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We investigate the behaviour of a non-commutative radiating Reissner–
Nordstrom(Re–No)black hole. We find some interesting results: (a) the
existence of a minimal non-zero mass to which the black hole can shrink,
(b) a finite maximum temperature that the black hole can reach before
cooling down to absolute zero, (c) compared to the neutral black holes the
effect of charge is to increase the minimal non-zero mass and lower the
maximum temperature, (d) the absence of any curvature singularity. We
also derive some essential thermodynamic quantities from which we study
the stability of the black hole. Finally we find an upper bound for the
non-commutativity parameter θ.

PACS numbers: 02.40.Gh, 04.70.Dy

1. Introduction

It is generally believed that the picture of continuous space-time should
break down at very short distances of the order of the Planck length. Field
theories on noncommutative spaces may play an important role in unraveling
the properties of nature at the Planck scale. It has been shown that the
noncommutative geometry naturally appears in string theory with a non
zero antisymmetric B-field.

Beside the string theory arguments the noncommutative field theories
are very interesting on their own right. In a noncommutative space-time the
coordinate operators satisfy the relation

[x̂µ, x̂ν ] = iθµν , (1)

where x̂ are the coordinate operators and θµν is an antisymmetric tensor of
dimension (length)2. In general noncommutative version of a field theory is
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obtained by replacing the product of the fields appearing in the action by
the star products

(f ? g)(x) = exp
(
i

2
θµν

∂

∂xµ
∂

∂yν

)
f(x)g(y) |x=y , (2)

where f and g are two arbitrary functions that we assume to be infinitely
differentiable.

In recent years there have been a lot of work devoted to the study of
noncommutative field theory and noncommutative quantum mechanics, and
possible experimental consequences of extensions of the standard formal-
ism (see the reviews [1] and references therein). Apart from this there has
been also a growing interest in possible cosmological consequences of space
non-commutativity. Here we focus on Reissner–Nordstrom black hole in
noncommutative spaces.

In a recent work [2], the authors studied the Re–No black hole in non-
commutative spaces. They argued that using commutation relations (1) and
coordinate transformation xi = x̂i + 1

2θij p̂j , pi = p̂i, where pi and xi satisfy
the usual commutation relations of quantum mechanics, the Re–No black
hole can be extended to noncommutative spaces. By a substitution of radial
coordinate in terms of its noncommutative equivalent r → r̂ = x̂ix̂i, the
authors derived a line element for Re–No black hole in a noncommutative
space and studied its thermodynamics. The main problem regarding their
line element is: It does not seem to be solution of Einstein’s equations. Then
the question arises that what is the relevant equation, and what are the def-
inition of energy and temperature for this new equation? There seems to
be no modified Einstein’s equations in this case, so the physical relevance of
the resulting line element is obscure. Another unclear point is that once r̂ is
written in terms of the matrix θij and the conventional position operators
xi and momenta pi, ds2 is far from what we mean by a line element.

Another important point is that the proposed line element (see Sec. 4
in [2]) exhibits, by the presence of the charge, a behaviour worse than 1/r4,
with an inconsistent spherical symmetry breaking. And finally one more
unconvincing result regarding this perturbative expansion (in θ parameter)
approach is that curvature singularities continue to exist in spite of introduc-
ing a minimal length. Coordinate noncommutativity implies the existence of
a finite minimal length

√
θ, below which concept of “distance” becomes phys-

ically meaningless. This underlines the problem to define the line element,
namely the infinitesimal distance between two nearby points in Einstein’s
gravity.

In Sec. 2 we study the Re–No black hole in noncommutative spaces that
solve the above mentioned inconsistencies. We begin by a brief review of
Re–No black hole in commutative spaces.
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A spherically symmetric solution of the coupled Einstein’s and Maxwell
equations is that of Reissner and Nordstrom, which represents a black hole
with mass M and charge Q.

The metric of the Re–No black hole is given by1:

ds2 =
(

1− 2M
r

+
Q2

r2

)
dt2 − dr2(

1− 2M
r + Q2

r2

) − r2dΩ2 . (3)

There are two apparent singularities at

r± = M ±
√
M2 −Q2 , (4)

provided M ≥ Q. Cosmic censorship dictates this inequality, and hence
there is an external event horizon at r+. The other horizon r− is the internal
Cauchy horizon. The limiting case when Q = M and r+ = r− is referred to
as the extremal case.

