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We discuss the evolution of anisotropic boost-invariant quark–gluon
plasma possibly created at the early stages of relativistic heavy-ion colli-
sions. Our considerations are based on the recently proposed formalism
that is an extension of the relativistic perfect-fluid hydrodynamics. We an-
alyze (i) the pure partonic system described by the anisotropic phase-space
distribution function and (ii) the system of partons interacting with the lo-
cal magnetic fields. The second analysis is a simplified attempt to include
the effects of color fields on the particle dynamics. Our model results are
discussed in the context of early thermalization and isotropization. Under
general assumptions of the particle, energy, and momentum conservations
we show that for large evolution times the ratio of the longitudinal and
transverse pressures of the pure partonic system tends to zero. Hence, the
system with the initial momentum distribution elongated along the beam
axis always passes through the isotropic stage where the transverse and
longitudinal pressures are equal. The inclusion of the magnetic field in
this case gives negative contribution to the longitudinal pressure, hence
the transient stage when the total longitudinal and transverse pressures
become equal may be reached earlier, depending on the strength of the
field.

PACS numbers: 25.75.–q, 25.75.Dw, 25.75.Ld

1. Introduction

The data collected in the heavy-ion experiments at the Relativistic
Heavy-Ion Collider (RHIC) are most commonly interpreted as the evidence
that the matter produced in relativistic heavy-ion collisions equilibrates very
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fast (presumably within a fraction of 1 fm/c) and its behavior is very well
described by the perfect-fluid hydrodynamics [1–7]. Such features are nat-
urally explained by the assumption that the produced matter is a strongly
coupled quark–gluon plasma (sQGP) [8]. Another explanation assumes that
the plasma is weakly interacting, however the plasma instabilities lead to
the fast isotropization of matter, which in turn helps to achieve equilibra-
tion [9]. Recently, it has been also shown that the model assuming ther-
malization of the transverse degrees of freedom only [10] is consistent with
the data describing the transverse-momentum spectra and the elliptic flow
coefficient v2. This result indicates that the assumption of the fast thermal-
ization/isotropization might be relaxed.

In view of the problems related to the thermalization and isotropization
of the plasma, it is useful to develop and analyze the models which can
describe anisotropic systems. Recently, an effective model describing the
anisotropic fluid/plasma dynamics in the early stages of relativistic heavy-
ion collisions has been introduced [11]. The model has the structure similar
to the perfect-fluid relativistic hydrodynamics — the equations of motion fol-
low from the conservation laws. However, it admits the possibility that the
longitudinal and transverse pressures are different (as usual, the longitudinal
direction is defined here by the beam axis). The main characteristic feature
of the proposed model is the use of the pressure relaxation function R which
determines the time changes of the ratio of the transverse and longitudinal
pressures and, possibly, defines the way how the system becomes isotropic,
i.e., how the transverse and longitudinal pressures become equilibrated. The
role of the pressure relaxation function is similar and complementary to the
role played by the equation of state. It characterizes the material proper-
ties of the medium whose spacetime dynamics is otherwise governed by the
conservation laws.

In this paper we develop the formulation of Ref. [11] in two ways: (i) we
introduce the microscopic interpretation for the relaxation function in the
case where the considered system consists of particles whose behavior is
described by the momentum-anisotropic phase-space distribution function,
(ii) we include the effects of the fields considering the case of anisotropic
magnetohydrodynamics — this approach may be regarded as a very crude
attempt to include the effects of color fields on the particle dynamics.

Our first finding is that the use of the anisotropic phase-space distri-
bution functions leads inevitably to the pressure relaxation functions R
which imply that the ratio of the longitudinal and transverse pressures tends
asymptotically to zero, PL/PT → 0. This behavior is complementary to the
recent results obtained from the analyses of the early-stage partonic free-
streaming [12, 13]. In fact, our approach includes the free-streaming as the
special case, however, it may be also applied in the cases where the collisions
are present but their effect does not change the assumed generic form of the
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phase-space distribution function. The time asymptotics PL/PT → 0 means
that the systems with the initial prolate momentum shape, i.e., the systems
that are initially elongated along the beam axis in the momentum space
with PL > PT (see for example Refs [12, 14]), naturally pass through the
transient isotropic stage where the transverse and longitudinal pressures are
equal. Our second finding follows from the study of the magnetohydrody-
namic model. We show that the inclusion of the fields lowers the longitudinal
pressure and increases the transverse pressure, hence, for the initially pro-
late systems the stage when the total longitudinal and transverse pressures
become equal may be reached earlier, depending on the strength of the field.

