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We investigate the effect of an additional generation of ordinary quarks
and vector quarks on longitudinal and transverse amplitudes associated
with the exclusive B0 → ΦK∗ decays. We perform χ2 fits to the exper-
imental data with respect to these two model parameters. Even though
distinct minima (χ2

0) are observed but χ2
0/d.o.f. values much larger than

one indicates that such a constrained extension of the standard model can-
not resolve the polarization puzzle in the B0 → ΦK∗ decay mode.

PACS numbers: 13.25.Hw, 12.60.–i, 12.15.Mm

1. Introduction

The polarization puzzle in B → ΦK∗ decays could be interpreted as
a sign of new physics beyond the standard model (SM). In this two-body de-
cay of B-mesons the final-state particles are both vector mesons and, there-
fore, we have three distinct decay amplitudes which are classified according
to their helicities. The conservation of angular momentum requires that the
helicity of the produced vector mesons be both either longitudinal (00) or
negative (−−) or positive (++). Within the SM, where only left-handed
quarks participate in charged weak currents, one expects much greater lon-
gitudinal polarization amplitude, H00, for two vector mesons Φ and K̄0∗

than transverse ones, H−− and H++, in which one and two helicity flips are
needed, respectively. In fact, this can roughly translate into the following
† Corresponding author: zebarjad@physics.susc.ac.ir
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relation for helicity amplitudes: H̄00 : H̄−− : H̄++ ∼ O(1) : O(1/mb) :
O(1/mb

2). However, the experimental data gathered from BABAR and
BELLE show a different picture: H̄00 : H̄−− : H̄++ ∼ O(1/mb) : O(1) :
O(1/mb

2), which is in contradiction with naive SM predictions [1–4]. There
have been attempts to resolve this discrepancy both within and beyond the
SM. The contribution of penguin annihilation [5], rescattering [6–11], and
enhanced penguin contributions due to the dipole operator [12,13] are exam-
ples of the former approach. Reference [14] discusses the testing of the first
two mechanisms with the future measurements of U -spin related charmless
B decays to two vector mesons. New physics (NP) approach, on the other
hand, can take two main routes, either assume new four-Fermi operators
which do not exist in the SM low-energy effective Hamiltonian [15] or alter-
natively, work with the same set of operators but assume extra contributions
to the Wilson coefficients. In this article, we follow the latter approach.

Two possible extensions of SM are extra fourth generation (SM4) of
quarks (t′, b′) [16–21, 23] and Vector Quark Model (VQM). There are var-
ious arguments in support of SM4, among them, the flavor democracy in
the three generations of the SM [24]. In this scenario, the masses of the
first three fermion families, as well as inter-generational mixing are gen-
erated by small braking of flavor democracy [25, 26]. The fourth family
quarks are nearly degenerate and their common mass scale is constrained
by the experimental value of ρ and S parameters. Considering the latest
data ρ = 1.0002+0.0007

−0.0004 [29], the mass of the fourth quark mt′ lies between
300 GeV and 700 GeV. As such, these exotic quarks, if exist, could be pro-
duced in good numbers at LHC via gluon fusion mechanism. The indi-
rect effects of the fourth generation scenario have already shown to close
the gap between the data and theoretical predictions on CP violation in
penguin-dominated nonleptonic B decays [21]. On the other hand, the Vec-
tor Quark Model (VQM) is an extension of the SM with an extra generation
of iso-singlet quarks [22]. Unlike the three generations of ordinary quarks in
the SM, both the left- and the right-handed components of the quarks of this
additional generation are invariant under SU(2)L gauge group. Therefore,
the flavor changing weak interactions of these exotic quarks proceeds only
through mixing with ordinary quarks and this results in the non-unitarity
of the extended 4 × 4 quark mixing matrix and thus non-vanishing flavor
changing neutral currents (FCNC) at the tree level.

In this paper, we study the effect of an additional quark generation (SM4)
and Vector Quark Model (VQM) on the helicity amplitudes of B → ΦK∗

decay. Our motivation is to examine these NP scenarios which have only left
handed operators to explain the discrepancies between the SM and experi-
mental data. Using χ2 fits, the best estimates for the models parameters in
SM4 and VQM are obtained. However, the large value of χ2/d.o.f. indicates
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that these scenarios in their simplest forms cannot explain the polarization
puzzle. One interpretation of these results, among others, could be that
using the left handed operators alone cannot solve the puzzle.

