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Charmless two-body decays of Bs mesons to PP , PV and V V final
states are investigated within an extension of the standard model with an
additional vector quark. Besides the CP averaged branching ratio, we look
into the direct CP violation associated with each mode to search for those
decays which are most sensitive to this new physics scenario. Our results
indicate that the branching ratio of Bs → π0η, π0η′, π0φ receive the most
significant shifts from the presence of a singlet quark. On the other hand,
the direct CP violations in Bs → φη′, φφ are the most affected by the vector
quark model.

PACS numbers: 12.15.Mm, 13.25.Hw, 11.30.Hv

1. Introduction

The Large Hadron Collider (LHC) is expected to expand our experimen-
tal reach in b-physics area with the production of a large number of various
mesons and baryons containing this quark. Among these, Bs meson plays
a crucial role in our precision test of the Standard Model (SM) and under-
standing of the new physics beyond it. For example, some of the charmless
decays of Bs could be quite sensitive to the presence of any flavor changing
neutral current (FCNC) at the tree level which is forbidden within the SM
and therefore, could provide excellent testing grounds for some new physics
models.

A simple extension of the standard model (SM) is to enlarge the par-
ticle content by adding an extra down-type iso-singlet quark, whose right-
handed and left-handed components are invariant under the SU(2)L×U(1)Y
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weak gauge group. This iso-singlet quark which is known as vector down-
type quark, can engage in weak interactions only through mixing with or-
dinary quarks [1,2]. Consequently, the extended 3× 4 quark mixing matrix
is not unitary, leading to tree-level FCNC. In fact, one can show that in this
scenario, which we call Vector Down-type Quark Model or VDQM for abbre-
viation, tree-level b → s transition is directly proportional to (V †KMVKM)sb,
where VKM is the 3 × 3 Kobayashi–Maskawa (KM) quark mixing matrix.
Reference [2] contains a more extensive discussion of this interesting aspect
of the VDQM. The tree-level b→ s process, even though small, could have
significant effects on some rare decay branching ratios and CP violation for
hadrons containing a b-quark.

Motivated by the above possibility, we are investigating the effect of
adding an extra down-type vector quark to the SM on various charmless Bs

decays to PP , PV and V V final states, where P and V stand for pseu-
doscalar and vector mesons, respectively. The CP averaged branching ratio
and direct CP asymmetry for each decay channel are calculated and com-
pared with the SM predictions thus looking for observables that can impose
the most severe constraints on VDQM parameter space.

The charmless hadronic decays of the Bs meson are studied within the
framework of generalized factorization in which factorization is applied to
the tree level matrix elements while the effective Wilson coefficients are µ
and renormalization scheme independent, and nonfactorizable effects are pa-
rameterized in terms of N eff

c (V −A) and N eff
c (V +A), the effective numbers

of colors arising from (V − A)(V − A) and (V − A)(V + A) four-quark
operators, respectively [3]. Similar recent applications of generalized factor-
ization method can be found in [4–6]. As usual in the literature, in the first
iteration, one does not consider the effect of the weak annihilation and ex-
change diagrams although they may have significant contributions in some
decay channels and so need to be studied in more accurate treatments of the
problem.

This paper is organized as follows. In Sec. 2, we first quote the theo-
retical framework within the SM, the effective Hamiltonian as well as the
generalized factorization formula to obtain the hadronic matrix element for
the two body Bs decays. The effects of a vector like down quark on the
effective Hamiltonian and the hadronic matrix element for Bs meson decays
are investigated in Sec. 3. The last section is devoted to our conclusions and
discussions.
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2. The hadronic matrix element for two body Bs decays in SM

The standard theoretical framework to calculate the inclusive three-body
decays b→ qq̄′q′ (q = d, s) is based on the effective Hamiltonian [7, 8],

Heff =
GF√

2

[
VubV

∗
uq(C1O

u
1 + C2O

u
2 ) + VcbV

∗
cq(C1O

c
1 + C2O

c
2)

−VtbV ∗tq

(
10∑
i=3

CiOi + CgOg

)]
+ h.c. , (1)

where the quark operator definitions can be found in Ref. [7,8] and the SM
value of the Wilson coefficients are presented in Refs [8, 9].