The two models discussed by us cannot explain the phenomenon of reach-
ing the stable isotropic stage. However, we indicate that the presence of the
fields may have an impact on the process of isotropization, presumably re-
stored by the effects of those collisions and/or field instabilities that are not
taken into account in the present formalism. From the practical point of
view, our formalism allows for the determination of the space-time evolu-
tion of the color-neutral anisotropic distributions, which may be used, for
example, as the background distributions in the analysis of the plasma in-
stabilities. Interestingly, in the case where we have initially PL > PT, the
dynamics of the background and the plasma instable behavior evolve in the
same direction, i.e., the two processes restore the equality of pressures. On
the other hand, if the initial configuration has PT > PL, the plasma insta-
bilities must compete with the growing asymmetry of the background (see
Refs [15,16] where the growth of the instabilities was studied in the Bjorken
longitudinal expansion and substantially large times of about 20 fm/c were
found for RHIC). The interplay of such competing processes may be directly
related to the problem of very fast thermalization/isotropization taking place
in relativistic heavy-ion collisions. In addition, the discussed by us transfor-
mation of the longitudinal pressure into the transverse one is an interesting
phenomenon analyzed in the context of the RHIC HBT puzzle — we note
that the recently proposed explanations of this puzzle suggest a very fast
formation of the transverse flow [17–19].

The paper is organized as follows: In Section 2 we consider the anisotropic
system of partons described by the momentum-anisotropic phase-space dis-
tribution function. We calculate the moments of the distribution function,
determine the pressure relaxation function R, and argue that the general
form of R implies that the ratio of the longitudinal and transverse pressures
tends asymptotically to zero. In Section 3 we consider an example of boost-
invariant magnetohydrodynamics. We analyze in detail the consistency of
this approach and show that it may be treated as the special case of the
formalism developed in [11] with the appropriate relaxation function R̂. We
also show how the presence of the local magnetic fields affects the dynamics
of particles. We conclude in Section 4.



2846 W. Florkowski, R. Ryblewski

Below we assume that particles are massless and we use the following
definitions for rapidity and spacetime rapidity,

y =
1
2

ln
Ep + p‖

Ep − p‖
, η =

1
2

ln
t+ z

t− z
, (1)

which come from the standard parameterization of the four-momentum and
spacetime coordinate of a particle,

pµ =
(
Ep, ~p⊥, p‖

)
= (p⊥ cosh y, ~p⊥, p⊥ sinh y) ,

xµ = (t, ~x⊥, z) = (τ cosh η, ~x⊥, τ sinh η) . (2)

Here the quantity p⊥ is the transverse momentum

p⊥ =
√
p2
x + p2

y , (3)

and τ is the (longitudinal) proper time

τ =
√
t2 − z2 . (4)

Throughout the paper we use the natural units where c = 1 and ~ = 1.

2. Anisotropic system of particles

In this section we consider a system of particles/partons described by the
distribution function which is asymmetric in the momentum space, i.e., its
dependence on the longitudinal and transverse momentum is different. We
calculate the particle current, the energy-momentum tensor, and the entropy
current of such a system. As the special case we consider the exponential
Boltzmann-like distributions frequently used in other studies. This section
is also used to introduce general concepts of anisotropic plasma dynamics,
which will be applied to the system consisting of particles and fields in the
next section.

2.1. Anisotropic momentum distribution

We take into account the phase space distribution function whose de-
pendence on the transverse and longitudinal momentum is determined by
the two space-time dependent scales, λ⊥ and λ‖, namely

f = f

(
p⊥
λ⊥

,
|p‖|
λ‖

)
. (5)
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The form (5) is valid in the local rest frame of the plasma element. For boost-
invariant systems, the explicitly covariant form of the distribution function
has the structure

f = f

(√
(p · U)2 − (p · V )2

λ⊥
,
|p · V |
λ‖

)
, (6)

where

Uµ = (u0 cosh η, ux, uy, u0 sinh η) , (7)
V µ = (sinh η, 0, 0, cosh η) , (8)

and u0, ux, uy are the components of the four vector

uµ =
(
u0, ~u⊥, 0

)
=
(
u0, ux, uy, 0

)
. (9)

The four-velocity uµ is normalized to unity

uµuµ = u2
0 − u2

x − u2
y = 1 . (10)

The four-vector Uµ describes the four-velocity of the plasma element. It
may be obtained from uµ by the Lorentz boost along the z axis with ra-
pidity η. The appearance of the four-vector V µ is a new feature related
to the anisotropy — in the rest frame of the plasma element we have
V µ = (0, 0, 0, 1). We note that the four vectors Uµ and V µ satisfy the
following normalization conditions:

UµUµ = 1 , V µVµ = −1 , UµVµ = 0 . (11)

The boost-invariant character of Eq. (6) is immediately seen if we write
the explicit expression for p · U and p · V which both depend only on y − η
and the transverse coordinates, namely

p · U = p⊥u0 cosh(y − η)− ~p⊥ · ~u⊥ ,
p · V = p⊥u0 sinh(y − η) . (12)

