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The properties of the quantum universe on extremely small spacetime
scales are studied in the semi-classical approach to the well-defined quan-
tum model. It is shown that near the initial cosmological singularity point
quantum gravity effects ∼ ~ exhibit themselves in the form of additional
matter source with the negative pressure and the equation of state as for
ultrastiff matter. The analytical solution of the equations of theory of grav-
ity, in which matter is represented by the radiation and additional matter
source of quantum nature, is found. It is shown that in the stage of the
evolution of the universe, when quantum corrections ∼ ~ dominate over the
radiation, the geometry of the universe is described by the metric which
is conformal to a metric of a unit four-sphere in a five-dimensional Eu-
clidean flat space. In the radiation dominated era the metric is found to be
conformal to a unit hyperboloid embedded in a five-dimensional Lorentz-
signatured flat space. The origin of the universe can be interpreted as
a quantum transition of the system from the region in a phase space with
a trajectory in imaginary time into the region, where the equations of mo-
tion have the solution in real time. Near the boundary between two re-
gions the universe undergoes almost an exponential expansion which passes
smoothly into the expansion under the action of radiation dominating over
matter. As a result of such a quantum transition the geometry of the uni-
verse changes. This agrees with the hypothesis about the possible change
of geometry after the nucleation of expanding universe from ‘nothing’.

PACS numbers: 98.80.Qc, 04.60.–m, 04.60.Kz

1. Introduction

It is accepted that the present-day Universe as a whole can be consid-
ered as a cosmological system described by the standard model based on
general relativity [1, 2]. According to the Standard Big Bang Model [2, 3],
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the early Universe was very hot and dense. In order to describe that era one
must treat the gravitational degrees of freedom and matter fields quantum
mechanically [4, 5]. The fact that in the course of its evolution the Uni-
verse has passed through a stage with quantum degrees of freedom before
turning into the cosmological system, whose properties are described well
by general relativity, means that a consistent description of the Universe as
a nonstationary cosmological system should be based on quantum general
relativity in the form admitting the passage to general relativity in semi-
classical limit ~→ 0 [4]. One of the possible versions of such a theory with
a well-defined time variable was proposed in Refs [6,7] in the case of homo-
geneous, isotropic and closed universe filled with primordial matter in the
form of a uniform scalar field and relativistic matter associated with a ref-
erence frame. As calculations have demonstrated [6,7], the equations of the
quantum model may be reduced to the form in which the matter energy den-
sity in the universe has a component in the form of a condensate of massive
quanta of a scalar field. Under the semi-classical description this component
behaves as an antigravitating fluid. Such a property has a quantum nature
and it is connected with the fact that the states with all possible masses
of a condensate contribute to the total wave function of the quantum uni-
verse. If one discards the corresponding quantum corrections, the quantum
fluid degenerates into a dust, i.e. matter component of the energy density
commonly believed to make a dominant contribution to the mass-energy of
ordinary matter in the present Universe in the standard cosmological model.
Let us note that the presence of a condensate in the universe, as well as the
availability of a dust representing an extreme state of a condensate, is not
presupposed in the initial Lagrangian of the theory. An antigravitating con-
densate arises out of a transition from classical description of gravitational
and matter fields to their quantum description achieved by canonical quan-
tization. If one supposes that the properties of our Universe are described
in an adequate manner by such a quantum theory, an antigravitating con-
densate being found out can be associated with dark energy [7]. Assuming
that particles of a condensate can decay to baryons, leptons (or to their an-
tiparticles) and particles of dark matter, one can describe the percentage of
baryons, dark matter and dark energy observed in the present Universe [8].

In semi-classical limit the negative pressure fluid arises as a remnant
of the early quantum era. This antigravitating component of the energy
density does not vanish in the limit ~ → 0. In addition to this component,
the stress-energy tensor contains the term vanishing after the transition to
general relativity, i.e. to large spacetime scales. However, on small spacetime
scales quantum corrections ∼ ~ turn out to be significant. As it is shown in
this paper, the effects stipulated by these corrections determine the equation
of state of matter and geometry near the initial cosmological singularity
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point. They define a boundary condition that should be imposed on the
wave function in the origin so that a nucleation of the universe from the
initial cosmological singularity point becomes possible.