As mentioned in the introduction, in order to evaluate the hadronic ma-
trix elements for two body Bs decays, 〈Heff〉, we use the generalized factor-
ization ansatz in which the quantities Ceff

i and N eff
c play the basic roles. To

obtain the explicit expressions for Ceff
i (i = 1, · · · , 10), the one-loop matrix

elements at quark level are written in terms of the tree-level matrix elements
of the effective operators in the following form

〈sq′q̄′|Heff |b〉 =
∑
i,j

Ceff
i (µ)〈sq′q̄′|Oj |b〉tree, (2)

and thus the effective Wilson coefficients Ceff
i are extracted. In the NDR

scheme, this method leads to [7]:

Ceff
i =

[
1 +

αs

4π

(
rT
V + γT

V log
mb

µ

)]
ij

Cj

+
αs

24π
A′i (Ct + Cp + Cg) , i = 1 . . . 6 ,

Ceff
i = Ci +

αew

8π
Ce , i = 7, 9 ,

Ceff
i = Ci , i = 8, 10 . (3)

Here, A′i = (0, 0,−1, 3,−1, 3)T and the matrices rV and γV as well as the
quantities Ct, Cp, and Cg are given in [7, 10].

After obtaining the effective Wilson coefficients at quark level, we sand-
wich Eq. (2) between the initial and final mesons to obtain the hadronic
matrix elements of the type 〈M1M2|Oi|Bs〉 where M1 and M2 refer to the
final mesons. In order to calculate these matrix elements, we split them
into a product of two matrix elements of the generic type 〈M1|q̄b|Bs〉 and
〈M2|q̄′q′|0〉, where a Fierz transformation is used so that the flavor quantum
numbers of the quark currents match those of the hadrons [7]. Using this
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Fierz transformation and the identity T aαβT
b
ρδ = −(1/2Nc)δαβδρδ + 1

2δαδδβρ
yield operators which are in the color singlet–singlet and octet–octet forms.
This procedure finally leads to the appearing of the effective Wilson coeffi-
cients Ceff

i in the hadronic matrix elements as the following combinations [7]:

a2i−1 ≡ Ceff
2i−1 +

Ceff
2i

N eff
c

, a2i ≡ Ceff
2i +

Ceff
2i−1

N eff
c

, (i = 1, . . . , 5) , (4)

where N eff
c is the effective number of colors in which the nonfactorizable

effects due to the octet–octet and singlet–singlet operators are included. As
discussed in Ref. [3], these nonfactorizable effects in the matrix elements of
(V − A)(V − A) operators are not the same as those of (V − A)(V + A)
operators; N eff

c (V − A) 6= N eff
c (V + A). The analysis of data for B decays

in that article shows that the suitable choice for N eff
c is N eff

c (V − A) < 3 <
N eff
c (V + A). In the forthcoming numerical analysis, we choose the value

of N eff
c (V − A) = 2, N eff

c (V + A) = 5 which satisfy the above condition,
and consistent with values taken for this parameter in the literature [5, 6].
The matrix elements 〈M2|q̄′q′|0〉 and 〈M1|q̄b|Bs〉 ,which are color singlet, are
parameterized in terms of the decay constants and form factors, respectively.
The explicit expressions for them can be found in [3, 7].

For the k2 dependence of the form factors we have chosen the predictions
of BSW model [11–13] and our numerical inputs for the decay constants and
other parameters are the same as in [10].

Using the described methods, one is able to obtain the decay amplitude
for two-body Bs decays. These amplitudes are given in Ref. [11], from which
one can compute the branching ratios and the direct CP asymmetries for
the two body Bs decays. Based on the above explanations, we can now
investigate the effect of an extra down-type vector quark on these physical
quantities.

3. Vector-like Down-Quark Model (VDQM)

We now consider the effect of extending the SM with the addition of an
extra down-type iso-singlet quark D. One can show that the 3 × 4 quark
mixing matrix now is bound to be non-unitary and consequently, there are
tree-level FCNC proportional to the deviation from unitarity. For exam-
ple, the b → q (q = d, s) FCNC is parameterized by a complex parameter
U q b = (V †V )q b which can enter the Wilson coefficients of the operators in
the effective Hamiltonian, Eq. (1). Hence, one can show that the Wilson co-
efficients C3, C7, C9 and Cg receive the additional contributions due to the
FCNC (for the first three ones) and the nonunitarity of CKM matrix (for
the last one) at scale µ = MW as the following [1]:
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CVQM
3 = U q b 1

6 ,

CVQM
7 = U q b 2

3 sin2 θW ,

CVQM
9 = −U q b 2

3(1− sin2 θW) ,

CVQM
g = −U q b 1

3 . (5)