From Eqs (12) one can also infer that in the rest frame system of the plasma
element, where η = 0 and ~u⊥ = 0, we have p · U = p⊥ cosh y and p · V =
p⊥ sinh y. Thus, in the local rest frame of the plasma element Eq. (6) is
reduced to Eq. (5).
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2.2. Moments of anisotropic distribution

Using the standard definitions of Nµ and Tµν as the first and the second
moment of the distribution function (6), namely

Nµ =
∫

d3p

(2π)3Ep
pµf , (13)

Tµν =
∫

d3p

(2π)3Ep
pµpνf , (14)

we obtain the following decompositions:

Nµ = nUµ , (15)
Tµν = (ε+ PT)UµUν − PT g

µν − (PT − PL)V µV ν . (16)

We note that Nµ does not have the contribution proportional to the four-
vector V µ since such a term would be proportional to the scalar product
V µNµ that vanishes in the local rest frame. Similarly, the energy-momentum
tensor does not contain the terms proportional to the symmetric combination
V µUν+UµV ν , see Ref. [20] for a more explicit presentation of the analogous
decompositions.

Equation (15) defines the particle density n, which may be calculated
from the formula

n =
∫

d3p

(2π)3
f

(
p⊥
λ⊥

,
|p‖|
λ‖

)

=
λ2
⊥ λ‖

2π2

∞∫
0

dξ⊥ ξ⊥

∞∫
0

dξ‖ f
(
ξ⊥, ξ‖

)
, (17)

where we have introduced the dimensionless variables

ξ⊥ =
p⊥
λ⊥

, ξ‖ =
p‖

λ‖
. (18)

In the similar way we calculate the energy density,

ε =
∫

d3p

(2π)3
Ep f

(
p⊥
λ⊥

,
|p‖|
λ‖

)

=
λ2
⊥ λ

2
‖

2π2

∞∫
0

dξ⊥ ξ⊥

∞∫
0

dξ‖

√
ξ2‖ + x ξ2⊥ f

(
ξ⊥, ξ‖

)
, (19)
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where the variable x is defined by the expression

x =
(
λ⊥
λ‖

)2

. (20)

Finally, the transverse and longitudinal pressure is obtained from the equa-
tions

PT =
∫

d3p

(2π)3
p2
⊥

2Ep
f

(
p⊥
λ⊥

,
|p‖|
λ‖

)
=

λ4
⊥

2π2

∫
dξ⊥ ξ

3
⊥ dξ‖

2
√
ξ2‖ + x ξ2⊥

f
(
ξ⊥, ξ‖

)
, (21)

PL =
∫

d3p

(2π)3
p‖

Ep
f

(
p⊥
λ⊥

,
|p‖|
λ‖

)
=

λ2
⊥ λ

2
‖

2π2

∫ dξ⊥ ξ⊥ dξ‖ ξ
2
‖√

ξ2‖ + x ξ2⊥

f
(
ξ⊥, ξ‖

)
. (22)

From now on the limits of the integrations over ξ⊥ and ξ‖ are always from
0 to infinity. In the local rest-frame of the fluid element, where we have
Uµ = (1, 0, 0, 0) and V µ = (0, 0, 0, 1) one finds

Tµν =


ε 0 0 0
0 PT 0 0
0 0 PT 0
0 0 0 PL

 , (23)

hence, as expected the structure (6) allows for different pressures in the
longitudinal and transverse directions.

One may also calculate the entropy current using the Boltzmann defini-
tion1,

Sµ = g0

∫
d3p

(2π)3
pµ

Ep

(
f

g0

) [
1− ln

(
f

g0

)]
, (24)

here g0 is the degeneracy factor related to internal quantum numbers such
as spin or color. The entropy current has the structure

Sµ = σ Uµ , (25)

1 The formula (24) assumes the classical Boltzmann statistics. It may be generalized
to the case of bosons or fermions in the standard way.
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where

σ =
λ2
⊥ λ‖

2π2

∫
dξ⊥ ξ⊥ dξ‖ f

(
ξ⊥, ξ‖

) [
1− ln

f
(
ξ⊥, ξ‖

)
g0

]
. (26)

Comparison of Eqs (17) and (26) indicates that the particle density and the
entropy density are proportional, with the proportionality constant depend-
ing on the specific choice of the parton distribution function f .

