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1. Introduction

Recently, there were found formal arguments, based mainly on Quantum
Gravity [1,2] and String Theory models [3,4], indicating that space-time at
Planck-length should be noncommutative, i.e. it should have a quantum
nature. On the other side, the main reason for such considerations follows
from many phenomenological suggestions, which state that relativistic space-
time symmetries should be modified (deformed) at Planck scale, while the
classical Poincaré invariance still remains valid at larger distances [5–8].

It is well known that a proper modification of the Poincaré Hopf alge-
bra can be realized in the framework of Quantum Groups [9]. Hence, in
accordance with the Hopf-algebraic classification of all deformations of rela-
tivistic and nonrelativistic symmetries (see [10,11]), one can distinguish two
kinds of quite interesting quantum spaces. First of them corresponds to the
well-known canonical type of noncommutativity

[xµ, xν ] = iθµν , (1)

with antisymmetric constant tensor θµν . Its relativistic and nonrelativistic
Hopf-algebraic realizations have been discovered with the use of twist proce-
dure (see [9]) of classical Poincaré [12,13] and Galilei [14,15] Hopf structures,
respectively.

(2725)
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The second class of mentioned deformations introduces the Lie-algebraic
type of space-time noncommutativity

[xµ, xν ] = iθρµνxρ , (2)

with particularly chosen coefficients θρµν being constants. It is represented
by two Lie-algebraically deformed Poincaré Hopf algebras. First of them,
so-called κ-Poincaré algebra Uκ(P), has been proposed in [16,17] as a result
of contraction limit of q-deformed anti-De-Sitter Hopf structure. It leads to
the κ-Minkowski space-time [18,19]

[x0, xi] =
i

κ
xi , [xi, xj ] = 0 , (3)

with mass-like deformation parameter κ. Besides, it also gives a formal
framework for such theoretical constructions as Double Special Relativity
(see e.g. [20–22]), which postulates two observer-independent scales, of ve-
locity, describing the speed of light, and of mass, which can be identify with
κ-parameter — the fundamental Planck mass.

The κ-deformed dual Poincaré quantum group Pκ has been provided
in [23], while the κ-deformed Galilei Hopf algebra Uκ(G) and the corre-
sponding dual quantum group Gκ, have been discovered in [24] and [25] by
nonrelativistic contraction (see [26–28]) of their relativistic counterparts.

The second type of deformation associated with noncommutativity (2) is
generated (similar to the canonical deformation (1)) by twist procedure [9].
The corresponding Hopf algebras have been proposed at relativistic and
nonrelativistic level in [29] (see also [30]) and [14], while their dual quantum
groups — in [29] and [15], respectively.

The basic properties of the Lie-algebraically twisted symmetries have
been investigated recently in a context of nonrelativistic particle subjected
to the external constant force [31], and in the case of harmonic oscillator
model [32]. In particular, there was demonstrated that such a kind of quan-
tum space-time produces additional acceleration, as well as the velocity and
position-dependent forces, acting additionally on a moving particle.

In this article we introduce the relativistic and nonrelativistic phase
spaces corresponding to the twisted Lie-algebraically deformed Hopf alge-
bras [14, 30] and [15]. In the case of relativistic symmetries, we use the
so-called Heisenberg double procedure [9, 33], which assumes that the mo-
mentum and position sectors of considered phase spaces can be identified
with the translation generators of Uξ(P) and Pξ Hopf algebras, respectively;
the cross-relations, i.e. the commutation relations between momentum and
position variables are given by dual parings of corresponding generators. In
the case of nonrelativistic symmetries the corresponding phase spaces are
obtained by proper nonrelativistic contractions of their relativistic counter-
parts.
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It should be noted that the deformed phase space χκ(P) has been already
constructed in the case of κ-Poincaré algebra [33], while its basic physically
implications have been investigated in the series of papers [33–35]. Partic-
ularly, there was studied its role in a context of Quantum Gravity (see e.g.
[35]), Doubly Special Relativity Theory [36,37], Statistical Physics1 [38–41]
and Friedman–Robertson–Walker cosmological model [41,42].

