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1. Introduction

The problem of the cosmological constant Λ, originally introduced into
the field equations of the general theory of relativity by Einstein [1] to create
a static universe, remains a subject of active research. Current astronomical
observations limit the magnitude of Λ to at most an extremely small fraction
of the Planck value,

|Λ| ≈ 4λ× 10−123ΛP , (1)

irrespective of acceleration, where

ρΛP
≡ ΛP

8πL2
P

=
3MP

4πL3
P

, (2)

MP ≡ 1.22× 1019 GeV is the Planck mass, GN ≡M−2
P ≡ L2

P is the Newton
gravitational constant, and

λ ≡ ρΛ
ρ0

(3)

is the fraction of matter observed today in the form of cosmological constant,
while ρ0 ≡ 1.88×10−29h2 g cm−3 is the present-day energy-density for a flat
three-space, so that λ . 0.3. Here we assume a Friedmann space-time

ds2 = dt2 − a2(t)dx2 , (4)
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where t is comoving time, a(t) ≡ a0 e
α(t) is the radius function of the three-

space dx2, whose curvature is k, and dα/dt ≡ 100h km s−1 Mpc−1 is the
Hubble parameter, with h ≈ 1/2.

The smallness of the ratio |Λ|/ΛP leads one in the first instance to seek
a mechanism which sets Λ equal to zero, and quantum cosmology seems
naturally to provide such a method. In the covariant approach, the wave
function of the Universe Ψ is expressed as a Feynman path integral of the
form

Ψ =
∑
paths

exp (iS) . (5)

For certain topologies, including the space-time (4), the Lorentzian metric
gij(xk) can be Euclideanized in such a way that all components of the metric
remain real, via Wick rotation of the time coordinate,

t→ ±iτ . (6)

The Euclidean action SE is so defined that Euclidean, matter kinetic-energy
terms occur with a positive sign. For the example of a scalar field φ, the
Lorentzian Lagrangian L 3 φ̇2/2 is chosen to transform into the Euclidean
Lagrangian LE 3 φ

′2/2, where • ≡ d/dt and ′ ≡ d/dτ . In Minkowski space-
time, the purpose of Euclideanizing the action is to improve the convergence
properties of the path integral (5), and positive semi-definiteness of LE and
SE then necessitates replacing the exponent iS in expression (5) by −SE,
which is achieved by choosing the minus sign in the rotation (6),

t→ −iτ . (7)

Thus, we have

iS= i

∫
dtd3x

√
−g

(
φ̇2

2
+. . .

)
→−

∫
dτd3x

√
−g

(
φ
′2

2
+ . . .

)
≡−SE . (8)

Ignoring problems with the sign of the gravitational kinetic term in the ac-
tion — which is the opposite from the sign of the matter kinetic terms if
only the Einstein–Hilbert term −R/2κ2 is taken into account — and assum-
ing the conventional probabilistic interpretation of Ψ to hold good, in the
sense that ΨΨ∗ can be regarded as a probability density, it then follows that
the most probable configuration is obtained by maximizing the Euclidean
exponent (−SE).

Following an earlier paper on quantum tunnelling probabilities by Vilen-
kin [2], this line of reasoning led Hawking [3,4] to argue, from the existence
of the de Sitter instanton, that the cosmological constant should vanish.
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For assuming a spatially closed de Sitter metric, generated by a positive
semi-definite cosmological constant Λ, it turns out that the Euclidean action
of the instanton configuration is

SE = − 3π
GNΛ

. (9)

Expression (9) implies that −SE → +∞ as Λ→ 0+, and justifies the result,
assuming the cosmological constant to be freely variable, that Λ should
vanish.

A complication may arise if the cosmological constant is partly or wholly
an effective one, produced by the non-vanishing, vacuum expectation value of
an additional field, as discussed by Duff [5], with regard to the totally anti-
symmetric four-index field Hijkl, obtained from the three-index potential
Aijk [6, 7],

Hijkl = A[ijk,l] . (10)

This field is defined by the Lagrangian

LH =
1
48
HijklH

ijkl , (11)

the classical solution to the resulting field equations being

Hijkl = Kεijkl , (12)

where K is an arbitrary constant and εijkl =
√
−g δijkl.

