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The problem of the particle with variable mass is considered by the
approach of path integral. The Green’s function related to this problem is
reduced to that of a particle with a constant mass. As examples, simple
cases are considered.
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1. Introduction

We know that a simple description of the motion of a particle interacting
with an external environment consists of replacing the mass by a so-called
effective mass, this effective mass is in general variable and dependent on
the position.

From the classical point of view it is known that the Lagrangian or the
Hamiltonian which can be constructed and associated to the equation of
motion relating the particles with variable masses, is not unique. Among
various Lagrangians or Hamiltonians, there exists a form where the kinetic
energy has the standard form in 1

2m(x)ẋ2 or in p2/(2m(x)) (mass being
variable).

From the quantum point of view and at the level of the Hamiltonian, the
replacement of the classical variables x and p by operators x̂ and p̂ poses the
problem of the order. Thus, the Hamiltonian operator and the Schrödinger
equation are not unique and it is not possible, in spite of the limit ~ → 0
that all the Hamiltonian operators give the classical Hamiltonian, to remove
this ambiguity of the order in Ĥ, except some physical conditions such as,
for example, the hermiticity condition.

The problem of variable mass can be formulated by the path integral
approach where the associated propagator takes the standard form of∑
path

exp( i~S(path)) (S being the action). For this purpose it is necessary to
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start with a Hamiltonian operator where the order is fixed, and then to
use the usual process: application of the Trotter formula, elimination of op-
erators x̂ and p̂. The order problem in Ĥ is then transposed in the path
integral on the various ways of carrying out the discretization (post-point or
mid-point, . . . ). For example, if Ĥ is chosen [1] following the Weyl order, it
will appear in the path integral formulation the Lagrangian of classical me-
chanics where the mid-point plays a central role. In addition, in some cases
of potentials it is necessary to introduce regulating functions or to change
the parameterization of paths by using a new time “s” instead of the usual
time t in order to obtain a regular expression. This procedure completed
with a transformation on the coordinates enabled to solve practically all the
problems of standard quantum mechanics [2].

In this paper we propose, using the path integral approach, to consider
the problem of position dependent mass which is not sufficiently studied,
despite the large literature which has been devoted to it [3–9].

Also, our aim in this paper is to show, by using the path integral for-
malism, how to transform the problem of a particle having a variable mass
into a problem of particle with a constant mass and to establish the effective
potential Veff in ~2 which was induced.

For this purpose, we adapt the procedure of Duru–Kleinert related to
particles having a constant mass in order to determine the corrections in-
duced by the regularization and the transformation on the coordinate.

Finally, let us note that the problem of variable mass has been also
studied by the so-called supersymmetric approach and that connection with
the mass constant problem was shown by using the transformations on the
coordinates and on the wave functions [10].

2. Green’s function

First, let us consider the Green’s function operator G, solution of the
formal equation

(E − Ĥ) Ĝ = i~I , (1)

where
Ĥ = T̂ + V̂ , (2)

is the Hamiltonian operator with the kinetic term

T =
1
4

[
mα(x) p̂mβ(x) p̂mγ(x) +mγ(x) p̂mβ(x) p̂mα(x)

]
, (3)

α+ β + γ = −1 , (4)

and V is the potential term, α, β and γ are parameters.
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In order to make the kinetic term constant, we choose two arbitrary
regulating functions fl(x), fr(x) whose product is f(x) and we introduce
them as follows

fl(E − Ĥ)frf
−1
r G = i~fl , (5)

then, we obtain for G, an equivalent expression

G = fr
i~

fl(E − Ĥ)fr

fl . (6)

In the configurations space, the Green’s function becomes

G (xb, xa;E) = 〈xb| fr
i~

fl(E−Ĥ)fr

fl |xa〉 (7)

= fr(xb)fl(xa)〈xb|
i~

fl(E − Ĥ)fr

|xa〉

= fr(xb)fl(xa)

∞∫
0

dS 〈xb| exp
(
−i
~
fl(x)(Ĥ−E)fr(x)S

)
|xa〉 ,

where in the last line, the exponential form is introduced in order to pass to
the path integral formulation.