In this paper we use the modified Planck system of units. The lP =√
2G~/(3πc3) is taken as a unit of length, the ρP = 3c4/(8πGl2P) is a unit of

energy density and so on. All relations (with the exception of Appendix A)
are written for dimensionless values.

2. Equations of motion in quantum model

Let us consider the homogeneous, isotropic and closed universe which
is described by the Robertson–Walker metric with the cosmic scale factor
a(τ), where τ is the proper time. We assume that the universe is originally
filled with the uniform scalar field φ and a perfect fluid which defines so
called material reference frame [6, 9]. The perfect fluid is taken in the form
of relativistic matter (radiation) with the energy density ργ = E/a4, where
E = const. The scalar field oscillates with a small amplitude near the
minimum of its potential energy density (potential) V (φ) at the point φ = σ,
{dV (φ)/dφ}σ = 0, while in general case V (σ) 6= 0. Then the equations of
the quantum model under consideration are reduced to the following spectral
problem [6,7] (

−∂2
a + Uk(a)− E

)
f(a) = 0 , (1)

where
Uk(a) = a2 − 2aMk − a4V (σ) (2)

is the effective potential, Mk = mσ(k + 1
2) with m2

σ = {d2V (φ)/dφ2}σ > 0
and k = 0, 1, 2, . . . describes an amount of matter (mass) in the universe in
the form of a condensate of quantized scalar field as an aggregate of mas-
sive excitation quanta of the spatially coherent oscillations of the scalar field
about the equilibrium state σ. The solutions of Eq. (1) determine the states
of the universe in an effective potential well (2) at given mass of a conden-
sate Mk. The wave function f(a) and the eigenvalue E depend on quantum
number k, which is equal to the quantity of quanta of a condensate, and
second quantum number n = 0, 1, 2, . . . , marking the states (levels) in the
potential well (2). If V (σ) = 0, the spectrum of these states is discrete [6].
If V (σ) 6= 0, the states in the well (2) will be, generally speaking, quasis-
tationary, since there exists a nonzero probability of tunneling through the
barrier into the region where its dynamics is determined by the condition
a2V (σ) > 1 − 2Mk/a. However, if V (σ) � 1, such states can be approxi-
mately considered as stationary within the lifetime1 of a system inside the
barrier. The wave function may be normalized to unity in the region limited
by the barrier.

1 It can reach values comparable with the age of our Universe [10].
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The incorporation of the reference frame through the introduction of rel-
ativistic matter makes it possible to define a time variable and describe the
evolution of quantum universe by the time-dependent Schrödinger type equa-
tion with a time-independent Hamiltonian. The wave function of stationary
states is characterized by the parameter E which has a definite value [6, 7].

In the quantum model under consideration the following relation between
the matrix elements is fulfilled [7]〈

f
∣∣∣− i

N

d

dη
∂a

∣∣∣f〉 = 〈f
∣∣(a− 2a3V (σ)− 4Mk

)∣∣ f〉 for k � 1 , (3)

where η is the time variable which is connected with the proper time τ by
the differential equation dτ = aNdη, N = (g00)−1/2 is the lapse function
that specifies the time reference scale2.

Choosing the function f(a) in the form

f(a) = A(a) eiS(a) , (4)

where A and S are real functions of a, and assuming that the matter-energy
in semi-classical universe can be written in the form of perfect fluid source [2]
we obtain from (1) and (3) the equations for A and S

1
a4

(∂aS)2 − ρ+
1
a2
− 1
a4

∂2
aA

A
− i

a4

∂a
(
A2∂aS

)
A2

= 0 , (5)

1
a2

d

dτ
(∂aS) +

1
2

(ρ− 3p)− 1
a2
− i

a2

d

dτ

(
∂aA

A

)
= 0 , (6)

where
ρ = ρk + ρσ + ργ , p = pk + pσ + pγ (7)

are the energy density and the isotropic pressure as the sum of the compo-
nents

ρk =
2Mk

a3
, ρσ ≡ V (σ) ≡ Λ

3
, ργ =

E

a4
, (8)