Eq. (12) results in a contribution to the cosmological constant

ΛH = 1
2κ

2K2 (13)

in the Einstein equations. It was found in Ref. [5], however, that the field
Hijkl contributes differently to the net “cosmological constant” in the La-
grangian, actually reversing the sign of the action by comparison with the
result for a genuine cosmological constant Λ. The underlying reason for this,
of course, is the additional complexity due to the fact that expression (11)
can be expanded as

HijklH
ijkl ≡ H ijklHmnopgimgjngkoglp , (14)

which contains four factors of the metric tensor gij , whereas the cosmological
constant per se contains none. As we shall see below, a similar effect occurs
with other higher-derivative field contributions to the Lagrangian, although
without necessarily reversing the sign of the coefficient of

√
−g in L.
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This result raises the question of the sense of the Wick time-rotation (6).
For if instead of (7) we choose the opposite rotation

t→ iτ , (15)

then Ψ ∼ exp (SE), and since SE > 0 in the case just discussed, then the
argument of Refs [3,4] still applies, although now LE 3 −φ′ 2/2, which would
lead to matter instabilities. The choice of sign in expression (6) reflects the
boundary condition imposed upon the wave function — see Vilenkin [8] for
a thorough discussion.

Recently, however, the situation has been clarified by Wu [9], who showed
that addition of the surface term

δS = −1
6

∫
dΣ iAjklH

ijkl (16)

restores the equality between the net cosmological constant occurring in the
Einstein equations and the coefficient of −κ−2√−g in the Lagrangian, which
resolves the problem without need to change the sense of direction of the
Wick rotation.

2. Further generalizations

The mechanism of Refs [3,4] can be straightforwardly generalized to in-
duced gravity [10], for example, in which the gravitational constant is re-
placed by the vacuum expectation value of a scalar field, (8πGN)−1 → εφ2

0,
in a theory of the form

L = −1
2εφ

2R+ 1
2 (∇φ)2 − V (φ) , (17)

where ε is a positive constant, typically of order unity, and V (φ) is a suitable
potential. It can also be applied to theories in dimensionality D > 4, via
the corresponding higher-dimensional four-index field ĤABCD(A = 0, 1, . . .
D − 1) [11].

Additionally, it is possible to envisage more complicated gravitational La-
grangians, which include higher-derivative terms R̂n as well as the Einstein–
Hilbert term −R̂/2κ̂2. To be specific, let us consider the D-dimensional the-
ory containing terms of quadratic, cubic and quartic order, n = 0, 1, 2, 3, 4,

L̂ = −(R̂+ 2Λ̂0)
2κ̂2

+ L̂(2)
(
R̂, R̂AB, R̂ABCD

)
+ L̂(3)

(
R̂, R̂AB, R̂ABCD

)
+ L̂(4)

(
R̂, R̂AB, R̂ABCD

)
. (18)

Our conventions are those of Landau and Lifschitz [12], where the signature
of the metric is sgn(ĝAB) = (+−−− . . .) and the Riemann–Christoffel and
Ricci tensors are defined as
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R̂ABCD = ∂C Γ̂
A
BD − ∂DΓ̂ABC + Γ̂ACEΓ̂

E
BD − Γ̂ADEΓ̂EBC (19)

and
R̂AB = R̂ C

ACB , (20)

respectively, so that the Einstein equations read

R̂AB − 1
2R̂ĝAB = κ̂2T̂AB , (21)

with a positive matter source T̂AB on the right-hand side.
Thus, for a perfect fluid characterized by energy density ρ̂ and pressure p̂,

we have
T̂AB = (ρ̂+ p̂)ûAûB − p̂ĝAB , (22)

if the manifold admits a time-like unit vector ûA satisfying

ûAû
A = 1 . (23)

In this case, contraction of Eqs (21) yields the trace

−1
2 (D − 2) R̂ = κ̂2 [ρ̂− (D − 1) p̂] , (24)

which for a cosmological constant ρ̂ = −p̂ = Λ̂/κ̂2 yields

R̂ = −
(

2D
D − 2

)
Λ̂ . (25)