Using the renormalization group evolution, we can run the CVQM
i from the

MW scale to the scale ofmb. For C
VQM
1 −CVQM

10 , the NLO corrections should
be included. While for CVQM

g , LO results is sufficient. The details for the
running Wilson coefficients can be found in Refs [8, 9]. Based on the above
explanations, we can write the new effective Hamiltonian as:

Heff =
GF√

2

[
VubV

∗
uq(C1O

u
1 + C2O

u
2 ) + VcbV

∗
cq(C1O

c
1 + C2O

c
2)

−VtbV ∗tq

(
10∑
i=3

Cnew
i Oi + Cnew

g Og

)]
+ h.c. , (6)

where Cnew
i and Cnew

g are:

Cnew
i = Ci −

CVQM
i

VtbV
∗
tq

, i = 3 . . . 10, g . (7)

Now, by substituting Ci → Cnew
i (for i = 3 . . . 10, g) in Eq. (3), the new

effective Wilson coefficients Ceff new
i can be obtained leading to the anew

i by
the replacement of Ceff

i with Ceff new
i in Eq. (4). As a result, we can easily

obtain the branching ratios and the direct CP asymmetries for the two body
Bs decays by substituting ai → anew

i in all decay amplitudes.
In the next section, by considering the constraint on the vector quark

model parameters, we analyze the effect of this new quark on the branching
ratio and the direct CP asymmetries of the hadronic Bs decays.

4. Numerical results and their analysis

The most recent experimental data from Belle [17] and BABAR [18] on
the branching ratio of the inclusive Bs → Xs`

+`− decay impose sever con-
straints on the phase and magnitude of U sb which is shown in Fig. 1 [14].
The range of φsb is indeed between 0 and 2π which can be obtained by
reflecting the 0 < φsb < π region with respect to |U sb| axis on the top. In
the present section, we use this restriction on U sb to analyze numerically the
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Fig. 1. The allowed region of VDQM parameters, |Usb| and φsb, obtained by con-
sidering the most recent experimental data on the branching ratio of the inclusive
Bs → Xs`

+`− decay.

effect of an extra down-type vector quark on the branching ratios and the
direct CP asymmetries for the two body Bs decays. Moreover, we ignore
the decays involving b → d transition since Udb is expected to be an order
(orders) of magnitude smaller than U sb. As for the CKM matrix elements,
we shall use the Wolfenstein parametrization [15] with the following param-
eter values [16]: A = 0.8533± 0.0512, λ = 0.2200± 0.0026, ρ̄ = 0.20± 0.09,
and η̄ = 0.33 ± 0.05. The CP averaged branching ratios within the SM
and VDQM for those values of |U sb| and φsb which produce the maxi-
mum shift within the allowed domain of these parameters are presented in
Tables I–III for PV , V V and PP final states, respectively. Furthermore, the
direct CP asymmetry for the above modes are given in Tables IV–VI. From
these tables, we can see the effect of VDQM to the branching ratios and
CP violation is both constructive and destructive in the allowed region of
Fig. 1. In addition, this new physics scenario may flip the sign of the direct
CP violation. The detailed discussion of these behaviors are presented in
the following:

• Table I: The Bs → φπ decay is the most sensitive process among the
Bs → PV decays to the new physics. The branching ratio of this decay
changes almost from 1/2 to 9 times of that of the SM (Fig. 2). The
sensitivity of Bs → ρη and Bs → ρη′ to the VDQM parameters are the
same with the enhancement of the branching ratio up to 4 times of the
SM value which is more significant than the maximum possible reduc-
tion of about 29% of the SM prediction. In both Bs → ω(η, η′) decays,
the minimum values of branching ratio are 1/3 of those of the SM and
the maximum boost amounts to almost 2 times of those of the SM.
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Fig. 2. The plot of the branching ratio in Bs → φπ as a function of the phase φsb

and the magnitude of Usb.

The sensitivity of Bs → φη and Bs → φη′ to the VDQM parameters
are not the same. The constructive contribution of new physics in
Bs → φη enhances the magnitude of the SM branching ratio by a fac-
tor of 2.5 which is much larger than the destructive one. However, in
the Bs → φη′ process, the destructive contribution of VDQM could
reduce the magnitude of the branching ratio almost to 1/4 of the SM
prediction and is more significant than the constructive one. As for
Bs → K

∗0
K0, the VDQM can give about 33% enhancement to the

branching ratio.