This paper is organized as follows. In Section 2, we give a brief review of
helicity amplitude calculation within the SM. Section 3 and 4 are devoted to
deriving these amplitudes within the extended SM with an extra generation
of quarks (SM4) and Vector Quark Model (VQM). Then, we perform χ2

fits to the available experimental data and conclude with an analysis of our
results.

2. B̄0 → ΦK̄0∗ polarization amplitudes in the SM

The effective Hamiltonian for hadronic b→ s transitions can be writ-
ten as:

Heff = GF/
√

2

[
VubV

∗
us (c1O

u
1 + c2O

u
2 ) + VcbV

∗
cs (c1O

c
1 + c2O

c
2)

−VtbV ∗ts

(
10∑
i=3

ciOi

)
+ cgOg

]
+ h.c. , (1)

where 4-quark and 2-quark operators have the following definitions:

• Current–current operators:

Ou1 = (ūb)V−A(s̄u)V−A , Ou2 = (ūαbβ)V−A(s̄βuα)V−A ,
Oc1 = (c̄b)V−A(s̄c)V−A , Oc2 = (c̄αbβ)V−A(s̄βcα)V−A . (2)

• QCD-penguin operators:

O3(5) = (s̄b)V−A
∑
q

(q̄q)V∓A , O4(6) = (s̄αbβ)V−A
∑
q

(q̄βqα)V∓A .

(3)

• Electroweak penguin operators:

O7(9) = 3
2(s̄b)V−A

∑
q

eq(q̄q)V±A ,

O8(10) = 3
2(s̄αbβ)V−A

∑
q

eq(q̄βqα)V±A . (4)

• Choromomagnetic dipole operator:

O8g = gs/(8π2)mbs̄σ
µν(1 + γ5)T abGaµν , (5)
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where (V ±A) = γµ(1±γ5), e and g are QED and QCD coupling constants,
respectively, T a’s are SU(3) color matrices, Gµν is the gluon field strength
and q ∈ {u, d, s, c, b}.

The complete calculation of B̄0 → ΦK̄∗0 in SM can be found in Refs [15,
27], which is briefly explained in the remainder of this section. Using the
QCD factorization (QCDF) approach with the Φ meson factorized, the am-
plitude1 of the above decay, which is penguin dominated, has the following
expression:

Ā(B̄0 → ΦK̄0∗) = GF/
√

2(−VtbV ∗ts)ahSMX
(B̄0K̄0∗,Φ) , (6)

where

X(B̄0K̄0∗,Φ) = 〈Φ(q, ε1)|(s̄s)V−A|0〉
〈
K̄∗(p′, ε2)|(s̄b)V−A|B̄0(p)

〉
= ifΦmΦ

[
−2i

mB̄0 +mK̄0∗
εµναβε

∗µ
1 ε∗ν2 p

αp′βV
(
q2
)]

−ifΦmΦ

[
(mB̄0 +mK̄0∗)ε∗1 · ε∗2A1

(
q2
)

−(ε∗1 · p)(ε∗2 · p)
2A2

(
q2
)

mB̄0 +mK̄0∗

]
, (7)

in which the decay constant fΦ and hadronic form factors are defined by the
following relations:

〈Φ(q, ε1)|V µ|0〉 = fΦmΦε
∗µ
1 ,〈

K̄∗0
(
p′, ε2

)
|V µ|B̄0(p)

〉
=

2
mB̄0 +mK̄0∗

εµναβε∗2νpαp
′
βV
(
q2
)
,

〈
K̄∗0

(
p′, ε2

)
|Aµ|B̄0(p)

〉
= i

[
(mB̄0 +mK̄0∗)ε∗µ2 A1

(
q2
)

−(ε∗2 · p)
(
p+ p′

)µ A2

(
q2
)

mB̄0 +mK̄0∗

]
−2imK̄0∗

ε∗2 · p
q2

qµ
[
A3

(
q2
)
−A0

(
q2
)]
. (8)

In the above expressions, mB̄0 and mK̄0∗ are the masses of B̄0 and K̄0∗,
respectively, q = p− p′, A3(0) = A0(0), and

A3

(
q2
)

=
(mB̄0 +mK̄0∗)

2mK̄0∗
A1

(
q2
)
− (mB̄0 −mK̄0∗)

2mK̄0∗
A2

(
q2
)
. (9)

