl
L,1 =

e

cos θW sin θW

(

−1
2 − sin2 θW(−1)

)

,

gl
R,1 = −e(−1) tan θW , (B.2)

gu
L,1 =

e

cos θW sin θW

(

1
2 − sin2 θW

2
3

)

,

gu
R,1 = −e2

3 tan θW , (B.3)

gd
L,1 =

e

cos θW sin θW

(

−1
2 − sin2 θW

(

−1
3

))

,

gd
R,1 = −e

(

−1
3

)

tan θW , (B.4)

The couplings for Z ′ boson:

gν
L,2 =

e

cos θW
1
2 tan φ , gν

R,2 = 0 , (B.5)

gl
L,2 =

e

cos θW
1
2 tan φ , gl

R,2 = e
cos θW

tanφ , (B.6)

gu
L,2 =

e

cos θW

(

−1
6

)

tan φ , gu
R,2 =

e

cos θW

(

−2
3

)

tanφ , (B.7)

gd
L,2 =

e

cos θW

(

−1
6

)

tan φ , gd
R,2 =

e

cos θW
1
3 tan φ . (B.8)

Appendix C

Decay width

The decay widths of Z(Z1) and Z ′(Z2) bosons:

Γ (Zi → νν̄) =
MZi

24π

(

(

gν
L,i

)2
+ (gν

R,i)
2
)

, (C.1)

Γ (Zi → ll̄) =
MZi

24π

(

(

gl
L,i

)2
+
(

gl
R,i

)2
)

, (C.2)

Γ (Zi → uū) =
MZi

24π
3
(

(

gu
L,i

)2
+ (gu

R,i)
2
)

, (C.3)

Γ (Zi → dd̄) =
MZi

24π
3

(

(

gd
L,i

)2
+ (gd

R,i)
2

)

, (C.4)
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Γ (Zi → tt̄) =
MZi

24π
3βt

×
[(

1 − m2
t

M2
Zi

)

(

(

gt
L,2

)2
+ (gt

R,2)
2
)

+ 6
m2

t

M2
Zi

gt
L,2g

t
R,2

]

δi2 ,

(C.5)

where βt =
√

1 − 4m2
t/M

2
Z2

.
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