The main motivation for the present studies is twofold. First of all, such
a construction completed our knowledge about the whole considered Hopf
structure, i.e. about the Hopf algebra U(A), its dual quantum group A, and
the corresponding phase space χ(A). On the other side, the recovered phase
spaces give a background for the studies on physical implications of the
Lie-algebraically twisted Poincaré and Galilei Hopf algebras. Following the
mentioned above κ-Poincaré program [33–42] one can applied the provided
phase spaces to the (for example) Quantum Gravitational or Cosmological
considerations, respectively.

The paper is organized as follows. In Section 2 we recall necessary facts
concerning the twisted Lie-algebraically deformed Poincaré Hopf algebras
and their dual quantum group [30]. Section 3 is devoted to the corresponding
twisted phase spaces provided with the use of Heisenberg double procedure.
The proper Heisenberg uncertainty principles are discussed in Section 4.
The nonrelativistic phase spaces (and the corresponding Heisenberg uncer-
tainty principles) are derived and discussed in Section 5. The results are
summarized in the last section.

2. Twisted Lie-algebraically deformed Poincaré Hopf algebra
and its dual quantum group

In this section we recall the results of paper [29] (see also [30]) concerning
the Lie-algebraically twisted Poincaré Hopf algebra Uξ(P) and its dual quan-
tum group Pξ, with mass-like deformation parameter ξ. Both structures are
described by the following Abelian r-matrix

rξ =
1
2ξ
ζλ Pλ∧Mαβ , α, β − fixed , ζλ denotes dimensionless fourvector ,

(4)
satisfying the classical Yang–Baxter equation [9]. After twist procedure2 the
algebraic sector of Uξ(P) algebra remains classical

[Mµν ,Mρσ] = i (ηµσMνρ − ηνσMµρ + ηνρMµσ − ηµρMνσ) , (5)
[Mµν , Pρ] = i (ηνρPµ − ηµρPν) , [Pµ, Pν ] = 0 , (6)

1 See e.g. deformed black body radiation law [41].
2 Due to the formula (4) the corresponding twist factor has the form Fξ =

exp i
2ξ

(ζλ Pλ ∧Mαβ).
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while the coproduct becomes deformed

∆ξ (Pµ) = ∆0(Pµ) + (−i)γ sinh
(
iγ

2ξ
ζλPλ

)
∧ (ηαµPβ − ηβµPα)

+
(

cosh
(
iγ

2ξ
ζλPλ

)
− 1
)
⊥ (ηααηαµPα + ηββηβµPβ) , (7)

∆ξ(Mµν) = ∆0(Mµν) +Mαβ ∧
1
2ξ
ζλ (ηµλPν − ηνλPµ)

+i [Mµν ,Mαβ] ∧ (−i)γ sinh
(
iγ

2ξ
ζλPλ

)
+ [[Mµν ,Mαβ] ,Mαβ] ⊥ (−1)1+γ

(
cosh

(
iγ

2ξ
ζλPλ

)
− 1
)

+Mαβ(−i)γ sinh
(
iγ

2ξ
ζλPλ

)
⊥ 1

2ξ
ζλ (ψλPα − χλPβ)

+
1
2ξ
ζλ (ψληααPβ + χληββPα) ∧Mαβ(−1)1+γ

×
(

cosh
(
iγ

2ξ
ζλPλ

)
− 1
)
, (8)

where ∆0(a) = a ⊗ 1 + 1 ⊗ a, a ∧ b = a ⊗ b − b ⊗ a, a ⊥ b = a ⊗ b + b ⊗ a,
ψγ = ηjγηli − ηiγηlj , χγ = ηjγηki − ηiγηkj , ηµν = (−,+,+,+), and γ = 0
when Mαβ is a boost or γ = 1 for a space rotation.