For the maximally symmetric space-time

R̂ABCD =
2

(D − 1)(D − 2)
Λ̂ (ĝADĝBC − ĝAC ĝBD) , (26)

we therefore obtain the field equations for the theory (18) in the form

R̂AB−1
2R̂ĝAB=

{
Λ̂0+

κ̂2

D

[
(4−D)L̂(2)+(6−D)L̂(3)+(8−D)L̂(4)

]}
ĝAB , (27)

the trace of which is

R̂ = −
(

2D
D−2

){
Λ̂0+κ̂2

[(
4−D
D

)
L̂(2)+

(
6−D
D

)
L̂(3)+

(
8−D
D

)
L̂(4)

]}

≡ −
(

2D
D − 2

)
Λ̂eff , (28)
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the effective cosmological constant being

Λ̂eff = Λ̂0 + κ̂2

[(
4−D
D

)
L̂(2) +

(
6−D
D

)
L̂(3) +

(
8−D
D

)
L̂(4)

]
. (29)

Substitution of Eq. (28) into Eq. (18) yields

L̂ =
(

2
D − 2

)(
Λ̂0

κ̂2
+ L̂(2) + 2L̂(3) + 3L̂(4)

)
. (30)

Comparing Eqs (29) and (30), we see that the coefficient of −κ̂−2
√
−ĝ in

the Lagrangian density L̂ is a complicated multiple of Λ̂eff in general, so
that the application of probabilistic arguments to set Λ̂eff = 0 may require
either of the Wick rotations (7) or (15), assuming that Λ̂0 is freely variable
— clearly, we can envisage different Lagrangians with different Λ̂0’s.

3. The heterotic superstring theory

The heterotic superstring theory of Gross et al. [13-15] presents an in-
teresting example. After reduction to four dimensions, the non-vanishing
terms of relevance in the effective action are the Einstein–Hilbert, quadratic
and quartic gravitational contributions, corresponding to n = 1, 2 and 4.
From Eq. (28), setting D = 4 and Λ0 = L̂(3) = 0, we have

R = −4κ2L(4) ≡ −4Λeff , (31)

while Eq. (30) yields

L = L(2) + 3L(4) = L(2) +
3Λeff

κ2
. (32)

In this case, Λeff is not continuously variable, but can take the two discrete
values given by Eq. (52) of Ref. [16], hereafter called paper I,

Λeff = 0,− [18/175ζ(3)]1/3A−1
r κ−2 , (33)

where 1/Ar ≡ g2
0 is the inverse modulus of the physical four-space, g2

0 being
the tree-level gauge coupling.

Note that the coefficient of
√
−g in L is now arbitrarily variable a priori,

since the contribution to the field equations derived from L(2) vanishes iden-
tically in a maximally symmetric space, while L(2) itself is non-vanishing in
general. We have

L(2) = B(R2 − CRijRij) = 4B(4− C)Λ2
eff , (34)
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showing that the magnitude and sign of L(2) can be freely adjusted by vary-
ing the coefficients B and C, unless C = 4, which causes L(2) to vanish. For
the heterotic superstring theory, the constant B is given by the formula [17]

B = ArB
−2
r B̃ , (35)

where Br is the radius squared of the internal space ḡµν , B̃ is defined by the
integral

B̃ =
1
8
ζ(3)κ4

∫
d6y
√
ḡR̄µνξoR̄

µνξo

/∫
d6y
√
ḡ ≈ 4 (36)

and ζ(3) ≡ 1.202 is the Riemann zeta function, according to the numerical
estimate [18], while C = 1. Therefore, the Lagrangian (32) is

L = 3(4BΛeff + κ−2)Λeff . (37)

From Eqs (33), (35) and (36), we find that

4Bκ2Λeff = −4 [18/175ζ(3)]1/3 B̃B−2
r = −0.783

(
B̃

4

)(
3
Br

)2

, (38)

in which Br has been scaled approximately to the Hagedorn value B(H)
r =

2.914.
Due to the uncertainty of the numerical estimate (38), the sign of ex-

pression (37) is unclear. It may even be that L is exactly zero for both
solutions (33), if Eq. (38) is exactly equal to −1, but there seems no partic-
ular reason why this should be, especially since we have ignored the trace
anomaly, which would then become significant.