Λ is the cosmological constant. The equations of state are

pk = −ρk , pσ = −ρσ , pγ = 1
3 ργ . (9)

The equations of state for the vacuum component ρσ = const. and relativistic
matter ργ are dictated by the formulation of the problem. The vacuum-type
equation of state of a condensate with the density ρk, which does not remain

2 Even for the Planck mass Mk = mP = 1 the number k ∼ 1018, if mσ ∼ 10−18

(∼ 10 GeV) [6].
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constant throughout the evolution of the universe, but decreases according to
a power law with the increase of a, follows from the condition of consistency
of Eqs (5) and (6).

From Eqs (5)–(9) we can conclude that a condensate behaves as an anti-
gravitating medium. Its anti-gravitating effect has a purely quantum nature.
Its appearance is determined by the fact that the total wave function of
the universe ψ =

∑
k fkuk is a superposition of quantum states with all

possible values of the quantum number k, uk is the wave function, which
describes the quantum states of a scalar field. In the quantum model with
the potential V (φ), which has a harmonic oscillator form near the point
φ = σ, the contribution into the right-hand side of Eq. (3) is made by the
states with k and k±2 only. If one discards the contributions from the states
with k ± 2, a condensate turns into an aggregate of separate macroscopic
bodies with zero pressure (dust) [7]. The existence of this limit argues in
favour of reliability of this quantum model.

In the classical limit (~ = 0), when all terms with the amplitude A
are discarded (see Appendix A), Eqs (5) and (6) reduce to the Einstein–
Friedmann equations which predict an accelerating expansion of the universe
in the era with ρk >

2
3 ργ , even if Λ = 0. Since ργ ∼ a−4 decreases with

a more rapidly then ρk ∼ a−3 (or even ∼ a−2 [7]), the era of accelerating
expansion should begin with increasing a, even if the state with ρk < 2

3 ργ
and Λ ∼ 0 existed in the past, when the expansion was decelerating.

3. Semi-classical universe

Separating in Eq. (5) the real and imaginary parts and setting each one
of them equal to zero separately, from the equation for the imaginary part
∂a
(
A2∂aS

)
= 0, we find the amplitude A,

A =
const.√
∂aS

. (10)

Substituting this solution into the real part of Eq. (5) and into Eq. (6), we
arrive at the equations for the phase S,

1
a4

(∂aS)2 − ρ+
1
a2

=
1
a4

{
3
4

(
∂2
aS

∂aS

)2

− 1
2
∂3
aS

∂aS

}
, (11)

1
a2

d

dτ
(∂aS) +

1
2

(ρ− 3p)− 1
a2

= − i

2a2

d

dτ

(
∂2
aS

∂aS

)
. (12)

These equations are exact. If the solution of these nonlinear equations is
found, it would be possible, theoretically, to restore the wave function (4).
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Rewriting Eqs (11) and (12) in ordinary units (see Appendix A), we find that
the right-hand sides of Eqs (11) and (12) are proportional to ~2 and ~, respec-
tively. It means that the right-hand sides of these equations can be consid-
ered as small quantum corrections to the equations of general relativity.

Quantum corrections are essential in the region of extremely small values
of the scale factor. Substituting the standard model solution of the Einstein–
Friedmann equations (see Appendix B)

a(τ) = β τα , (13)

α > 0 and β > 0 are constants, into the expression for the generalized
momentum

∂aS = −a da
dτ
≡ −aȧ , (14)

we find that this solution satisfies Eqs (11) and (12) in the region, where
quantum corrections play a main role3. Using Eq. (13) in order to calculate
the right-hand sides of Eqs (11) and (12) we obtain the following equations

1
a4

(∂aS)2 = ρ+
dα
a6
− 1
a2
, (15)

1
a2

d

dτ
(∂aS) +

1
2

(ρ− 3p)− 1
a2

= − i bα
2a5

∂aS , (16)

where we denote

dα ≡
(2α− 1)(4α− 1)

4α2
, bα ≡

2α− 1
α

. (17)

These equations take into account the presence of matter with the energy
density ρ and describe the evolution of the universe in the semi-classical
approximation.