2.3. Pressure relaxation function

With the help of the variables x = (λ⊥/λ‖)2 and n we may rewrite our
expressions (19), (21), and (22) in the concise form

ε =
(
n

g

)4/3

R(x) , (27)

PT =
(
n

g

)4/3 [R(x)
3

+ xR′(x)
]
, (28)

PL =
(
n

g

)4/3 [R(x)
3
− 2xR′(x)

]
, (29)

where the function R(x) is defined by the integral

R(x) = x−1/3

∫
dξ⊥ ξ⊥ dξ‖

2π2

√
ξ2‖ + xξ2⊥f

(
ξ⊥, ξ‖

)
, (30)

R′(x) = dR(x)/dx, and g is a constant defined by the expression

g =
∫
dξ⊥ ξ⊥ dξ‖

2π2
f
(
ξ⊥, ξ‖

)
. (31)

It is quite interesting to observe that the structure of Eqs (27)–(29) agrees
with the structure derived in [11], where no reference to the underlying mi-
croscopic picture was made but only the general consistency of the approach
based on the anisotropic energy-momentum tensor (16) and the conservation
laws was studied. The only difference is that the entropy density σ used in
Ref. [11] is now replaced by the particle density n.

In fact, one may repeat the arguments presented in [11] replacing the
assumption of the conservation of entropy by the assumption of the particle-
number conservation (note that we have shown above that n and σ are
proportional if one uses the ansatz (5)). In such a case we end up with the
structure which exactly matches Eqs (27)–(29) and R may be identified with
the pressure relaxation function. Moreover, the results of Ref. [11] allow us
to relate the variable x = λ2

⊥/λ
2
‖ with the quantity nτ3 — we shall come

back to the discussion of this point below, after the analysis of some special
cases of the anisotropic distribution functions.
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2.4. Boltzmann-like anisotropic distribution

As the special case of the anisotropic distribution function we may con-
sider the exponential distribution of the form

f1 = g0 exp

−
√√√√p2

⊥
λ2
⊥

+
p2
‖

λ2
‖

 , (32)

which may be regarded as the generalization of the Boltzmann equilibrium
distribution where λ⊥ = λ‖ = T (as explained above, g0 is the degeneracy
factor connected with internal quantum numbers). In this case we recover
the structure (27)–(29) with the relaxation function of the form2

R1(x) =
3 g0 x−

1
3

2π2

[
1 +

x arctan
√
x− 1√

x− 1

]
(33)

and the constant (31) is simply

g1 =
g0
π2

. (34)

Another interesting anisotropic distribution function has the factorized
form

f2 = g0 exp
(
−p⊥
λ⊥

)
exp

(
−
|p‖|
λ‖

)
. (35)

In this case we obtain

R2(x) =
g0x
−1/3

2π2(1 + x)2

[
1 + 5x

√
x+ 2x2√x− 2x

+
3x√
x+ 1

ln
1 +
√
x+
√

1 + x

1 +
√
x−
√

1 + x

]
(36)

and
g2 =

g0
2π2

. (37)

The calculation of the entropy density gives σ = 4n and σ = 8n, for the
cases f = f1 and f = f2, respectively.

The structure of Eq. (30) implies that for x� 1 (λ⊥ � λ‖) the function
R(x) behaves like x−1/3. In this limit PT = 0 and ε = PL. Similarly, for
x� 1 (λ⊥ � λ‖) the function R(x) behaves like x1/6, implying that PL = 0

2 Note that for x < 1 the function (arctan
√

x− 1)/
√

x− 1 should be replaced by
(arctanh

√
1− x)/

√
1− x.
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and ε = 2PT. This behavior is expected if we interpret the parameters λ⊥
and λ‖ as the transverse and longitudinal temperatures, respectively. In
agreement with those general properties we find

R1(x) ≈ 3g0
2π2

[
x−1/3 +

1
2

(ln 4− lnx)x2/3

]
,

R2(x) ≈ g0
2π2

[
x−1/3 +

1
2

(6 ln 2− 8− 3 lnx)x2/3

]
,

(38)

for x� 1, and

R1(x) ≈ 3g0
4π

(
x1/6 +

1
2
x−5/6

)
,

R2(x) ≈ g0
π2

(
x1/6 +

1
2
x−5/6

)
, (39)

for x� 1.
In Fig. 1 we plot the ratios: PL/PT (solid line), PL/ε (decreasing dashed

line), and PT/ε (increasing dashed line) for the two cases: f = f1 (a) and
f = f2 (b). The considered ratios are functions of the x parameter only.
In agreement with the remarks given above we see that ε = PL for x = 0,
and ε = 2PT in the limit x → ∞. For f = f1 the two pressures become
equal if x = 1, since in this case the distribution function f1 becomes exactly
isotropic. For f = f2 the equality of pressures is reached for x ≈ 0.7. Except
for such small quantitative differences, the behavior of the pressures is very
much similar in the two cases, as can be seen from the comparison of the
upper and lower part of Fig. 1.