• Table II: The Bs → ρφ decay is the most sensitive process among the
Bs → V V decays to the new physics. The maximum value of branching
ratio of this decay is around 4 times of that of the SM (Fig. 3). In
Bs → ωφ decay, the VDQM model reduces the branching ratio to 1/3
of the SM value and increases it to 2 times of what is expected from
the SM. On the other hand, the destructive contribution to Bs → φφ
decay brings down the branching ratio to 1/2 of the SM value.

• Table III: Bs → π0η and Bs → π0η′ decays receive the largest en-
hancements from VDQM with branching ratios going up by a factor 9
compared to that of the SM predictions (Fig. 4). The possible destruc-
tive contributions to the branching ratios are more modest reducing
it by a factor 1/2. Along with Bs → φπ decay, the above channels
are the most promising venues among the charmless two body decays
of Bs to test the validity of VDQM. Other Bs → PP decays get less
sizable shifts in their branching ratios due to the presence of a single
down-type vector quark.
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Fig. 3. The plot of the branching ratio in Bs → ρφ as a function of the phase φsb

and the magnitude of Usb.

Fig. 4. The plots of the branching ratio in Bs → πη and Bs → πη′ as functions of
the phase φsb and the magnitude of Usb.



Charmless Hadronic Two-Body Bs Decays Within the Vector . . . 2783

• Table IV: The direct CP asymmetry in Bs → φη′ decays can change
by more than an order of magnitude as well as receive a sign change
due to the presence of the extra quark (Fig. 5). Replacing η′ with η
in the final state leads to a smaller shift of around a factor 4 in the
direct CP violation.

Fig. 5. The plot of the CP asymmetry in Bs → φη′ as a function of the phase φsb

and the magnitude of Usb.

• Table V: Among the VV modes of the Bs decays, Bs → φφ shows
the largest sensitivity to VDQM, asymmetries up to 15% (plus or
minus sign) are possible as compared to SM prediction of nearly zero
asymmetry (Fig. 6).

Fig. 6. The plot of the CP asymmetry in Bs → φφ as a function of the phase φsb

and the magnitude of Usb.
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• Table VI: Our results indicate that the direct CP violation in Bs →
PP modes does not provide an experimentally discern able evidence
for the existence of an extra down-type vector quark.

TABLE I

CP averaged branching ratios for charmless B0
s → PV decays in SM and VDQM.

The first and second line for each decay mode refer to the minimum and maximum
value of the branching ratio in the allowed parameter space of VDQM, respectively.

Decay channel SM VLDQ |Usb| φsb

Bs → K
0
K∗0 3.49× 10−6 3.12× 10−6 0.00091 0,2π

3.54× 10−6 0.00013 π

Bs → K
∗0
K0 5.92× 10−7 5.67× 10−7 0.00013 π

7.89× 10−7 0.00091 0, 2π

Bs → K∗+K− 2.89× 10−6 2.79× 10−6 0.00026 4.48
3.38× 10−6 0.00088 0.30

Bs → K+K∗− 1.19× 10−6 9.26× 10−7 0.00088 5.98
1.25× 10−6 0.00026 1.80

Bs → ωη 1.17× 10−8 4.16× 10−9 0.00056 1.10
2.55× 10−8 0.00071 5.48

Bs → ωη′ 1.15× 10−8 4.09× 10−9 0.00056 1.10
2.51× 10−8 0.00071 5.48

Bs → φη 1.82× 10−7 1.32× 10−7 0.00021 5.48
4.24× 10−7 0.00086 0.40

Bs → φη′ 1.15× 10−6 3.25× 10−7 0.00091 0.10
1.39× 10−6 0.00013 3.48

Bs → ρη 9.52× 10−8 6.72× 10−8 0.00017 3.98
3.77× 10−7 0.00091 0.10

Bs → ρη′ 9.36× 10−8 6.61× 10−8 0.00017 3.98
3.71× 10−7 0.00091 0.10

Bs → φπ 5.41× 10−8 2.58× 10−8 0.00015 3.78
4.76× 10−7 0.00091 0.10
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TABLE II

Same as Table I except for B0
s → V V .

Decay channel SM VLDQ |Usb| φsb

Bs → K
∗0
K∗0 2.68× 10−6 2.40× 10−6 0.00091 0,2π

2.72× 10−6 0.00013 π
Bs → K∗+K∗− 2.48× 10−6 2.40× 10−6 0.00026 4.48

2.90× 10−6 0.00088 0.30
Bs → ωφ 1.94× 10−8 6.91× 10−9 0.00056 1.10

4.23× 10−8 0.00071 5.48
Bs → φφ 6.19× 10−6 3.17× 10−6 0.00091 0,2π

6.71× 10−6 0.00013 3.00
Bs → ρφ 1.58× 10−7 1.11× 10−7 0.00017 3.98

6.25× 10−7 0.00091 0.10

TABLE III

Same as Table I except for B0
s → PP .