The dual quantum group Pξ has been discovered with the use of FRT
procedure [43]. In terms of (dual) base {Λβα, aµ} it is given by the following
algebraic sector

[aµ, aν ] =
i

ξ
ζν
(
δµαaβ−δ

µ
βaα

)
+
i

ξ
ζµ
(
δνβaα−δναaβ

)
, [Λµν , Λ

ρ
τ ] = 0 , (9)[

aµ, Λνρ
]

=
i

ξ
ζλΛµλ

(
ηβρΛ

ν
α − ηαρΛνβ

)
+
i

ξ
ζµ
(
δνβΛαρ − δναΛβρ

)
, (10)

and the primitive coproducts

∆(Λµν) = Λµρ ⊗ Λρν , ∆(aµ) = Λµν ⊗ aν + aµ ⊗ 1 . (11)

3. Relativistic phase spaces from Heisenberg double procedure

The knowledge of Hopf algebra Uξ(P) and its dual quantum group Pξ
allows us to find the corresponding ξ-deformed phase space χξ(P). As it
was mentioned in Introduction, in accordance with Heisenberg double pro-
cedure [9, 34], the position sector of such a phase space can be identified
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with translations aµ (see relations (9)), while the momentum part — with
generators Pµ (see formula (6)). In order to find the so-called cross-relations,
i.e. the commutation relations between positions and momenta one should
use the formula (see e.g. [34])

[Q,R] = R(1)

〈
Q(1),R(2)

〉
Q(2) −RQ , (12)

where 〈., .〉 denotes paring between generators R ∈ {Mµν , Pρ} and Q ∈
{Λβα, aµ}

〈Λµν , 1〉 = δµν ,
〈
Λµν ,M

αβ
〉

= i
(
ηαµδβν − ηβµδαν

)
, 〈aµ, Pν〉 = iδµν , (13)

and where we use Sweedler (shorthand) notation for coproduct ∆(R) =∑
R(1) ⊗R(2).
Let us start with “rotation-like”3,4 twist carrier {Mkl, Pγ ; γ 6= k, l, 0}

(λ = γ, α = k, β = l in the formula (4)). Then, in accordance with the
above prescription, we get the corresponding phase space (see (7), (11) and
(12))5

(i) [x0, xi] = [xk, xl ] = [pµ, pν ] = 0 ; i = k, l, γ ,

[xk, xγ ] =
i

ξ
xl , [xl, xγ ] = − i

ξ
xk ,

[x0, pi] = [xi, p0] = [xk, pγ ] = [xl, pγ ] = 0 ,
[x0, p0] = −i , [xγ , pγ ] = i ,

[xγ , pk] =
i

2ξ
pl , [xγ , pl] = − i

2ξ
pk ,

[xl, pl] = i cos
(
pγ
2ξ

)
= [xk, pk] ,

[xk, pl] = i sin
(
pγ
2ξ

)
= − [xl, pk] . (14)

In the case of carrier {Mkl, P0} we obtain

(ii) [x0, xa] = [xk, xl] = [pµ, pν ] = 0 ; a 6= k, l, 0 ,

[x0, xk] =
i

ξ
xl , [x0, xl] = − i

ξ
xk , [xk, xa] = [xl, xa] = 0 ,

3 Below, we consider three kinds of twist factor (4), providing the three different types
of Lie-algebraic space-time noncommutativity (see [29,30]).

4 By “rotation-like” twist carrier we mean the carrier containing space rotation gener-
ator Mkl.

5 We put the nonzero components of fourvector ζ equal one.
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[x0, pa] = [xa, p0] = [xk, pa] = [xl, pa] = 0 ,
[x0, p0] = −i , [xa, pa] = i , [xa, pk] = [xa, pl] = 0 ,
[xk, p0] = 0 , [xl, p0] = 0 ,

[x0, pk] = − i

2ξ
pl , [x0, pl] =

i

2ξ
pk ,

[xl, pl] = i cos
(
p0

2ξ

)
= [xk, pk] ,

[xk, pl] = i sin
(
p0

2ξ

)
= − [xl, pk] , (15)

while for “boost-like”6 carrier {Mk0, Pl ; k 6= l}, we have

(iii) [x0, xa] = [x0, xk] = [pµ, pν ] = 0 ; a 6= k, l, 0 ,

[xk, xa] = [xl, xa] = 0 , [x0, xl] =
i

ξ
xk , [xl, xk] = − i

ξ
x0 ,

[xl, pk] =
i

2ξ
p0 , [x0, p0] = −i cosh

(
pl
2ξ

)
,

[xa, pa] = i , [xl, pl] = i , [xa, p0] = [xk, pl] = [x0, pl] = 0 ,

[x0, pk] = i sinh
(
pl
2ξ

)
, [xk, pk] = i cosh

(
pl
2ξ

)
,

[xk, p0] = −i sinh
(
pl
2ξ

)
, [xl, p0] =

i

2ξ
pk ,

[xk, pa] = [xl, pa] = [x0, pa] = [xa, pl] = [xa, pk] = 0 . (16)