Let us subdivide the time interval S into N intervals having a length
each one equal to σ = S/N,

G (xb, xa;E) = fr(xb)fl(xa)

∞∫
0

dS lim
N→∞

〈xb| exp
(
− i
~
fl(x)(Ĥ − E)fr(x)σ

)
× exp

(
− i
~
fl(x)(Ĥ−E)fr(x)σ

)
. . . exp

(
− i
~
fl(x)(Ĥ−E)fr(x)σ

)
|xa〉 , (8)

and with the completeness relation∫
dxn |xn〉〈xn| = 1 , (9)

G becomes

G (xb, xa;E) = fr(xb)fl(xa)

∞∫
0

dS lim
N→∞

N∏
n=1

∫
dxn

×
N+1∏
n=1

〈xn| exp
(
− i
~
fl(x)(Ĥ − E)fr(x)σ

)
|xn−1〉 . (10)
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First, let us consider the term [fl(x)(Ĥ−E)fr(x)], by using the commu-
tation relations since the mass is not constant

[mα (x) , p̂ ] = i~αm′ (x)mα−1 (x) , (11)

the kinetic term is arranged by moving p̂

fl(x)(Ĥ − E)fr(x)

= fl(x)
[

1
4

[
mαp̂mβ p̂mγ +mγ p̂mβ p̂mα

]
+ V (x)− E

]
fr(x) . (12)

The term 〈xn| exp(− i
~fl(x)(Ĥ − E)fr(x)σ)|xn−1〉 is then calculated and

in the exponent, it appears the following expression

→ fl(xn)
{

1
4

[
mα(xn)p̂2mβ (xn−1)mγ(xn−1)+mγ(xn)p̂2mβ(xn−1)mα(xn−1)

+ i~β
{
mα(xn)p̂m′(xn−1)mβ−1(xn−1)mγ(xn−1)

+ mγ(xn)p̂m′(xn−1)mβ−1(xn−1)mα(xn−1)
}]

+V (xn−1)− E
}
fr(xn−1) , (13)

in the 2nd step, and in order to eliminate the operators, we introduce the
completeness relation ∫

dpn |pn〉〈pn| = 1 , (14)

with the scalar product

〈 pn |xn〉 =
1√
2π~

e−
i
~pnxn (15)

and after having performed the integrations on the canonical variables pn,
the Green’s function in the general case of the problem with position depen-
dent mass becomes

G(xb, xa;E) = fr(xb)fl(xa)

∞∫
0

dS lim
N→∞

∫ N∏
n=1

dxn

×
N+1∏
n=1

1√
2iπ~σfl(xn)fr(xn−1)

(
mα
nm

β
n−1m

γ
n−1 +mγ

nm
β
n−1m

α
n−1

)/
2

× e

i
~
PN+1
n=1

266664
8<:∆xn−

i~βσfl(xn)fr(xn−1)
2

(mαnm′n−1m
β−1
n−1m

γ
n−1+m

γ
nm
′
n−1m

β−1
n−1m

α
n−1)

2

9=;
2

(mαnm
β
n−1m

γ
n−1+m

γ
nm

β
n−1m

α
n−1)

2 2σfl(xn)fr(xn−1)

377775
× e [ i~

PN+1
n=1 σfl(xn)fr(xn−1){E−V (xn−1)}]. (16)
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Let us simplify the study of the variable mass problem by considering
the simple case of the following Hamiltonian

Ĥ =
1
2
p̂

1
m(x)

p̂+ V (x) , (17)

i.e. we fix the parameters as follows

α = γ = 0 , β = −1 , (18)

since the regulating functions are arbitrary, we choose

fr(x) = fl(x) = f1/2(x) . (19)

Thus the kinetic term can be rearranged

√
f(x) p̂

1
m(x)

p̂
√
f(x) =

√
f(x) p̂

1√
m(x)

1√
m(x)

p̂
√
f(x)

=

√
f(x)
m(x)

p̂2

√
f(x)
m(x)

+
~2

2
f(x)

×
(

3
2
m′2(x)
m3(x)

− m′′(x)
m2(x)

)
, (20)

and following this rearrangement, it appears a potential in ~2 and G takes
the following form

G (xb, xa;E) =
√
f(xb)f(xa) lim

N→∞

∞∫
0

dS

∫ N∏
n=1

dxn

× exp
i

~

N+1∑
n=1

√
f(xn)(E − V (xn−1))