We can now apply the above analysis [3, 4] to argue that the solution
with vanishing Λeff , that is Minkowski space, is preferred probabilistically
over the anti-de Sitter space solution with non-vanishing Λeff .

In reaching this result, we utilize the fact that a negative cosmological
constant can be dealt with in the same way as a positive one. We can re-
alize this by constructing the “anti-de Sitter instanton”, obtained by Wick
rotation, not of the time coordinate t, but rather of the radial spatial coor-
dinate r, via Eq. (I90), referred to the Friedmann space-time (4),

r → ±iρ̃ . (39)

The line element for a real open three-space is thereby converted into the
corresponding imaginary closed one, expressed in coordinates (t, ρ̃, θ, φ) as
Eq. (I91),

ds2 = dt2 + a2(t)
[
dρ̃2

1− ρ̃2
+ ρ̃2(dθ2 + sin2 θdφ2)

]
, (40)
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where a(t) is the solution to the Friedmann equation (I89), setting Λ < 0,
k < 0,

ȧ2

a2
= −|Λ|

3
+
|k|
a2

. (41)

Up to an overall minus sign, expression (40) is precisely the line ele-
ment that one would have obtained from the Wick rotation (6) applied to
the time coordinate t in the spatially closed de Sitter space, for which the
Euclideanized Friedmann equation (I74) reads, setting Λ > 0, k > 0,

a′ 2

a2
= −Λ

3
+

k

a2
, (42)

the two problems now being completely equivalent to one another. (Let us
emphasize that the metric contains all the geometrical information about
the space-time under consideration.) Finally, we can resolve the sign inde-
terminacy in Eq. (39) by choosing r = iρ̃, so that

iS = −1
2

∫
d4x̃
√
g̃
[
φ̇2 + a−2(t)(1− ρ̃2)(∂ρ̃φ)2 + . . .

]
≡ −S̃E . (43)

The Euclidean action of the anti-de-Sitter instanton is

S̃E = 288π2B +
9π

GNΛeff
. (44)

4. The Wheeler–DeWitt equation

Results obtained from the covariant approach to quantum cosmology
should also generally be derivable from the canonical approach, in which the
time coordinate is singled out for special treatment. Due to the high degree
of symmetry of the maximal space-time (26), we restrict consideration to
the mini-superspace, assuming a Lorentzian line element in the Friedmann
form (4). Quantization of the resulting Hamiltonian constraint H = yields
the Wheeler–DeWitt equation [19,20] for the wave function of the Universe Ψ

HΨ = 0 , (45)

where H is the operator corresponding to H. The four-dimensional theory
(18), with Λ = 0, k = 0, is discussed from this viewpoint in Refs [17,21]
(Ref. [21] is hereafter called paper II), the Lagrangian density being Eq. (23)
of Ref. [22], hereafter called paper III. Including also a massless scalar fieldφ,
we have

L = a3
0e

3α
(

1
2 φ̇

2 − κ−2Λ+A0α̇
2 +B0α̇

4 +B2α̈
2 +K0α̇

6 +K2α̇
2α̈2

+K3α̈
3 + C0α̇

8 + C2α̇
4α̈2 + C3α̇

2α̈3 + C4α̈
4
)
, (46)
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in which the index n of the coefficients Zn counts the power of α̈, while An,
Bn or Cn denotes that the term originates from R, R2 or R4, respectively.

The exact expressions for the numerical coefficients Zn are given by
Eqs (III24)–(III40). We have

Λ = −3ka−2 − 24k2κ2Ba−4 − λ′0k4κ6A3
ra
−8 + Λ0 , (47)

A0 = −3κ−2 + 48kBa−2 + a′0k
3κ4A3

ra
−6 , (48)

B0 = b0k
2κ4A3

ra
−4 , B2 = 24B + b′2k

2κ4A3
ra
−4 , (49)

Cn = cnκ
4A3

r , Kn = knkκ
4A3

ra
−2 , (50)

where Λ0 is the bare cosmological constant,

λ′0 = −156ζ(3) + 15/16 , (51)
a′0 = −504ζ(3) + 15/4 , (52)
b0 = −1, 426ζ(3) + 25/4 , b′2 = −366ζ(3) + 3/8 , (53)

c0 = −1
2 [225ζ(3)− 9/14] , c2 = −1, 212ζ(3) + 6 ,

c3 = −255ζ(3) + 15/4 , c4 = 1
2 [27ζ(3) + 15/8]