The relations (14)–(16) describe three relativistic phase spaces χξ(P) asso-
ciated with the Lie-algebraically deformed Poincaré Hopf algebra Uξ(P) and
with its (dual) quantum group Pξ. Of course, for deformation parameter ξ
running to infinity the above phase spaces become classical. It should be also
noted that for very particular choice of twist factors (the choice of indices
α, β, γ) one can recover the phase space proposed in [44].

4. Heisenberg uncertainty principle

Let us now turn to the Heisenberg uncertainty relations associated with
the above phase spaces. If we introduce the dispersion of observable â in
a quantum mechanical sense by (see e.g. [35])7

6 By “boost-like” twist carrier we mean the carrier containing boost generator Mk0.
7 We put ~ = 1.
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∆(â) =
√
〈â2〉 − 〈â〉2 , ∆(â)∆(b̂) ≥ 1

2 |〈ĉ〉| , (17)

where ĉ = [â, b̂], than, we get the following generalized (deformed) Heisen-
berg relations for all considered above carriers:

• for “rotation-like” carrier {Mkl, Pγ ; γ 6= k, l, 0}

(i) ∆(xk)∆(xγ) ≥ |〈xl〉|
2ξ

, ∆(xl)∆(xγ) ≥ |〈xk〉|
2ξ

,

∆(xk)∆(pk) ≥

∣∣∣〈cos
(
pγ
2ξ

)〉∣∣∣
2

, ∆(xl)∆(pl) ≥

∣∣∣〈cos
(
pγ
2ξ

)〉∣∣∣
2

,

∆(x0)∆(p0) ≥ 1
2 , ∆(xγ)∆(pγ) ≥ 1

2 ,

∆(xγ)∆(pk) ≥
|〈pl〉|

4ξ
, ∆(xγ)∆(pl) ≥

|〈pk〉|
4ξ

,

∆(xk)∆(pl) ≥

∣∣∣〈sin
(
pγ
2ξ

)〉∣∣∣
2

, ∆(xl)∆(pk) ≥

∣∣∣〈sin
(
pγ
2ξ

)〉∣∣∣
2

, (18)

• for twist carrier {Mkl, P0}

(ii) ∆(xk)∆(x0) ≥ |〈xl〉|
2ξ

, ∆(xl)∆(x0) ≥ |〈xk〉|
2ξ

,

∆(xk)∆(pk) ≥

∣∣∣〈cos
(
p0
2ξ

)〉∣∣∣
2

, ∆(xl)∆(pl) ≥

∣∣∣〈cos
(
p0
2ξ

)〉∣∣∣
2

,

∆(x0)∆(p0) ≥ 1
2 , ∆(xa)∆(pa) ≥ 1

2 ,

∆(x0)∆(pk) ≥
|〈pl〉|

4ξ
, ∆(x0)∆(pl) ≥

|〈pk〉|
4ξ

,

∆(xk)∆(pl) ≥

∣∣∣〈sin
(
p0
2ξ

)〉∣∣∣
2

, ∆(xl)∆(pk) ≥

∣∣∣〈sin
(
p0
2ξ

)〉∣∣∣
2

, (19)

• and for “boost-like” carrier {Mk0, Pl ; k 6= l}

(iii) ∆(xk)∆(xl) ≥
|〈x0〉|

2ξ
, ∆(xl)∆(x0) ≥ |〈xk〉|

2ξ
,

∆(xl)∆(pk) ≥
|〈p0〉|

4ξ
, ∆(x0)∆(p0) ≥

∣∣∣〈cosh
(
pl
2ξ

)〉∣∣∣
2

,

∆(xl)∆(pl) ≥ 1
2 , ∆(xa)∆(pa) ≥ 1

2 ,
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∆(x0)∆(pk) ≥

∣∣∣〈sinh
(
pl
2ξ

)〉∣∣∣
2

, ∆(xk)∆(pk) ≥

∣∣∣〈cosh
(
pl
2ξ

)〉∣∣∣
2

,

∆(xk)∆(p0) ≥

∣∣∣〈sinh
(
pl
2ξ

)〉∣∣∣
2

, ∆(xl)∆(p0) ≥ |〈pk〉|
4ξ

, (20)