2. Reissner–Nordstrom black hole in noncommutative spaces

To analyze black holes in the framework of noncommutative spaces one
has to solve corresponding field equations. It is argued [3,4] that it is not
necessary to change the Einstein’s tensor part of the field equations, and
that the noncommutative effects act only on the matter source. The un-
derlying philosophy of this approach is to modify the distribution of point
like sources in favor of smeared objects. This is in agreement with the con-
ventional procedure for the regularization of UV divergences by introducing
a cut off. Thus we conclude that in general relativity, the effect of noncom-
mutativity can be taken into account by keeping the standard form of the
Einstein’s tensor in the left-hand side of the field equation and introduc-
ing a modified energy momentum tensor as a source in the right-hand side.
This is exactly the gravitational analogue of the noncommutative modifica-
tion of quantum field theory [5]. For the reasons mentioned in the previous
section, we have developed an effective approach where noncommutativity
is implemented only through a Gaussian de-localization of matter sources.
In this way no problem arises in defining the line element and Einstein’s
equations are kept unchanged. We can summarize the approach as follows:
(a) in noncommutative geometry there cannot be point-like object, because
there is no physical distance smaller than a minimal position uncertainty
of the order of

√
θ, (b) this effect is implemented in space-time through

matter de-localization, which by explicit calculations [5] turns out to be of
1 We have employed Gaussian units along with natural units, and set Newton’s constant

to unity.
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Gaussian form, (c) space-time geometry is determined through Einstein’s
equations with de-localized matter sources, (d) de-localization of matter re-
sults in a regular, i.e. curvature singularity free, metric. This is exactly
what is expected from the existence of a minimal length.

The effect of smearing is mathematically implemented as a “substitution
rule”: position Dirac-delta function is replaced everywhere with a Gaussian
distribution of minimal width

√
θ. Inspired by this result, we choose the mass

density of a static, spherically symmetric, smeared, particle-like gravitational
source as [3,4]

ρθ(r) =
M

(4πθ)
3
2

exp
(
−r2

4θ

)
. (5)

A particle of mass M , instead of being perfectly localized at a point is
diffused throughout a region of line size

√
θ. This is due to the intrinsic

uncertainty encoded in the coordinates commutator (1).
By solving the Einstein’s equations with ρθ(r), as a matter source, we

find the line element:

ds2 = −g00 dt
2 + g−1

00 dr
2 + r2 dΩ2 , (6)

where

g00 = 1− 4M√
πr

γ

(
3
2
,
r2

4θ

)
+
Q2

πr2
γ2

(
1
2
,
r2

4θ

)
− Q2

πr
√

2θ
γ

(
1
2
,
r2

2θ

)
, (7)

and

γ
(a
b
, x
)
≡

x∫
0

du

u
ua/be−u , (8)

is the lower incomplete Gamma function.
In the limit r/

√
θ →∞, we get the classical Re–No metric i.e. the Re–No

metric in commutative spaces. The line element (6) describes the geometry
of a noncommutative Re–No black hole and gives us useful information about
possible noncommutativity effects on the properties of this type of black hole.
Using equation g00(rH) = 0, one can find the event horizon(s):

r± =
2M√
π
γ

(
3
2
,
r2

4θ

)
+

Q2

2π
√

2θ
γ

(
1
2
,
r2

2θ

)

±1
2

[(
4M√
π
γ

(
3
2
,
r2

4θ

)
+

Q2

π
√

2θ
γ

(
1
2
,
r2

2θ

))2

+
4Q2

π
γ2

(
1
2
,
r2

4θ

)] 1
2

. (9)
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It is convenient to invert Eq. (9) and consider the black hole mass M as
a function of rH:

M =
Q2

2
√

2πθ
+

1

γ
(

1
2 ,

r2H
4θ

) [√π
4
rH +

Q2

4
√
π rH

G(rH)
]
, (10)

where

G(r) ≡ γ2

(
1
2
,
r2

4θ

)
− r√

2θ
γ

(
1
2
,
r2

2θ

)
. (11)

In the limit rH/
√
θ � 1, where one expects significant changes due to space

non-commutativity, Eq. (10) leads to

M →M0 ≈ 0.5
√
πθ + 0.2

Q2

√
πθ

, (12)

which is an interesting result. Noncommutativity implies a minimal non-
zero mass that allows the existence of an event horizon. If the black hole
has an initial mass M > M0, it can radiate until the value M0 is reached.
At this point the horizon has totally evaporated leaving behind a massive
relic. Since black holes with mass M < M0 do not exist there are three
possibilities:

1. For M > M0 there is a black hole with regular metric at the origin.

2. For M = M0 the event horizon shrinks to zero.

3. For M < M0 there is no horizon.

The reason why it does not end-up into a naked singularity is due to the
finiteness of the curvature at the origin. Compared to the neutral black hole
(Q = 0) the effect of charge is to increase the minimal non-zero mass.