PL�PT

PL�Ε PT�Ε

x

aL

1 2 3 4 5

0.5

1.0

1.5

2.0

PL�PT

PL�Ε PT�Ε

x

bL

1 2 3 4 5

0.5

1.0

1.5

2.0

Fig. 1. (Color online) The ratios PL/PT (solid red lines), PL/ε (decreasing blue
dashed lines), and PT/ε (increasing blue dashed lines) shown as functions of the
variable x, (a) the results for the distribution function (32), (b) the same for the
distribution function (35).



Dynamics of Anisotropic Plasma at the Early Stages of Relativistic . . . 2853

We note that the choice R(x) = x1/6 corresponds to the case of transverse
hydrodynamics, see Ref. [11]. In the transverse-hydrodynamic approach the
matter forms non-interacting transverse clusters which do not interact with
each other yielding PL = 0. The concept of transverse hydrodynamics was
initiated in Refs [21,22] and recently reformulated in Refs [10,20,23].

2.5. Time dependence of pressure anisotropy

In this section we briefly recall the arguments of Ref. [11] concerning the
consistency of the anisotropic plasma dynamics. The basic assumptions are
the particle number conservation,

∂µN
µ = ∂ (nUµ) = 0 , (40)

and the energy-momentum conservation law,

∂µT
µν = 0 , (41)

with the energy-momentum tensor of the form (16). As shown in the previ-
ous sections, the entropy conservation used in [11] may be typically identified
with the particle number conservation. In view of the further development of
the model discussed in the next section we shall turn to the particle number
conservation as the basic input. We note that the assumption (40) means
that our description may be valid only after the time when most of the
particles is produced.

The projection of the energy-momentum conservation law (41) on the
four-velocity Uν indicates that the energy density is generally a function of
two variables, ε = ε(n, τ). The mathematical consistency of this approach,
i.e., the requirement that dε is a total differential, implies directly that
the functions ε(n, τ), PT(n, τ), and PL(n, τ) must be of the form (27)–(29),
where

x = x0
nτ3

n0τ3
0

(42)

with x0, n0 and τ0 being constants that may be used to fix the initial condi-
tions. In particular, it is convenient to regard τ0 as the initial time, and n0

as the maximal initial density (at the very center of the system). Then, x0 is
the maximal initial value of x. Note that the particle density n is very small
at the edge of the system, hence the initial transverse pressure is always zero
in this region. On the other hand, at the center of the system at the initial
time τ = τ0 we may have PT < PL or PT > PL depending on the value of x0.

Combing Eqs (20) and (42) we are coming to the main conclusion reached
so far: For the microscopic phase-space distribution function of the form (5),
the pressure relaxation function is completely determined by Eq. (30), where

x =
λ2
⊥
λ2
‖

= x0
nτ3

n0τ3
0

. (43)
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In the region where the matter is initially formed we have 0 < n ≤ n0 and
the right-hand-side of Eq. (43) grows with time — the particle density n can-
not decrease faster than 1/τ3, since this would require a three-dimensional
expansion at the speed of light. We thus conclude that the ratio of the
parameters λ‖/λ⊥ tends asymptotically in time to zero. Consequently, for
sufficiently large evolution times the ratio of the longitudinal and transverse
pressures becomes negligible. As mentioned above, even if the initial condi-
tions require that PT is larger than PL at the center of the system, at the
edges we have very small density which means that PL � PT in this region.
In the case where the longitudinal expansion dominates, n = n0τ0/τ and
x = x0τ

2/τ2
0 , hence x and τ are simply related.

2.6. Longitudinal free-streaming

The anisotropic distribution functions considered in the previous sections
should satisfy the Boltzmann kinetic equation (in some reasonable approxi-
mation). In this respect we assume that the effects of both the free-streaming
and the parton collisions do not change the generic structure (6), while the
time changes of the parameters λ⊥,λ‖, and uµ are determined by the con-
servation laws. The spirit of this approach is very similar to that used in the
perfect-fluid hydrodynamics, where the collisions maintain the equilibrium
shape of the distribution function, whereas the conservation laws determine
the time changes of the parameters such as temperature or the fluid velocity.

Clearly the relation of our framework to the underlying kinetic theory
should be elaborated in more detail in further investigations, which may
possibly determine the microscopic conditions which validate our approxi-
mations. Here, we may easily analyze the case of pure free-streaming where
the distribution function satisfies the collisionless kinetic equation

pµ∂µf(x, p) = 0 . (44)

For the pure longitudinal expansion (with vanishing transverse flow, ~u⊥ = 0,
and the parameters λ⊥, λ‖ depending only on the proper time τ) we rewrite
Eq. (44) in the form[

cosh(y − η)
∂

∂τ
+

sinh(y − η)
τ

∂

∂η

]
f (w, v) = 0 , (45)

where w = p⊥/λ⊥(τ) and v = p⊥ sinh(y − η)/λ‖(τ), see Eqs (6) and (12).
By direct differentiation we obtain3