Eq. (15) can be considered as the first of the Einstein–Friedmann equa-
tions for the matter which is characterized by the generalized energy density
ρ + dαa

−6. It means that the quantum effects under consideration cause
the appearance of an additional source of gravitational field which decreases
with a as a−6. If we regard Eq. (16) as the second of the Einstein–Friedmann
equations with the generalized energy density and pressure, then comparing
the quantum corrections with the energy density of the standard model (see
Appendix B), we find that it should be set α = 1

3 , and d1/3 = −1
4 , b1/3 = −1.

Using the representation for the classical momentum (14), Eqs (15) and
(16) can be reduced to the standard form(

ȧ

a

)2

= ρ+ ρu −
1
a2
, (18)

3 See Eq. (30) below.
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ä

a
= − 1

2
[ρ+ ρu + 3(p+ pu)] , (19)

where
ρu = − 1

4a6
(20)

is the quantum correction (∼ ~2) 4, which may be identified with the ultra-
stiff matter with the equation of state5

pu = ρu , (21)

where pu is the pressure. This ‘matter’ has quantum origin. It is formed
due to nonzero derivatives of the amplitude A of the wave function (4) and
is related nonlinearly with matter components contributing into the energy
density ρ (7).

Let us note that when deriving Eq. (19) from Eq. (16) we have used
Eq. (15), while in the right-hand side of Eq. (16) only the main term in the
range of action of the quantum correction, 2Ea2 < 1, is taken into account.
In the region 2Ea2 > 1 the density ρu, and pressure pu may be neglected. In
this case equations correspond to the limit ~→ 0 [7]. They coincide formally
with the equations of standard cosmology, but, unlike them, besides the
familiar contributions into the energy density ρ (7) from the vacuum term ρσ
and radiation ργ , it contains a nontrivial contribution from antigravitating
quantum fluid with the energy density ρk which does not vanish at ~→ 0.

Let us estimate the ratio of energy density ρ to ρu. Passing to the
ordinary units (see Appendix A), we have

R ≡
[
8πG
3c4

ρ

]
:

[(
2G~
3πc3

)2 1
4a6

]
. (22)

Substituting here the values of the fundamental constants we obtain

R ∼ 1081 ρ a6 , (23)

where ρ is measured in GeV/cm3 and a in cm. For our Universe today
ρ ∼ 10−5 GeV/cm3, a ∼ 1028 cm and

Rtoday ∼ 10244 , (24)

4 Let us note that the presence of a minus sign in Eq. (20) is not extraordinary. So,
according to quantum field theory, for instance, vacuum fluctuations make a negative
contribution to the field energy per unit area (the Casimir effect).

5 Specifying the form of the equation of state for the density dαa−6 as pu = wρu, where
w is constant which has to be found, and performing the corresponding calculations
we obtain the equations from which it follows that α = 1

3
and w = 1.
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i.e. the quantum correction may be neglected to an accuracy of∼ O(10−244).
In the Planck era ρ ∼ 10117 GeV/cm3, a ∼ 10−33 cm and the relation

RPlanck ∼ 1 (25)

shows that the densities ρ and ρu are of the same order of magnitude.
In Fig. 1 the energy density ρ+ρu as a function of a for typical values of

the parameters of the early universe is shown. It is evident that the range
of action of the quantum correction is limited by the condition a . 0.5.
A small variation of the parameters does not affect the result.
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Fig. 1. The energy density ρ+ρu versus the scale factor a. The following parameters
are used: F = {Mk = 1, ρσ = 0, E = 2}, G = {Mk = 0, ρσ = 1, E = 1},
H = {Mk = 0, ρσ = 1, E = 3}, I = {Mk = 0, ρσ = 1, E = 0}. The curves G, H,
and I correspond to the potential (2) with Mk = 0. The I describes the standard
model with nonzero cosmological constant in the absence of matter.