respectively.
Obviously, for deformation parameter ξ approaching infinity the above

relations become classical. It should be also noted that for momentum vari-
ables pγ = p0 = pk = 2ξnπ (n = 0, ±1, ±2, . . .) all terms containing
“sinus/cosinus” and “sinh / cosh” functions disappear, i.e. the deformation
of Heisenberg uncertainty relations (18)–(20) becomes “minimal”.

5. Nonrelativistic phase spaces and
Heisenberg uncertainty principle

5.1. Nonrelativistic phase spaces

In this section we provide three nonrelativistic phase spaces (see (24)–
(26)) with the use of contraction procedures of their relativistic counterparts
(14)–(16). In a first step of our contraction scheme, we introduce the follow-
ing redefinition of the relativistic phase space variables and the deformation
parameter ξ, respectively

(i) xi = yi , x0 = ct , p0 =
π0

c
, pi = πi , ξ = ξ , (21)

(ii) xi = yi , x0 = ct , p0 =
π0

c
, pi = πi , ξ =

ξ̂

c
, (22)

(iii) xi = yi , x0 = ct , p0 =
π0

c
, pi = πi , ξ = cξ̄ . (23)

Next, in a second step, we rewrite the phase spaces (14)–(16) in terms of
t, yi, π0, πi variables and deformation parameters ξ, ξ̂, ξ̄, and we take the
(nonrelativistic) limit c → ∞. In such a way we get the following Galilean
phase spaces in the first case (see “rotation-like” carrier)

(i) [t, yi] = [yk, yl] = [πµ, πν ] = 0 ; i = k, l, γ ,

[yk, yγ ] =
i

ξ
yl , [yl, yγ ] = − i

ξ
yk ,

[t, πi] = [yi, π0] = [yk, πγ ] = [yl, πγ ] = 0 ,
[t, π0] = −i , [yγ , πγ ] = i ,

[yγ , πk] =
i

2ξ
πl , [yγ , πl] = − i

2ξ
πk ,
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[yl, πl] = i cos
(
πγ
2ξ

)
= [yk, πk] ,

[yk, πl] = −i sin
(
πγ
2ξ

)
= − [yl, πk] , (24)

in the second case (corresponding to the twist carrier {Mkl, P0})

(ii) [t, ya] = [yk, yl] = [πµ, πν ] = 0 ; a 6= k, l, 0 ,

[t, yk] =
i

ξ̂
yl , [t, yl] = − i

ξ̂
yk , [yk, ya] = [yl, ya] = 0 ,

[t, πa] = [ya, π0] = [yk, πa] = [yl, πa] = 0 ,
[t, π0] = −i , [ya, πa] = i , [ya, πk] = [ya, πl] = 0 ,

[yk, π0] = [yl, π0] = 0 ,

[t, πk] = − i

2ξ̂
πl , [t, πl] =

i

2ξ̂
πk ,

[yl, πl] = i cos
(
π0

2ξ̂

)
= [yk, πk] ,

[yk, πl] = i sin
(
π0

2ξ̂

)
= − [yl, πk] , (25)

and in the last case (for “boost-like” carrier {Mk0, Pl ; k 6= l})

(iii) [t, ya] = [t, yk] = [πµ, πν ] = 0 ; a 6= k, l, 0 ,

[yk, ya] = [yl, ya] = 0 , [t, yl] = 0 , [yl, yk] = − i
ξ̄
t ,

[yl, πk] = 0 , [t, π0] = −i , [t, πk] = 0 , [yk, πk] = i ,

[ya, πa] = i , [yl, πl] = i , [yk, πl] = [t, πl] = 0 ,
[yk, πa] = [yl, πa] = [t, πa] = [ya, πl] = [ya, πk] = 0 ,
[ya, π0] = [yk, π0] = [yl, π0] = 0 , (26)

respectively.
It should be noted that all above phase spaces can be get by direct

application of Heisenberg double procedure as well. As it was mentioned
in Introduction, the corresponding Hopf structures (i.e. the corresponding
Galilei Hopf algebras U·(G) and their dual quantum groups G·) have been
obtained in [14,15] with the use of contractions of their relativistic counter-
parts Uξ(P) and Pξ. It should be mentioned, however, that such a treatment
is more complicated technically than one used in presented subsection.
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5.2. Heisenberg uncertainty principle