1 The annihilation contribution which is power suppressed is neglected here [27].
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The multiplicative factor ahSM in Eq. (6) is a combination of the Wilson
coefficients in Heff (Eq. (1)) with the superscript h denoting the polarization
states of Φ and K0∗ mesons; h = 0 is for the helicity 00 state and h = ± for
helicity ±± states:

ahSM = ah3 + ah4 + ah5 − 1
2

(
ah7 + ah9 + ah10

)
. (10)

Within the QCDF approach, the h-dependence of ai’s are due to nonfac-
torizable effects which appear at O(αs) and in fact, in the naive factoriza-
tion (NF) approximation we have a0

SM = a+
SM = a−SM = aSM. Using Eqs (6)

to (9), it is then straightforward to calculate the decay width of B̄0 → ΦK̄?0

in terms of the helicity amplitudes:

Γ
(
B̄0 → ΦK̄?0

)
=

pc

8πmB̄0

(
|H̄00|2 + |H̄++|2 + |H̄−−|2

)
, (11)

where pc is the center of mass momentum of the Φ and K∗ mesons in the B̄
rest frame and the amplitudes H̄00, H̄++ and H̄−− are given as:

H̄00 = GF/
√

2C0(ifΦmΦ) (mB̄0 +mK̄0∗)
[
aA1(m2

Φ)− bA2

(
m2
Φ

)]
,

H̄±± = −GF/
√

2C±(ifΦmΦ)
[

(mB̄0 +mK̄0∗)A1

(
m2
Φ

)
∓ 2mB̄0pc

mB̄0 +mK̄0∗
V
(
m2
Φ

) ]
, (12)

with

a ≡
m2
B̄0 −m2

Φ −m2
K̄0∗

2mΦmK̄0∗
,

b ≡
2m2

B̄0p
2
c

mΦmK̄0∗ (mB̄0 +mK̄0∗)2 ,

Ch = VtbV
∗
tsa

h
SM .

We note that, unlike H̄±±, H̄00 only receives contributions from those terms
which are symmetric under ε1 ↔ ε2. The experimental data on this decay
mode is usually given in terms of transversity amplitudes, which are related
to the helicity amplitudes via the following relations:

Ā0 = H̄00 ,

Ā‖ =
(
H̄++ + H̄−−

)
/
√

2 ,

Ā⊥ = −
(
H̄++ − H̄−−

)
/
√

2 . (13)
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‖ and ⊥ subscripts refer to the polarizations of Φ and K̄0∗ both being trans-
verse (in the B̄0 rest frame) and either parallel or perpendicular to each
other. One can then rewrite the decay rate (Eq. (11)) in terms of these
amplitudes:

Γ
(
B̄0 → φK̄∗0

)
=

pc
8πm2

B̄0

(
|Ā0|2 + |Ā‖|2 + |Ā⊥|2

)
. (14)

Table I shows the experimental data for the fractional decay rates defined as:

R̄i =
Γ
(
B̄0 → φK̄∗0

)
i

Γ
(
B̄0 → φK̄∗0

) =

∣∣Āi∣∣2∣∣Ā0

∣∣2 +
∣∣Ā‖∣∣2 +

∣∣Ā⊥∣∣2 , i = 0 , ‖ , ⊥ , (15)

and the arguments of Ā‖ and Ā⊥, keeping in mind that R̄‖ = 1− R̄0− R̄⊥.

TABLE I

The BABAR and BELLE data for B̄0 → ΦK̄∗0 and its CP conjugate B0 → ΦK∗0

decay amplitudes [34].

Observable BABAR BELLE

R̄0 0.49± 0.07 0.59± 0.10
R̄⊥ 0.20± 0.07 0.26± 0.09
arg(Ā‖) −2.61± 0.31 −2.05± 0.31
arg(Ā⊥) 0.31± 0.36 0.81± 0.32

R0 0.55± 0.08 0.41± 0.10
R⊥ 0.24± 0.08 0.24± 0.10
arg(A‖) −2.07± 0.31 −2.29± 0.37
arg(A⊥) 1.03± 0.36 0.74± 0.33