4. Quantum effects on sub-Planck scales

Let us consider the solutions of Eqs (18) and (19) in the region 2Ea2 < 1.
Here the contributions from the condensate, cosmological constant and cur-
vature may be neglected. As a result the equations of the model take the
form

1
2 ȧ

2 + U(a) = 0 , ä = −dU
da

, (26)
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where
U(a) ≡ 1

2

[
1

4a4
− E

a2

]
. (27)

These equations are similar to ones of Newtonian mechanics. Using this
analogy they can be considered as equations which describe the motion of
a ‘particle’ with a unit mass and zero total energy under the action of the
force −dU

da , U(a) is the potential energy, and a(τ) is a generalized variable.
A point ac = 1

2
√
E
, where U(ac) = 0, divides the region of motion of a ‘par-

ticle’ into the subregion 4Ea2 < 1, where the classical motion of a ‘particle’
is forbidden, and the subregion 4Ea2 > 1, where the classical trajectory of
a ‘particle’ moving in real time τ exists. The quantum corrections are es-
sential in the region 2Ea2 < 1. The boundary point ab = 1√

2E
corresponds

to the minimum of the potential energy (27). The solution can be extended
to the full range of values of the variable a > ab.

In the subregion 4Ea2 < 1 there exists the classical trajectory of a ‘par-
ticle’ moving in imaginary time t = −iτ + const. in the potential −U(a).
Denoting the corresponding solution as ã we find

ã =
1

2
√
E

sin z , (28)

t =
1

16E3/2
[2z − sin 2z] . (29)

At small z, i.e. in the region ã ∼ 0, we have

ã =
(

3
2
t

)1/3

. (30)

According to the standard model solution (see Appendix B) the ‘matter’
near the point ã = 0 is described by the equation of state of the ultrastiff
matter (21).

In the subregion 4Ea2 > 1 the solution of the equations (26) can be
written as

a =
1

2
√
E

cosh ζ , (31)

τ =
1

16E3/2
[2ζ + sinh 2ζ] . (32)

At ζ � 1 it follows from here that ζ ≈ 4E3/2τ , while the scale factor at
τ � (4E3/2)−1 increases almost exponentially

a =
1

2
√
E

[
1 + (2E)3τ2 + . . .

]
≈ 1

2
√
E

exp
{
(2E)3τ2

}
. (33)
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The almost exponential expansion of the early universe in that era is
stipulated by the action of quantum effects which, according to Eqs (20)
and (21), cause the negative pressure, pu < 0, i.e. produce an anti-gravi-
tating effect on the cosmological system under consideration.

At ζ � 1 the solution (31), (32) takes the form

a =
(
2
√
E τ
)1/2

. (34)

It describes the radiation dominated era and corresponds to the time τ which
satisfies the condition 1

2 ln(32E3/2τ)� 1.
The solutions (28), (29) and (31), (32) are related between themselves

through an analytic continuation into the region of complex values of the
time variable,

t = −iτ +
π

16E3/2
, z =

π

2
− iζ . (35)

The scale factors (28) and (31) are connected through the condition

a(τ) = ã
( π

16E3/2
− iτ

)
, (36)

which describes an analytic continuation of the time variable τ into the
region of complex values of Euclidean time t.

The model determined by the equations (26) allows us to describe the
origin (nucleation) of the universe as the transition from the state in the sub-
region 4Ea2 < 1 to the state in the subregion 4Ea2 > 1. The corresponding
transition amplitude can be written as follows [12]

T ∼ e−St , (37)

where St is the action on a trajectory in imaginary time t,

St = 2

∞∫
−∞

dtU(ã) . (38)

Let us proceed to the integration with respect to the time variable z. Ac-
cording to (28) the scale factor ã is a periodical function of z. Therefore,
we shall restrict ourselves to the interval of integration z = [−π

2 ,
π
2 ]. On

the boundaries of this interval the |ã| takes the maximum possible value
ac = 1

2
√
E
, while the interval itself contains the point ã = 0. Then

St = 2

π
2∫

−π
2

dz
dt

dz
U(ã(z)) . (39)
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Using the explicit form of the solution (28), (29), we find

St = −
√
Eπ , (40)

and the amplitude (37) becomes

T ∼ e
√
Eπ , (41)

i.e. a ‘particle’ which is the equivalent of the universe leaves the subregion
forbidden for classical motion with an exponential probability density. It is
pushed out of forbidden subregion into the subregion of very small values
of a in real time τ by the anti-gravitating forces stipulated by the negative
pressure which cause quantum processes at a ∼ 0 (see Eqs (20) and (21)).
This phenomenon can be interpreted as the origin of the universe from the
region a ∼ 0. It is possible only if the probability density that the universe
is in the state with a ∼ 0 is nonzero. It means that the wave function of the
universe at the point a = 0 must be nonvanishing.