The physical nature of the massM0 remnant is clearer if we consider the
black hole temperature as a function of rH. We have

TH ≡
(

1
4π

dg00

dr

)
r=rH

=
1

4πrH

[
1−N(θ)− 4Q2

πr3H
γ2

(
3
2
,
r2H
4θ

)
− Q2

πr3H
N(θ)G(rH)

]
, (13)

where

N(θ) =
r3H exp(−r

2
H

4θ )

4θ
3
2γ
(

3
2 ,

r2H
4θ

) . (14)
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In the large radius limit, i.e. rH/
√
θ � 1, one recovers the standard

result for the Hawking temperature:

TH =
1

4πrH
− Q2

16πr3H
=

1
4πrH

(
1− Q2

4r2H

)
. (15)

On the other hand in the limit rH/
√
θ → 0, we have

TH ∝
rH
πθ

,
rH√
θ
→ 0 . (16)

Eqs (15) and (16) are very interesting and have two important consequences.
First, when the black hole completely evaporates it reaches zero tempera-
ture and there will be no horizon. Second, it reaches a maximum temper-
ature while passing from the regime of large radius to the regime of small
radius. This is the same behaviour encountered in the noncommutative neu-
tral case [3]. The effect of charge is just to lower the maximum temperature,
see Eq. (15).

3. Specific heat, free energy and thermodynamic stability

A black hole as a thermodynamic system is unstable if it has negative
specific heat. We study the thermodynamic stability of noncommutative
Re–No black hole by evaluating its specific heat and free energy.

We know that the entropy is proportional to the area of event horizon:

S =
A

4
= πr2H . (17)

Using the first law of thermodynamics dE = TdS + Φdq, where Φ is the
electrostatic potential, we obtain the following expression for the energy:

E = M0 + 2π

rH∫
r0

r′′HT (r′′H) dr′′H +

rH∫
r0

Φ(r′′H) dq(r′′H) , (18)

whereM0 is the minimal mass below which no black hole can be formed and
r0 is the minimal horizon, see Eq. (10).

In order to check the stability of the noncommutative Re–No black hole
we evaluate the heat capacity:

Cv =
∂E(rH)
∂T (rH)

=
(
∂E(rH)
∂rH

)(
1

∂T (rH)
∂rH

)
. (19)
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E increases monotonically as r increases, but as mentioned earlier T has
a maximum at r = rmax. Below (above) rmax, T is a monotonically increasing
(decreasing) function of r. The heat capacity is positive for r0 < rH < rmax

and negative for rH > rmax. Thus the black hole is stable if r0 < rH < rmax,
and is unstable if rH > rmax.

The free energy of the noncommutative Re–No black hole is given by:

F = E(rH)− T (rH)S(rH) . (20)

By evaluating F , and using the fact that the black hole is stable (unstable)
when the free energy has a local minimum (maximum), we again see that
for rH < rmax the black hole is stable while it is unstable if rH > rmax.

4. The upper bound on the noncommutativity parameter θ

Using Eq. (12) and the extremal condition Mext = Q, one can find an
upper bound on the noncommutativity parameter θ. We have:

0.5
√
πθ + 0.2

Q2

√
πθ
≥Mext = Q , (21)

which gives the following upper bound for the noncommutativity parame-
ter θ:

θ ≤ 0.02Q2 . (22)

It is also interesting to discuss our expectation about the lower bound for
the parameter θ. As mentioned earlier passing from the regime of large
radius to the regime of small radius, Eqs (15) and (16) imply the existence
of a maximum temperature. The role of charge is to lower the maximum
temperature.

In commutative case one expects relevant back-reaction effects during
the terminal stage of evaporation because of huge increase of temperature.
As it has been shown, the role of noncommutativity is to cool down the
black hole in the final stage. As a consequence [4], there is a suppression of
quantum back-reaction since the black hole emits less and less energy. But
back-reaction may be important during the maximum temperature phase.
In order to estimate its importance in this region, we consider the thermal
energy E = TH and the total mass M . In order to have significant back-
reaction effect Tmax.