√
f(xn−1) σ

×
N+1∏
n=1

〈xn| exp
i

~
σ

2

(√
f(xn)
m(xn)

p̂2

√
f(xn−1)
m(xn−1)

)

× exp− i
~
~2

4
σf(xn)

(
m′′(xn)
m2(xn)

− 3
2
m′2(xn)
m3(xn)

)
|xn−1〉, (21)

then after elimination of the operators
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G(xb, xa;E) =
√
f(xb)f(xa) lim

N→∞

∞∫
0

dS

[
N∏
n=1

∫
dxn

]

× exp

(
i

~

N+1∑
n=1

√
f(xn)(E − V (xn−1))

√
f(xn−1)σ

)

×
N+1∏
n=1

∫
dpn√
2π~

exp
(
i

~
(pn (xn − xn−1))

)

× exp

(
i

~
σ

2

[(√
f(xn)
m(xn)

√
f(xn−1)
m(xn−1)

p2
n

)])

× exp
(
i

~

[
− σ

~2

4
f(xn)

(
m′′(xn)
m2(xn)

− 3
2
m′2(xn)
m3(xn)

)])
,(22)

and by using the integrals∫
dp exp(−ap2 + bp) =

√
π

a
exp

(
− b

2

4a

)
, (23)

in order to eliminate the variables pn, we obtain finally

G (xb, xa;E) =
√
f(xb)f(xa) lim

N→∞

∞∫
0

dS

[
N∏
n=1

∫
dxn

]

×
N+1∏
n=1

1√
2iπ~σ

√
f(xn)f(xn−1)/m(xn)m(xn−1)

× exp
i

~

N+1∑
n=1

[
∆x2

2σ

√
m(xn)m(xn−1)
f(xn)fr(xn−1)

]

× exp
i

~

N+1∑
n=1

[
σf(xn)

{
(E−V (xn))− ~

2

4

(
m′′(xn)
m2(xn)

− 3
2
m′2(xn)
m3(xn)

)}]
. (24)

Let us make the change on the regulating function f −→ g

g(x) =
f(x)
m(x)

. (25)
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With this change G becomes

G (xb, xa;E) =
[
m (xb) g1/2(xb)m(xa)g1/2(xa)

] 1
2

× lim
N→∞

∞∫
0

ds

∫ N∏
n=1

dxn

N∏
n=1

1√
g(xn)

N+1∏
n=1

[
g(xn−1)
g(xn)

]− 1
2

× exp
i

~

N+1∑
n=1

[
∆x2

2σ
√
g(xn)g(xn−1)

− σW1 (xn)

]
, (26)

where

W1 (x) = g(x)
[
m(x)(V (x)− E) +

~2

4

(
m′′(x)
m(x)

− 3
2
m′2(x)
m2(x)

)]
. (27)

At this level, we notice that the kinetic term still has an inconvenient
form containing a space dependent mass. This space dependence can be
removed by a coordinate transformation

x = F (y) . (28)

Obviously, this transformation generates three corrections:
— the first related to the measure,
— the second, to the action
— and the third correction related to the factor in front of the Green’s

function.
The postpoint expansion of ∆xn reads at each n

∆x = F (yn)− F (yn−1) =
∂F

∂y
∆y − 1

2
∂2F

∂y2
∆y2 +

1
6
∂3F

∂y3
∆y3 + . . . . (29)

The choice of F is arbitrary, we impose the following condition(
∂F

∂y

)2

= g , (30)

thereafter, the mass being in the kinetic term is constant (= 1).
First, let us develop the exponential with the kinetic term. We have

exp

(
i

~
∆x2

2σ
√
g(xn)g(xn−1)

)
= exp

(
i

~
∆y2

2σ

)
[1 + Cact] , (31)
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where

Cact =
i

~
∆y2

2σ

{
−1

4

(
∂2F�∂y2

∂F�∂y

)2

+
1
6
∂3F�∂y3

∂F�∂y
∆y2 + . . .

}
is the first correction.