5. Wave function near initial singularity

Let us determine the behaviour of the wave function f(a) in the region
a ∼ 0 and calculate the nucleation rate of the universe from the point a = 0.
The result will be compared with the transition amplitude (41).

From Eqs (4) and (10) it follows that

f(a) =
f0√
∂aSE

e−SE , (42)

where f0 = const., SE = −iS is the Euclidean action. Using Eqs (14) and
(30) we find

∂aSE =
1
2a

. (43)

The integration of this equation gives

SE =
1
2

ln
(
a

a0

)
, (44)

where the integration constant is taken in the form ln a−1/2
0 , for convenience.

Then the wave function
f(a) =

√
2 a0 f0 (45)

does not depend on a in the region a ∼ 0, and the probability density that
the universe may be found at the point a = 0 is nonzero,

|f(0)|2 = 2 a0 |f0|2 . (46)
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The nucleation rate of the universe from the initial cosmological singu-
larity point a = 0 can be written as follows [6]

Γ = v σr |f(0)|2 , (47)

where the multiplier v σr has to be calculated now with respect to imaginary
time t,

v σr = lim
a→0

(
da

dt
πa2

)
=
π

2
. (48)

Taking into account Eq. (46) we obtain

Γ = π a0 |f0|2 . (49)

The constant a0 |f0|2 can be found as a result of exact integration of Eq. (1)
with the boundary condition f(0) = const., in accordance with Eq. (45).
For the case ρσ = 0 we obtain that a rate of nucleation of the universe in
the n-state follows the law [6]

Γ '
√
π

2
2n P(n) , (50)

where P(n) = (〈n〉n/n!) exp(−〈n〉n) is the Poisson distribution with the
mean value 〈n〉 = M2

k . Summing over all values of the quantum number n
the total nucleation rate appears to be exponentially high

Γtot '
√
π

2
eM

2
k . (51)

Comparing the nucleation rate (51) with the transition amplitude (41) we
see that both these quantities predict an exponential origin (nucleation) of
the universe from the region a ∼ 0 forbidden for classical motion.

6. Geometry

Let us consider how the geometry of the universe changes as a result of
its transition from the region 2Ea2 < 1

2 into 1
2 < 2Ea2 < 1. In the model

under consideration the metric has the form

ds2 = dτ2 − a2dΩ2
3 , (52)

where dΩ2
3 is a line element on a unit three-sphere. According to the solu-

tions (28), (29) and (31), (32) the metric (52) takes the form

ds2E = − 1
4E

sin2 z

{
sin2 z

4E2
dz2 + dΩ2

3

}
at 2Ea2 <

1
2

(53)
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and

ds2L =
1

4E
cosh2 ζ

{
cosh2 ζ

4E2
dζ2 − dΩ2

3

}
at

1
2
< 2Ea2 < 1 , (54)

where the interval with the Euclidean signature is denoted by the index E,
and the one with the Lorentzian signature is marked by L. Introducing the
new time variables ξ and ς according to

dξ =
1

2E
sin zdz , dς =

1
2E

cosh ζdζ, (55)

the metrics (53) and (54) can be reduced to the conformally flat form

ds2E = − 1
4E
[
1− (2Eξ)2

] {
dξ2 + dΩ2

3

}
, (56)

ds2L =
1

4E
[
1 + (2Eς)2

] {
dς2 − dΩ2

3

}
. (57)

Both metrics are related between themselves through the analytic continu-
ation into the region of complex values of the time variable ς = iξ.