∂f

∂w

dλ⊥
λ2
⊥dτ

+
sinh(y − η)

λ2
‖

∂f

∂v

[
dλ‖

dτ
+
λ‖

τ

]
= 0 . (46)

3 For simplicity we consider here the functions depending on v2 and disregard the sign
of the absolute value.
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The solution to this equation exists for any form of the function f provided
λ⊥ is a constant and λ‖ ∼ 1/τ . Thus, we may write

f = f

(
p⊥
λ0
⊥
,
τp⊥ sinh(y − η)

τ0λ0
‖

)
, (47)

where τ0, λ0
⊥ and λ0

‖ are constants.
In the considered case the variable x equals

x =
(
λ⊥
λ‖

)2

=

(
λ0
⊥

λ0
‖τ0

)2

τ2 (48)

hence, it is consistent with Eq. (43), where for the boost-invariant longi-
tudinal expansion we may substitute n = n0τ0/τ . We thus see that our
approach includes the boost-invariant free-streaming as the special case. In
particular, Eq. (47) agrees with the form of the color neutral background
used in Refs [15, 16, 24]. In the next section we show that our framework
includes also the case where the partons interact with local magnetic fields.

3. Locally anisotropic magnetohydrodynamics

In this section we generalize the formulation discussed in Section 2. We
analyze in detail magnetohydrodynamics as an example of the physical sys-
tem consisting of particles and fields, which is also known to exhibit strong
anisotropic behavior. Of course, the magnetohydrodynamics by itself cannot
be directly applied to modeling of the early stages of heavy-ion collisions.
However, several phenomena analyzed in its framework show similarities
with the color field dynamics discussed in the context of Color Glass Con-
densate [25,26] and Glasma [27], hence we think that the elaboration of this
example may shed light on more complicated color-hydrodynamics which
may be the right description of the early stages of heavy-ion collisions.

Our analysis of the boost-invariant magnetohydrodynamics, where the
initial magnetic field is parallel to the collision axis, shows that in the con-
sidered system similar phenomena take place as in the system consisting of
particles only. The presence of the fields lowers the longitudinal pressure
(which eventually may be negative) and increases the transverse pressure,
see a related analysis in [28].

3.1. General formulation

At first, let us recapitulate the main physical assumptions of locally
anisotropic magnetohydrodynamics (for recent formulation see for example
[29,30]). Let Uµ be the plasma four-velocity and Fµν be the electromagnetic-
field tensor. We define the rest-frame electric and magnetic field by the
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following equations

Eµ = FµνUν , (49)
Bµ = 1

2ε
µαβγUαFβγ , (50)

where εαβγδ is a completely antisymmetric tensor with ε0123 = 1. Eqs (49)
and (50) yield

Fµν = EµUν − EνUµ + 1
2ε
µναβ (BαUβ −BβUα) . (51)

We note that both Eµ and Bµ are spacelike and orthogonal to Uµ,

EµE
µ ≤ 0 , EµU

µ = 0 , (52)
BµB

µ ≤ 0 , BµU
µ = 0 . (53)

The picture of anisotropic magnetohydrodynamics requires that Uµ cor-
responds to the frame where the electric field is absent,

Eµ = 0 . (54)

In this case the Maxwell equations may be written in the form

∂µF
µν = 4πjν , (55)

∂µ
∗Fµν = 0 , (56)

where
Fµν = 1

2ε
µναβ(BαUβ −BβUα) (57)

and ∗Fµν is the dual electromagnetic tensor
∗Fµν = BµUν −BνUµ . (58)

Besides Eqs (55)–(58) the plasma dynamics is determined by the particle
conservation law, see Eq. (40), the electromagnetic current conservation (the
consequence of Eq. (55)), and the energy-momentum conservation law for
matter and fields. Before we analyze the role of the conservation laws we
shall discuss, however, the constraints coming from the boost-invariance.

3.2. Imposing longitudinal boost-invariance

Our aim is to construct the boost-invariant field tensors Fµν(x) and
∗Fµν(x). The condition of boost-invariance requires that the transformed
fields at the new spacetime positions are equal to the original fields in the
new positions. Formally, this condition may be written in the form

Fµν ′(x′) = LµαL
ν
βF

αβ(x) = Fµν(x′) , (59)
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where L describes the longitudinal Lorentz boost. Similarly, for a boost-
invariant four-vector field Aµ(x) we have

Aµ ′(x′) = LµαA
α(x) = Aµ(x′) . (60)

It is easy to check that the four-vectors Uµ and V µ defined by Eqs (7) and
(8) are invariant under Lorentz boosts with rapidity α along the longitudinal
axis, defined by the matrix

Lµν(α) =


coshα 0 0 sinhα

0 1 0 0
0 0 1 0

sinhα 0 0 coshα

 . (61)

Since Uµ and V µ are boost-invariant, the structure of Eqs (57) and (58)
suggests that the boost-invariant formalism follows from the ansatz

Bµ = BV µ , (62)

where B is a scalar function depending on τ and transverse coordinates ~x⊥.
Equation (62) defines the field tensors as the tensor products of the boost-
invariant four-vectors, hence, by construction the field tensors are boost-
invariant. In addition, we observe that in this case Eq. (53) is automatically
fulfilled.