Let us now consider the Heisenberg uncertainty relations corresponding
to the nonrelativistic phase spaces (24)–(26). Using (17), one can check that
they take the form

(i) ∆(yk)∆(yγ) ≥ |〈yl〉|
2ξ

, ∆(yl)∆(yγ) ≥ |〈yk〉|
2ξ

,

∆(yk)∆(πk) ≥

∣∣∣〈cos
(
πγ
2ξ

)〉∣∣∣
2

, ∆(yl)∆(πl) ≥

∣∣∣〈cos
(
πγ
2ξ

)〉∣∣∣
2

,

∆(t)∆(π0) ≥ 1
2 , ∆(yγ)∆(πγ) ≥ 1

2 ,

∆(yγ)∆(πk) ≥
|〈πl〉|

4ξ
, ∆(yγ)∆(πl) ≥

|〈πk〉|
4ξ

,

∆(yk)∆(πl) ≥

∣∣∣〈sin
(
πγ
2ξ

)〉∣∣∣
2

, ∆(yl)∆(πk) ≥

∣∣∣〈sin
(
πγ
2ξ

)〉∣∣∣
2

,(27)

for the first deformation

(ii) ∆(yk)∆(t) ≥ |〈yl〉|
2ξ̂

, ∆(yl)∆(t) ≥ |〈yk〉|
2ξ̂

,

∆(yk)∆(πk) ≥

∣∣∣〈cos
(
π0

2ξ̂

)〉∣∣∣
2

, ∆(yl)∆(πl) ≥

∣∣∣〈cos
(
π0

2ξ̂

)〉∣∣∣
2

,

∆(t)∆(π0) ≥ 1
2 , ∆(ya)∆(πa) ≥ 1

2 ,

∆(t)∆(πk) ≥
|〈πl〉|

4ξ̂
, ∆(t)∆(πl) ≥

|〈πk〉|
4ξ̂

,

∆(yk)∆(πl) ≥

∣∣∣〈sin
(
π0

2ξ̂

)〉∣∣∣
2

, ∆(yl)∆(πk) ≥

∣∣∣〈sin
(
π0

2ξ̂

)〉∣∣∣
2

, (28)

in the second case, and

(iii) ∆(yk)∆(yl) ≥
|〈t〉|
2ξ̄

, ∆(t)∆(π0) ≥ 1
2 , ∆(yl)∆(πl) ≥ 1

2 ,

∆(ya)∆(πa) ≥ 1
2 , ∆(yk)∆(πk) ≥ 1

2 , (29)

for the last twist factor.
Of course, for deformation parameters ξ, ξ̂ and ξ̄ approaching infinity

the relations (24)–(26) as well as (27)–(29) become classical. Moreover, for
momentum variables πγ = π0 = πk = 2αnπ (n = 0, ±1, ±2, . . . ;α = ξ, ξ̂, ξ̄)
the oscillating and expanding terms in the above relations disappear.
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6. Final remarks

In this article we construct six relativistic and nonrelativistic phase
spaces corresponding to the Lie-algebraically deformed Poincaré and Galilei
Hopf algebras, respectively. The considered phase spaces are provided with
the use of Heisenberg double procedure [9].

It should be noted that presented results compleat our studies on the
Lie-algebraically twisted groups at both levels — at the level of relativistic
and nonrelativistic symmetries as well. Moreover, the provided phase spaces
constitute the background for future construction of basic dynamical models
associated with twisted symmetries. As it was mentioned in Introduction,
such investigations have been already performed in the case of nonrelativistic
particle moving in a field of constant force [31], and in the case of harmonic
oscillator model [32]. However, used in [31,32] phase spaces have been taken
ad hoc, i.e. without any formal, quantum group-like construction, such as,
for example, Heisenberg double procedure. The studies in this direction are
in progress.

The author would like to thank J. Lukierski for valuable discussions.
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