Decay channel SM VLDQ |Usb| φsb

Bs → K
0
K0 1.33× 10−5 1.32× 10−5 0.00091 0,2π

1.33× 10−5 0.00013 π

Bs → K+K− 1.22× 10−5 1.21× 10−5 0.00015 3.78
1.27× 10−5 0.00091 0.10

Bs → π0η 3.57× 10−8 1.70× 10−8 0.00015 3.78
3.14× 10−7 0.00091 0.10

Bs → π0η′ 3.52× 10−8 1.68× 10−8 0.00015 3.78
3.10× 10−7 0.00091 0.10

Bs → ηη′ 2.32× 10−5 1.87× 10−5 0.00091 0,2π
2.38× 10−5 0.00013 3.00

Bs → ηη 7.00× 10−6 5.43× 10−6 0.00091 0,2π
7.19× 10−6 0.00013 2.90

Bs → η′η′ 1.73× 10−5 1.42× 10−5 0.00091 0,2π
1.78× 10−5 0.00013 π
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TABLE IV
Direct CPV for charmless B0

s → PV decays in SM and VDQM. The first and
second line for each decay mode refer to the minimum and maximum value of the
direct CP violation in the allowed parameter space of VDQM, respectively.

Decay channel SM VLDQ |Usb| φsb

Bs → K
0
K∗0 0.0036 −0.013 0.00066 0.90

0.020 0.00066 5.38
Bs → K

∗0
K0 0.0007 −0.012 0.00061 5.28

0.014 0.00061 1.00
Bs → K∗+K− 0.28 0.23 0.00086 5.88

0.29 0.00029 1.70
Bs → K+K∗− −0.053 −0.068 0.0009 0.20

−0.050 0.00029 4.58
Bs → ωη 0.48 0.30 0.00088 5.98

0.73 0.00051 1.20
Bs → ωη′ 0.48 0.30 0.00088 5.98

0.73 0.00051 1.20
Bs → φη −0.26 −1.00 0.00043 0.80

1.00 0.00056 5.28
Bs → φη′ 0.074 −0.77 0.00079 0.60

0.90 0.00083 5.78
Bs → ρη 0.046 −0.016 0.00056 5.18

0.072 0.00021 2.00
Bs → ρη′ 0.046 −0.016 0.00056 5.18

0.072 0.00021 2.00
Bs → φπ 0 0

0

TABLE V
Same as Table IV except for B0

s → V V .

Decay channel SM VLDQ |Usb| φsb

Bs → K
∗0
K∗0 0.0036 −0.013 0.00066 0.90

0.020 0.00066 5.38
Bs → K∗+K∗− 0.28 0.23 0.00086 5.88

0.29 0.00029 1.70
Bs → ωφ 0.48 0.30 0.00088 5.98

0.73 0.00051 1.20
Bs → φφ 0.0046 −0.15 0.00075 0.70

0.15 0.00075 5.58
Bs → ρφ 0.046 −0.016 0.00056 5.18

0.072 0.00021 2.00
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TABLE VI
Same as Table IV except for B0

s → PP .

Decay channel SM VLDQ |Usb| φsb

Bs → K
0
K0 0.0028 0.0017 0.00066 5.38

0.0040 0.00066 0.90
Bs → K+K− 0.089 0.080 0.00071 5.48

0.095 0.00056 1.10
Bs → π0η 0 0 — —

0 — —
Bs → π0η′ 0 0 — —

0 — —
Bs → ηη′ 0.0024 −0.029 0.00071 0.80

0.033 0.00066 5.38
Bs → ηη 0.012 −0.049 0.00071 0.80

0.020 0.00066 5.38
Bs → η′η′ −0.013 −0.015 0.00066 0.90

0.041 0.00071 5.48

5. Conclusions

In this paper, we have investigated various two-body charmless decays
of the Bs meson. The presence of an extra down-type vector quark results
in some significant shifts in the branching ratio and direct CP asymmetry of
a number of these decay channels. With the large number of Bs mesons that
are expected to be produced at LHC, these processes should be well within
the experimental reach and therefore the current analysis can provide further
constraints on the model parameters once the data will become available.
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