3.3. Homogeneous dual field equations

Projection of the homogeneous dual field equations (56) on the four-
velocity Uν gives

V µ∂µB +B∂µV
µ −BUνUµ∂µV ν = 0 . (63)

For the boost-invariant systems all terms in (63) are identically zero, hence
it is automatically fulfilled. On the other hand, the projection of (56) on
the four-vector Vν gives

Uµ∂µ ln
(nτ
B

)
= 0 , (64)

hence B is related to the particle density n and the proper time τ by the
expression

B = B0
nτ

n0τ0
. (65)

One may check that with the ansatz (65) all four equations in (56) are
automatically satisfied, hence Eq. (65) is the main piece of information de-
livered by the homogeneous dual field equations. In particular, the equation
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~∇ · ~B = 0 turns out to be equivalent with the continuity equation for the
particle number.

Collecting now Eqs (62) and (65) we find the explicit form of the dual
field tensor ∗Fµν ,

∗Fµν =
B0nτ

n0τ0


0 ux sinh η uy sinh η −u0

−ux sinh η 0 0 −ux cosh η
−uy sinh η 0 0 −uy cosh η

u0 ux cosh η uy cosh η 0

 . (66)

The structure of the dual tensor allows us to infer the form of the electric
and magnetic fields,

~B =
B0nτ

n0τ0

(
−ux sinh η,−uy sinh η, u0

)
, (67)

~E =
B0nτ

n0τ0
(−uy cosh η, ux cosh η, 0) . (68)

The above structure implies directly that with no transverse expansion,
i.e., for ux = uy = 0 only the longitudinal magnetic field is present in
the system and, in view of the relation n = n0τ0/τ , it should be a constant,
B = B0.

In our general approach the situation ux = uy = 0 corresponds to the
initial condition for the evolution of the system. It resembles the case of the
Glasma [27] where also the longitudinal chromo-magnetic field is present,
however, in the case of Glasma the direction of the field is random with the
coherence transverse length set by the saturation scale (another difference is
the presence of the longitudinal chromo-electric field in the Glasma). When
the transverse expansion starts, due to the presence of the transverse pres-
sure, it initiates the formation of the transverse magnetic and electric fields
which are always perpendicular to each other, ~B · ~E = 0. We note, how-
ever, that in the local rest frame of the plasma element, the only non-zero
component is Bz.

A more compact form representing the fields ~B and ~E may be achieved
if we use the following parameterization of the particle current

Nµ = n
(
u0 cosh η, ux, uy, u0 sinh η

)
=
(
nu0 cosh η, nx, ny, nu0 sinh η

)
. (69)

Using the quantities nx and ny we write

~B =
B0

n0τ0

(
−z nx,−z ny, n τ u0

)
, (70)

~E =
B0

n0τ0
(−t ny, t nx, 0) . (71)
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3.4. Inhomogeneous field equations

We turn now to the inhomogeneous field equations (55). In our approach
those equations may be used to determine the electromagnetic current of the
system, jµ = (ρ, jx, jy, jz). The straightforward calculation, where the form
of the magnetic and electric fields given by Eqs (70) and (71) is used, leads
us to the expressions

j0 = ρ =
B0 t

n0τ0
(∂ynx − ∂xny) ,

j1 = jx =
B0

n0τ0

[
τ∂y(nu0) + 2ny + τ∂τny

]
,

j2 = jy =
B0

n0τ0

[
−τ∂x(nu0)− 2nx − τ∂τnx

]
,

j3 = jz =
B0 z

n0τ0
(∂ynx − ∂xny) . (72)

One may check by the explicit calculation that the electromagnetic four-
current jµ defined by Eq. (72) is conserved, as required by the equation (55).

In the magnetohydrodynamic approach one usually assumes that matter
is neutral. In our case, the neutrality condition ρ = 0 implies that the flow
must be rotationless, i.e., the following equation should be satisfied

∂ynx − ∂xny = 0 . (73)

In this case also the longitudinal component of the electromagnetic current
vanishes, which means that the non-zero current circulates around the z-axis.