The metric (56) is conformal to a metric of a unit four-sphere in a five-
dimensional Euclidean flat space. With increasing a, the universe transits
from the region 4Ea2 < 1 into the region 4Ea2 > 1, where the geometry
is conformal to a unit hyperboloid embedded in a five-dimensional Lorentz-
signatured flat space. Such a picture of change in spacetime geometry during
the transition of the universe from the region near initial singularity into
the region of real physical scales agrees with the hypothesis [13, 14], widely
discussed in the literature for the de Sitter space, about possible change
in four-space geometry after the spontaneous nucleation of the expanding
universe from the initial singularity point. In this paper this phenomenon
is demonstrated in the case of the early universe filled with the radiation
and ultrastiff matter which effectively takes into account quantum effects on
extremely small spacetime scales.

7. Conclusions

In this paper we study the properties of the quantum universe on ex-
tremely small spacetime scales in the semi-classical approach to the well-
defined quantum model. We show that near the initial cosmological singu-
larity point quantum gravity effects ∼ ~ exhibit themselves in the form of
additional matter source with the negative pressure and the equation of state
as for ultrastiff matter. The analytical solution of the equations of theory
of gravity, in which matter is represented by the radiation and additional
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matter source of quantum nature, is found. It is shown that in the stage of
the evolution of the universe, when quantum corrections ∼ ~ dominate over
the radiation, the geometry of the universe is described by the metric which
is conformal to a metric of a unit four-sphere in a five-dimensional Euclidean
flat space. In the radiation dominated era the metric is found to be confor-
mal to a unit hyperboloid embedded in a five-dimensional Lorentz-signatured
flat space. One solution can be continued analytically into another.

The wave function of the universe in the initial cosmological singularity
point is nonzero and the nucleation of the universe from this point becomes
possible. The origin of the universe can be interpreted as a quantum tran-
sition of the system from the region in a phase space forbidden for classical
motion, but where a trajectory in imaginary time exists, into the region,
where the equations of motion have the solution which describes the evolu-
tion of the universe in real time. Near the boundary between two regions,
from the side of real time, the universe undergoes almost an exponential
expansion which passes smoothly into the expansion under the action of
radiation dominating over matter which is described by the standard cos-
mological model. As a result of such a quantum transition the geometry
of the universe changes. This agrees with the hypothesis about the pos-
sible change of geometry after the nucleation of expanding universe from
‘nothing’.

Appendix A

In the ordinary units the wave function (4) has the form

f(a) = A(a) exp
{
i

~
3πc3

2G
S(a)

}
,

where S is measured in cm2. Eqs (11) and (12) can be written as follows

1
a4

(∂aS)2 − 8πG
3c4

ρ+
1
a2

=
(

2G~
3πc3

)2 1
a4

{
3
4

(
∂2
aS

∂aS

)2

− 1
2
∂3
aS

∂aS

}
,

1
a2

d

dτ
(∂aS) +

4πG
3c4

(ρ− 3p)− 1
a2

= − 2G~
3πc3

i

2a2

d

dτ

(
∂2
aS

∂aS

)
.

Here a is measured in cm, ρ and p in GeV/cm3, and c4/G in GeV/cm. In
the approximation ~ = 0 these equations strictly pass into the equations of
general relativity for generalized momentum ∂aS = −a da/dτ .
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Appendix B

As it is well known [2, 3] the standard model solution of the Einstein–
Friedmann equations for a single component domination in the energy den-
sity ρ have the form

ρ ∼ a−3(1+w)

for the equation of state w = p/ρ = const. If w 6= −1 and the curvature
term can be neglected the scale factor a is

a ∼ τ2/[3(1+w)] .

According to accepted notations [3, 11] the value w = −2
3 describes the

domain walls (ρ ∼ a−1, a ∼ τ2); the value w = −1
3 corresponds to the

strings (ρ ∼ a−2, a ∼ τ); w = 0 is a dust (ρ ∼ a−3, a ∼ τ2/3), w = 1
3 is

a radiation (ρ ∼ a−4, a ∼ τ1/2); w = 2
3 is a perfect gas (ρ ∼ a−5, a ∼ τ2/5),

and w = 1 is an ultrastiff matter (ρ ∼ a−6, a ∼ τ1/3). The special case with
w = −1 and ρ = const. describes the de Sitter vacuum.
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