}
(54)

and

k0 =−1
5 [5, 574ζ(3)−21] , k2 =−1, 659ζ(3)+3/4 , k3 =−309ζ(3) . (55)

The Wheeler–DeWitt equation for the theory (46) has been derived in
the form of a modified Schrödinger equation in the case k = 0, Eq. (II44),
which, including also the field φ and the cosmological constant Λ, setting
k 6= 0, and taking into account terms up to order R4, reads

iξ
∂Ψ

∂α
≈
[
− 1

4B2

(
1−λ2ξ

2−λ′2ξ4
)
a−3

0 e−3α ∂
2

∂ξ2
− i
(
λ3 + λ′3ξ

2
)
a−6

0 e−6α ∂
3

∂ξ3

−λ4a
−9
0 e−9α ∂

4

∂ξ4
− 1

2
a−3

0 e−3α ∂2

∂φ2
+ V(α, ξ)

]
Ψ , (56)

where the potential is given by Eq. (II45),

V(α, ξ) =
[
κ−2Λ−

(
A0ξ

2 +B0ξ
4 +K0ξ

6 + C0ξ
8
)]
a3

0 e
3α , (57)

and the constants λ2,λ′2, λ3, λ′3 and λ4 are defined by

λ2 =
K2

B2
,

λ′2 =
C2

B2
−
(
K2

B2

)2

= −
[

101ζ(3)
2

− 1
4

]
κ4A3

r

B + b′2k
2κ4A3

ra
−4/24

−
(

[1.659ζ(3)− 3/4] kκ4A3
ra
−2

24B + b′2k
2κ4A3

ra
−4

)2

, (58)
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λ3 =
K3

8B3
2

, λ′3 =
C3

8B3
2

− 3K2K3

8B4
2

= −
[

255ζ(3)−15/4
110.592

]
κ4A3

r

(B+b′2k2κ4A3
ra
−4/24)3

− 927 ζ(3)[1.659 ζ(3)− 3/4]k2κ8A6
ra
−4

8(24B + b′2k
2κ4A3

ra
−4)4

(59)

and

λ4 =
C4

16B4
2

−
(

3K3

8B2

)2 1
B3

2

=
[

27ζ(3)+15/8
10, 616, 832

]
κ4A3

r

(B + b′2k
2κ4A3

ra
−4/24)4

−
(

927ζ(3)kκ4A3
ra
−2

192B + 8b′2k2κ4A3
ra
−4

)2 1
(24B + b′2k

2κ4A3
ra
−4)3

. (60)

The “coordinate” in Eqs (56) and (57) is ξ ≡ α̇, and Eq. (56) is obtained
by making the operator replacements

πα → −i
∂

∂α
, πξ → −i

∂

∂ξ
, πφ → −i

∂

∂φ
, (61)

where πα, πξ and πφ are the canonical momenta. The probabilistic inter-
pretation of Ψ is rendered problematic by the presence of the higher-order
operators ∂3/∂ξ3 and ∂4/∂ξ4, but it is still meaningful to study the potential
(57). Further details are contained in paper II, where it was remarked that
expression (57) becomes equal to the Lagrangian density in a maximally
symmetric space-time, for which ξ̇ = 0, when φ̇ = 0.

From Eqs (48), (49), (50) and (54) we see that the Z0 are all negative
semi-definite when k ≥ 0 1, as a consequence of which we have the important
result that the potential (57) is positive semi-definite, being bounded from
below with a minimum V(α, 0) = 0 at ξ = 0, when Λ ≥ 0 and k ≥ 0.

If we assert that the vacuum wave function Ψ0 is independent of both
coordinates (α, ξ), implying a global vacuum state, then Ψ0 has to satisfy
the equation

V(α, ξ)Ψ0 = 0 , (62)
from which it follows that the potential has to vanish,

V(α, ξ) = 0 , (63)

if the wave function is to be finite. We have used this argument pre-
viously [23] to prove that Λ = 0 for the gravitational theory including
quadratic higher-derivative terms R2, obtained from Eqs (56) and (57) in
the approximation of setting the Cn = 0, whereupon Eq. (56) reduces to the
usual Schrödinger equation containing only the second derivative ∂2/∂ξ2.