The explicit calculation with the magnetic and electric fields given by
Eqs (70) and (71) shows also that

~E + ~v × ~B = 0 . (74)

This is nothing else but the non-covariant version of the condition (54).

3.5. Conservation laws

Besides the Maxwell equations, the equations of magnetohydrodynamics
include the conservation laws for: the particle number, the electromagnetic
current (following directly from Eq. (55)), and the energy-momentum of
the combined system consisting of matter and fields. The total energy-
momentum conservation law may be written in the form

∂µT̂
µν = 0 . (75)



2860 W. Florkowski, R. Ryblewski

where the energy-momentum tensor, T̂µν , including the contributions from
matter and fields has the structure

T̂µν =
(
ε+ PT +

B2

4π

)
UµUν −

(
PT +

B2

8π

)
gµν

+
(
PL − PT −

B2

4π

)
V µV ν . (76)

One may reduce the tensor (76) to the form (16) if we introduce the following
variables

ε̂ = ε+
B2

8π
= ε+ ε̄ ,

P̂T = PT +
B2

8π
= PT + P̄T ,

P̂L = PL −
B2

8π
= PL + P̄L . (77)

Clearly, the variables with a hat describe the sum of the matter and field con-
tributions to the total energy density and transverse/longitudinal pressures
(the field contributions are marked with a bar).

Following the same method as that introduced in Ref. [11] we find that
the energy-momentum conservation leads to the differential equation

dε̂ =
ε̂+ P̂T

n
dn+

P̂T − P̂L

τ
dτ . (78)

Exactly this structure implies that the energy density and pressures are of
the form (27)–(29). So we may immediately write

ε̂ =
(
n

g

)4/3

R̂(x) , (79)

P̂T =
(
n

g

)4/3
[
R̂(x)

3
+ xR̂′(x)

]
, (80)

P̂L =
(
n

g

)4/3
[
R̂(x)

3
− 2xR̂′(x)

]
, (81)

where the complete relaxation function for matter and fields equals

R̂(x) = R(x) + c0x
2/3 , (82)

with the parameter c0 defined by the equation

c0 =
B2

0

8π

(
g

n0

)4/3

x
−2/3
0 . (83)
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In Fig. 2 we show the ratios: P̂L/P̂T (solid red lines), P̂L/ε̂ (decreasing
blue dashed lines), and P̂T/ε̂ (increasing blue dashed lines) shown as func-
tions of the variable x. Similarly to the case without the magnetic field we
observe that the ratio of the longitudinal and transverse pressures decreases
with x. The new feature of the case with the field is, however, that this
ratio may become negative. This behavior reflects the negative contribution
of the field pressure P̄L = −B2/(8π) to the total pressure P̂L. It becomes
dominant for the large values of x, where the matter contribution, growing
as x1/6, may be neglected with the field contribution, growing as x2/3.
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Fig. 2. (Color online) The ratios: P̂L/P̂T (solid red lines), P̂L/ε̂ (decreasing blue
dashed lines), and P̂T/ε̂ (increasing blue dashed lines) shown as functions of the
variable x, (a) the results for the distribution function (32) and c = 0.1, (b) the
same for c = 0.5.

In view of our discussion in Section 2, the variable x depends mono-
tonically on time, hence the x dependence reflects to large extent the time
evolution of the studied ratios. If the initial conditions assume very small
value of x0 (and consequently of the initial x) the system has initially larger
total longitudinal pressure than the transverse pressure P̂T. The time evo-
lution tends to equilibrate and then to invert the ratio of the two pressures.
The time scale for this process is determined by the initial value of the
field, B0, as can be noticed by the comparison of the upper and lower part
of Fig. 2.

We close this section with the following remark. Since, B is a function
of n and τ , we may rewrite Eq. (78) in the equivalent form as

dε =
ε+ PL

n
dn+

PT − PL

B
dB . (84)

This equation displays the dependence of the energy density ε on the particle
density n and the magnetic field B. The equation of the form ε = ε(n,B)
plays a role of the equation of state. For the boost-invariant systems the
functional dependence ε(n,B) may be changed to the non-trivial dependence
of ε on n and τ , as introduced in Ref. [11].
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4. Conclusions

In this paper we have developed the formalism introduced in Ref. [11] dis-
cussing (i) the system described by the anisotropic distribution function and
(ii) the system of partons interacting with local magnetic fields. The pre-
sented results may be used to analyze anisotropic systems formed in relativis-
tic heavy-ion collisions. In particular, they may be used to find anisotropic
neutral distribution functions which form the background for the field insta-
bilities possibly responsible for the genuine thermalization/isotropization.
In addition, our analysis indicates that the process of stable isotropization
may require that the assumption concerning boost-invariance and/or entropy
conservation should be relaxed.

We thank W. Broniowski and S. Mrówczyński for helpful discussions and
critical comments.
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