The measure induce also a correction
N∏
n=1

∫
dxn =

N+1∏
n=2

∫
d (∆xn) =

N+1∏
n=2

∫
Jd (∆yn) ,

where J is the Jacobian of the transformation

J =
∂∆x
∂∆y

=
∂F

∂y
(1 + Cmeas)

and

Cmeas = −∂
2F�∂y2

∂F�∂y
∆y +

1
2
∂3F�∂y
∂F�∂y

∆y2 + . . .

is the 2nd correction.
Also, the prefactor in the Green’s function contribute by a correction Cf

which is obtained in the development of(
g(xn−1)
g(xn)

)− 1
2

= 1 + Cf ,

where

Cf =
∂2F�∂y2

∂F�∂y
∆y +

[(
∂2F�∂y2

∂F�∂y

)2

− 1
2
∂3F�∂y
∂F�∂y

]
∆y2 + . . .

is the 3rd correction.
By combining this three corrections we obtain the total correction CT

defined by
1 + CT = (1 + Cmeas) (1 + Cf ) (1 + Cact) . (32)

The corrections terms are evaluated perturbatively using the expectation
values 〈

(∆y)2n
〉

=
(
i
~σ
m

)n
(2n− 1) , (33)

and CT is replaced by the following effective potential

Veff = −~2

[
1
4
∂3F�∂y3

∂F�∂y
− 3

8

(
∂2F�∂y2

∂F�∂y

)2
]
. (34)
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The Green’s function relating to the nonrelativistic problem with posi-
tion dependent mass is finally the following

G (xb, xa;E) =
(
mbF

′
bmaF

′
a

)1/2 ∞∫
0

dS

(∫
Dy(s)e

i
~

SR
0

ds

„
.
y2

2
−W2

«)
, (35)

where

W2 =
(
∂F

∂y

)2 [
m(x)(V (x)− E) +

~2

4

(
m′′(x)
m(x)

− 3
2
m′2(x)
m2(x)

)]
+
~2

4

(
∂3F�∂y3

∂F�∂y
− 3

2

(
∂2F�∂y2

∂F�∂y

)2
)
. (36)

In order to illustrate our calculations, let us make two applications.

2.1. Applications

Let us consider the cases treated in [12]
1st case: m(x) = cx2 and V (x) = A/(cx4) +B(cx2).
With this choice, the Green’s function relating to the problem with po-

sition dependent mass can be reduced to that of a particle of mass = 1
and subjected to the action of the combination of a harmonic force and
a centrifugal barrier.

In this case, it is sufficient to choose an identical transformation

x = y = F (y)

the Green’s function has the following expression

G (xb, xa;E) = (cxbxa)

 ∞∫
0

dS

∫ Dx(s) e
i
~

SR
0

“
ẋ2

2
−cEx2+A+g

x2 +B
”
ds


= (cxbxa) (xbxa)

1
2

( ω
i~

)
×
∞∫

0

dS

[
e(

i
~
B
ω
ωS)

sin(ωS)
exp

(
iω

2~
(
x2
b + x2

a

)
cot(ωS)

)
Iν

(
ωxbxa

i~ sin(ωS)

)]
, (37)

where Iν is the Bessel function with ν =
[
−2A/~2 − 7/4

] 1
2 .

In order to extract the energy spectrum and the corresponding wave
functions, let us separate the variables xb, xa and S with the help of the Hill
Hardy formula [13] by putting

X =
ω

~
x2
a , Y =

ω

~
x2
b , Z = e−2iωS . (38)
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Then

G (xb, xa;E) = c (xbxa)
3
2

∞∑
n=0

× exp
(
− ω

2~
x2
a

)[2ω
~

n!
Γ (n+ υ + 1)

]1/2 [ω
~
x2
a

]υ/2
Lυn

(ω
~
x2
a

)
× exp

(
− ω

2~
x2
b

)[2ω
~

n!
Γ (n+ υ + 1)

]1/2 [ω
~
x2
b

]υ/2
Lυn

(ω
~
x2
b

)
×
∞∫

0

exp−iωS
(

1 + 2n+ υ − β

~ω

)
dS , (39)

and which is reduced as

G (xb, xa;E) =
∞∑
n=0

[
2ω
~

c x3
a n!

Γ (n+ υ + 1)

]1/2 [ω
~
x2
a

]υ/2
× exp

(
− ω

2~
x2
a

)
Lυn

(ω
~
x2
a

)[2ω
~

c x3
b n!