1 Assuming that 3κ−2 − a′0k
3κ4A3

ra
−6
0 ≥ 48kBa−2.



Maximally Symmetric Superstring Vacua 2699

5. Euclideanization

It is instructive to Euclideanize the Lagrangian density (46), by applying
the Wick rotation (6), with the result that

φ̇ → ∓ iφ′ ,
ξ → ∓ iξ̃ ,
ξ2 → −ξ̃2

and ξ̇ → −ξ̃′ , (64)

where ξ ≡ α̇ and ξ̃ ≡ α′. Thus, adjusting the signs so that the coefficient
of the Euclidean kinetic-energy density of the scalar field φ is positive, by
choosing the sense of rotation (7), we find that

LE =−L= a3
0 e

3α
(

1
2φ
′ 2+κ−2Λ+A0ξ̃

2−B0ξ̃
4−B2ξ̃

′ 2+K0ξ̃
6+K2ξ̃

2ξ̃′ 2

+K3ξ̃
′3 − C0ξ̃

8 − C2ξ̃
4ξ̃′ 2 − C3ξ̃

2ξ̃′3 − C4ξ̃
′4
)
. (65)

In the low-energy limit ξ̃2 � 1, ξ̃′ 2 � 1, it appears that LE is bounded
neither from above nor below, for we then have

LE ≈ a3
0 e

3α
(

1
2φ
′ 2 + κ−2Λ+A0ξ̃

2
)
, (66)

where, from Eq. (48), A0 < 0 for k ≤ 0 or κ−2 > 16Ba−2 + a′0κ
4A3

ra
−6 if

k = 1, implying that A0ξ̃
2 < 0, which would make the Wick rotation (7)

ineffective.
When the higher-order corrections contained in expression (65) are taken

into account, however, the situation becomes more complicated. Whilst the
coefficient A0 of the quadratic term ξ̃2 is generally negative, the coefficients
−B0, K0 and −C0 of the terms ξ̃4, ξ̃6 and ξ̃8, respectively, are all positive
semi-definite, at least for k ≤ 0, the dominant term −C0ξ̃

8 at large ξ̃2 being
positive for all k. For k ≤ 0 and ξ̃′ > 0, the terms K2ξ̃

2ξ̃′ 2, K3ξ̃
′3, −C2ξ̃

4ξ̃′ 2

and −C3ξ̃
2ξ̃′3 are positive semi-definite. The only negative contribution is

−C4ξ̃
′4, due to the fact that C4, defined in Eqs (54), is positive, but it can

be ignored because C4 � |Cn|, n = 0, 2, 3 — specifically, we have

|C0|
C4

=
225ζ(3)− 9/14
27ζ(3) + 15/8

≈ 7.86 ,
|C2|
C4

=
2[1, 212ζ(3)− 6]
27ζ(3) + 15/8

≈ 84.5 ,

|C3|
C4

=
2[255ζ(3)− 15/4]

27ζ(3) + 15/8
≈ 17.6 (67)
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and also
C2

C3
=

1, 212ζ(3)− 6
255ζ(3)− 15/4

≈ 4.79 . (68)

As a result, the negative divergence of LE is effectively prevented, for LE

remains positive semi-definite as ξ̃ →∞, when k ≤ 0, provided that ξ̃′/ξ̃2 ≤√
|C2|/C4 ≈ 9.19 if ξ̃′ ≥ 0, or |ξ̃′|/ξ̃2 ≤ C2/C3 ≈ 4.79 if ξ̃′ ≤ 0. The terms

involving Kn are all subdominant to those involving Cn at large ξ̃, since
they can be grouped as (K0 −C0ξ̃

2)ξ̃6, (K2 −C2ξ̃
4)ξ̃′ 2 and (K3 −C3ξ̃

2)ξ̃′3,
and therefore the same reasoning applies to the case k = 1.

The idea of using theories with higher-derivative terms R2 to improve
the divergence behaviour of the Euclidean action was first suggested by
Horowitz [24], and was further studied in Ref. [25].

This paper was written at the University of Cambridge, Cambridge,
England.
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