We observe that according to the data R̄T = R̄‖ + R̄⊥ ∼ R̄0. However,
SM estimates via Eqs (12) and (13) produce a much bigger longitudinal
fraction, ranging from R̄0 ∼ 0.92 to 0.87 depending on the nonperturbative
parameters of the QCDF and leading to O(1/m2

b) suppression of R̄T /R̄0.
Since, to the leading order, there is no CP odd phase present in b → s
transition within the SM, one would expect similar predictions for the CP
conjugate B0 → ΦK∗0 decay. The experimental data for this decay mode is
shown in the bottom half of Table I. In the next section, we investigate how
an additional generation of heavy quarks, SM4, can affect this discrepancy
between the SM and experimental data.
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3. Effects of an additional quark generation

The presence of an extra generation of ordinary quarks results in ad-
ditional contributions, cSM4

i , to the Wilson coefficients of the operators in
Eq. (1) which are dependent on x = m2

t′/m
2
W . The unitary quark mix-

ing matrix is now 4 × 4 which can be written in terms of 6 mixing angles
and 3 CP-violating phases. The relevant elements of this matrix for b → s
transition satisfy the relation

VtbV
∗
ts = −VubV ∗us − VcbV ∗cs − Vt′bV ∗t′s . (16)

Consequently, one can write the new effective Hamiltonian as:

Heff = GF/
√

2

{
VubV

∗
us (c1O

u
1 + c2O

u
2 ) + VcbV

∗
cs (c1O

c
1 + c2O

c
2)

−VtbV ∗ts

[
10∑
i=3

cnew
i Oi + cnew

g Og

]
+ h.c.

}
, (17)

where cnew
i and cnew

g are:

cnew
i = ci +

Vt′bV
∗
t′s

VtbV
∗
ts

cSM4
i , i = 3 . . . 10, g . (18)

These new Wilson coefficients modify Eq. (12) with the following substitu-
tion:

Ch −→ Chnew ≡ VtbV ∗tsahnew , (19)

where ahnew is obtained from Eq. (10) with ai’s calculated via the substitution
ci → cnew

i . Clearly in obtaining Eq. (19), one needs to run down cnew
i to

the scale µ = mb. The product of the new mixing elements in Eq. (16) is
expressed in terms of two model parameters:

Vt′bV
∗
t′s = ueiϕ , (20)

where ϕ is one of the CP-violating phases. Thus, the coefficients Chnew are
sensitive to all three model parameters: x = m2

t′/m
2
W , u and ϕ. To find

the optimal values for the model parameters, we perform a χ2 fit to the
experimental data in Table I plus the branching ratio (10 input data for
B̄0 → ΦK̄0∗ and its CP conjugate process B0 → ΦK0∗). In the numeri-
cal evaluation of the decay amplitudes within the QCDF formalism, three
hadronic parameters appear in the calculation of the matrix element, ρ and θ
parametrize the logarithmic divergent integral involving the light-cone dis-
tribution amplitudes for the vector meson [30, 31], and a mass scale wB in
the B-mesons’s wavefunction. Our fits are performed for ρ = 0 and ρ = 1,
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where θ = 0 or 180◦ are used in the latter case, and with wB taken to
be 0.20. Also, the phase ambiguity associated with the fact that the an-
gular distribution analysis from which arg(Ā‖) and arg(Ā⊥) are obtained
is sensitive only to the interference terms like Re(Ā‖Ā∗0), Im(Ā⊥Ā∗0) and
Im(Ā⊥Ā∗‖) allows the alternate choice of (−arg(Ā‖), ±π −arg(Ā⊥)) for the
data pair (arg(Ā‖), arg(Ā⊥)) [2, 4]. That is, for example, the BABAR data
on the arguments of the transvesity amplitudes in Table I can be read as
either arg(Ā‖) = −2.61 ± 0.31, arg(Ā⊥) = 0.31 ± 0.36 or alternatively as
arg(Ā‖) = 2.61±0.31, arg(Ā⊥) = 2.83±0.36. We refer to the former choice
as plus and the latter one as minus phase convention. We have shown the
results for minus and plus phase convention for the case ρ = 1, θ = 0 in
Figs 1 and 2.
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Fig. 1. The results of four generations for ρ = 1, θ = 0 in the minus phase.
In this case, the value of the model parameters which result in a mini-

mum χ2 are given in Table II. It is clear from this table the helicity ampli-
tudes obtained from the SM4 are not able to match the observation. One
conjecture is that perhaps the unitarity requirement, Eq. (16), is too restric-
tive and has to be relaxed if adding a new generation of quarks has any
chance at explaining the experimental data on helicity amplitudes. This is,
in fact, what we have if the extra generation of quarks are vector like. In
the next section, we consider this possibility.
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Fig. 2. The results of four generations for ρ = 1, θ = 0 in the plus phase.