Γ (n+ υ + 1)

]1/2 [ω
~
x2
b

]υ/2
× exp

(
− ω

2~
x2
b

)
Lυn

(ω
~
x2
b

) ∞∫
0

exp−iωS
(

1 + 2n+ υ − β

~ω

)
dS , (40)

with cE = −1
2ω

2.
Let us integrate on S

∞∫
0

exp−iωS
(

1 + 2n+ υ − β

~ω

)
dS =

1

iω
(

1 + 2n+ υ − β
~ω

) , (41)

from the poles, we obtain the energy spectrum

En = − β2

2c(2n+ υ + 1)2~2
, with n = 0, 1, 2 . . . , (42)

and using the standard form of the Green’s function

G (xb, xa;E) = i~
∞∑
n=0

Ψ∗n(xb) Ψn(xa)
E − En

, (43)

we can extract from residues, the corresponding wave functions:
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Ψn(x) =
[

2ωβ
~3

x3

(2n+ υ + 1)2

n!
Γ (n+ υ + 1)

]1/2 [ω
~
x2
]υ/2

× exp
(
− ω

2~
x2
)
Lυn

(ω
~
x2
)

suitably normalized.
2nd case: m = m0 exp(cx) and V = V0 exp(cx).
With the transformation x→ y defined by

x = F (y) = ln y2/c , (44)

the Green’s function becomes

G (xb, xa;E) =
2
c

m0 exp(c/2 (xb + xa))

(ybya)
1/2

∞∫
0

dS

×

∫ Dy(s) exp
i

~

S∫
0

(
ẏ2

2
+

4E0m0

c2
− 4V0m0

c2
y2+

(
~2

2
− ~

2

8

)
1
y2

)
ds

 , (45)
which has the same form as the Green’s function relating to a particle of mass
= 1 subjected to the action of a harmonic force and a centrifugal barrier.

The Green’s function being known

G (xb, xa;E) =
2
c

m0 exp(c/2 (xb + xa))

(ybya)
1/2

( ω
i~

)
[ybya]

1
2

×
∞∫

0

dS
exp (i/~)(4E0m0/c

2)S
sin(ωs)

× exp
iω

2~
(
y2
b + y2

a

)
cot (ωS)Iυ

[
ωybya

i~ sin(ωs)

]
, (46)

with

υ =
i√
2
. (47)

By using the same formula of separation of variables [13] the Green’s
function is finally written:
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G (xb, xa;E) =
2m0 exp [c/2 (xb + xa)]

c

×
∞∑
n=0

exp
(
−ω
2~

y2
a

)[
2ω
~

n!
Γ (n+ υ + 1)

]1/2 [ ω
2~
y2
a

]υ/2
Lυn

(ω
~
y2
a

)
× exp

(
−ω
2~

y2
b

)[
2ω
~

n!
Γ (n+ υ + 1)

]1/2 [ ω
2~
y2
b

]υ/2
Lυn

(ω
~
y2
b

)
×
∞∫

0

dS exp
[
−iω

(
1 + 2n+ υ − 4Em0

~ωc2

)
s

]
. (48)

It is then easy to extract the energies spectrum,

En =
√

v0

2m0
~c (2n+ 1 + υ) , n = 0, 1, 2 . . . , (49)

as well as the corresponding wave functions which are also normalized

Ψn(x) =
[

2ω
~

n!
Γ (n+υ+ 1)

]1/2 [ ω
2~

ecx
]υ/2

exp
(cxb

2
− ω

2~
ecx
)
Lυn

(ω
~
ecx
)
,

(50)
with ω = (2

√
2m0v0)/c.

3. Conclusion

In this paper we showed how to treat the problem of a particle having
a position dependent mass (variable mass) by the use of Duru and Klein-
ert procedure related to particles having a constant mass and to determine
the corrections induced by the combination of the path-dependent time
reparametrization and a coordinate transformation. We have also shown
how to transform a problem of position dependent mass into a problem of
constant mass and how to obtain the relation which exists between the two
Green’s functions (variable mass and constant mass). For that, in order to
regularize the kinetic energy we introduced the functions

(
fr = fl = f1/2

)
and we tacked account the terms in (∆y)2 (order of σ) and after trans-
formation we obtained for the classical trajectory in a time interval σ, an
unique action (or Lagrangian).

Our Green’s function obtained is thus completely symmetrical in respect
to the initial and final points (this is not the case of propagator [1] for
example).
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Finally, for the general case of variable mass depend on the position and
of time the study is in progress and the results can be found elsewhere.
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