H should be of the same order of magnitude as M . For
the neutral case i.e. Q = 0, from Eqs (10) and (13) we have M ∼= 2.4

√
θM2

Pl

and Tmax.
H = 1.5× 10−2/

√
θ, so we shall obtain the following estimation:
√
θ ≈ 10−1`Pl = 10−34cm . (23)
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For the case of charged black holes, the role of charge is to lower the maxi-
mum temperature. Therefore, we obtain even smaller values for the noncom-
mutativity parameter θ. Expected values of

√
θ are well above the Planck

length `Pl, so (23) (and the smaller values for the case of charged black
holes) indicate that back-reaction effects are suppressed if

√
θ ≈ 10`Pl (or

even
√
θ > 10`Pl for the case of charged black holes). For this reason we

can safely use unmodified form of the metric (6) during all the evaporation
process. So, we can safely consider

√
θ ≥ 10−33 cm.

5. Discussion

In this section we discuss two important issues. First, since the concept
of a black hole is inherently coordinate-independent, and since the restriction
to space–space noncommutativity implies the choice of a specific space-time
slicing, it is not obvious that the inferred modifications of black hole proper-
ties are coordinate independent features. Then the question is how we can
justify the general covariance of the results. The modifications occurring
at the level of energy momentum tensor (EMT) do not modify its tenso-
rial properties. In other words, the noncommutativity provides a fluid type
EMT instead of the conventional EMT generating the Schwarzschild solu-
tion, which is wrongly considered a vacuum solution [6,8]. We only need to
solve the Einstein’s equations plugging this new EMT in the same way as
one considers a cosmological fluid in the Robertson–Walker space-time. Of
course, these coordinates coincide with the Schwarzschild spherical coordi-
nates as can be seen from the solution slightly away from the origin. There-
fore, there is no problem with coordinate independence once the derivation
is tensorially consistent.

Second, how we can implement noncommutativity by changing only the
matter part of Einstein’s equation and leaving the left hand side of the equa-
tion intact. One of the main differences between noncommutative and com-
mutative theories stems from the fact that in a noncommutative space the
coordinates operators have no common position eigenvectors due to Eq. (1).
It has been known since the seminal work of Glauber in quantum optics [7],
that there exist coherent states that are eigenstates of annihilation opera-
tor. As already stated, the reason behind use of coherent states is that there
are no coordinate eigenstates for NC coordinates and no coordinate repre-
sentation can be defined. Therefore, ordinary wave functions (in quantum
mechanics) or fields defined over points (in Quantum field theory) can not
be defined anymore. Coherent states are the closest to the sharp coordi-
nate states that one can define for NC coordinates in the sense that they are
minimal-uncertainty states and enable us to define mean values of coordinate
operators. Coherent states, properly defined as eigenstates of ladder oper-
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ators built from noncommutative coordinate operators only, are the closest
to the sharp coordinate states, which we can define for non-commutative
coordinates. This means that coordinate coherent states are the minimal
uncertainty states over the noncommutative manifold and allow us to calcu-
late the aforementioned mean values [8]. This implies that the matter field is
also modified, since now it has to be written in terms of “mean coordinates”,
even though “formally” it is left unchanged.

6. Conclusions

In conclusion, we have studied the Re–No black hole in noncommutative
spaces. We have found the Re–No metric and Hawking temperature in
noncommutative spaces that reproduce exactly ordinary Re–No solution at
large distances (r/

√
θ →∞). We have shown that like the neutral case there

is a minimal non-zero mass M0 ≈ 0.5
√
πθ + 0.2Q2/

√
πθ to which a black

hole can decay through radiation. The effect of charge Q is to increase this
minimal mass. The reason why it does not end-up into a naked singularity
is due to the finiteness of the curvature at the origin. From thermodynamics
point of view, the same kind of regularization takes place eliminating the
divergent behaviour of Hawking temperature. As a consequence, there is
a maximum temperature that the black hole can reach before cooling down to
absolute zero. The effect of charge Q is to lower this maximum temperature.

We have also found an upper bound for the noncommutativity parame-
ter θ.

I would like to thank R. Allahverdi (UNM) for proofreading of this
manuscript.
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