TABLE II

The values of helicity amplitudes for SM and SM4.

Model Phase χ2

7 x u φ R̄0 R̄⊥ R0 R⊥

SM — — — — — 0.87 0.062 0.94 0.030

SM4 minus 19.82 95 0.007 −0.03 0.89 0.053 0.93 0.035
plus 18.23 92 0.060 3.29 0.99 0.003 0.84 0.080

4. Effects of vector like down quark (VLDQ)

Another simple extension of the SM where deviations from unitary of
CKM matrix naturally arise by introducing extra quarks [22, 36] which are
weak isosinglets but which mix with the SM quarks. Here, we consider
only the case of one down-type vector quark. The nonunitarity of CKM
matrix (VtbV ∗ts + VubV

∗
us + VcbV

∗
cs = Usb) leads to a new bsz0 vertex which

is proportional to U sb (FCNC at tree level). One can show the Wilson
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Coefficients, c3, c7, c9, and cg receive the following additional contributions
at scale µ = MW [36]:

CVLDQ
3 = 1

6 ,

CVLDQ
7 = 2

3 sin2 θW ,

CVLDQ
9 = −2

3

(
1− sin2 θW

)
,

CVLDQ
g = −1

3 . (21)

Consequently, we can write the new effective Hamiltonian as:

Heff = GF/
√

2

{
VubV

∗
us (c1O

u
1 + c2O

u
2 ) + VcbV

∗
cs (c1O

c
1 + c2O

c
2)

−VtbV ∗ts

[
10∑
i=3

cnew
i Oi + cnew

g Og

]
+ h.c.

}
, (22)

where cnew
i and cnew

g are:

cnew
i = ci −

Usb
VtbV

∗
ts

cVLDQ
i , i = 3 . . . 10, g . (23)

Using the Renornmalization Group Equations, we can run the above
Wilson Coefficients down to scale µ = mb [36] and finally obtain the helicity
amplitudes in Eq. (12) by substituting:

Ch −→ Chnew ≡ VtbV ∗tsahnew , (24)

where Usb = |Usb|eiφsb . ahnew is again obtained from Eq. (10) with ai’s
calculated via the substitution ci → cnew

i . Using the experimental data on
Br(B −→ Xs`

+`−) [37, 38], and assuming the dominance of the tree level
contribution, one can extract the rough constraint |Usb| ≤ 10−3 and therefore
in this paper we take the parameters |Usb| and φsb as the following:

0 ≤ |Usb| ≤ 10−3 , 0 ≤ φsb ≤ 2π . (25)

We have preformed a χ2 fit similar to the one in the previous section within
the above restricted parameter space and the results are shown in Table III
and Figs 3 and 4. We observe from Table III that, unlike the addition of
ordinary quarks, the extra vector quark leads to a better fit to the data
when minus sign convention is assumed. However, the resulted values of the
helicity amplitudes are far from the experimental data.
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Fig. 3. The results of VQM for ρ = 1, θ = 0 in the minus phase.

3 4 5 6 7 8 9 10 11 12

x 10
−4

35

35.5

36

36.5

37

37.5

38

u
sb

χ2 /8

0.5 1 1.5 2 2.5 3 3.5

35

35.5

36

36.5

37

37.5

38

φ
sb

χ2 /8

Fig. 4. The results of VQM for ρ = 1, θ = 0 in the plus phase.

TABLE III

The values of helicity amplitudes for SM and VLDQ.

Model Phase χ2

8 Usb φsb R̄0 R̄⊥ R0 R⊥

SM — — — — 0.87 0.062 0.94 0.030

VLDQ minus 17.33 0.001 3.11 0.89 0.053 0.93 0.035
plus 34.81 0.001 1.88 0.87 0.061 0.93 0.035

5. Results and discussion

Although, adding extra quarks, ordinary or vector like, to the SM can
have strong effects on the SM observables in some processes [39–41], our χ2

analysis shows that such models cannot explain the experimental data for the
helicity amplitudes of B → ΦK∗ decays within the constrained parameter
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space. Assuming the smallness of the annihilation diagram in QCDF, one
can conclude that considering the left handed operators alone are not enough
to decrease the gap between SM and observed values and the presence of
new operators in the effective Hamiltonian is perhaps necessary. This issue
has not been directly proved previously.
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