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We review the electromagnetic form factor of heavy quarks with empha-
sis on the QCD radiative corrections at two-loop order in the perturbative
expansion. We discuss important properties of the heavy-quark form fac-
tor such as its exponentiation in the high-energy limit and its role in QCD
factorization theorems for massive n-parton amplitudes.
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1. Introduction

The electromagnetic form factor of heavy quarks comprises the simplest
example of a scattering amplitude in Quantum Chromodynamics (QCD)
for the study of mass effects in QCD hard scattering processes including
radiative corrections at higher orders. As such, it has received considerable
attention in recent years.

Explicit results for the two-loop QCD corrections have been obtained
for the vector- and axial-vector coupling as well as the anomaly contribu-
tions [1–3]. Moreover, universal features of higher order radiative correc-
tions, such as the exponentiation of logarithms in the heavy-quark mass
m together with the infrared (soft) singularities within dimensional regu-
larization have been addressed [4]. As a consequence, these factorization
properties in the soft and collinear limit imply for on-shell massive n-parton
QCD amplitudes a simple relation between massless and massive scattering
amplitudes at any order in perturbation theory [4, 5].

In the following, we review briefly recent progress in studies of QCD
corrections to the heavy-quark form factor.
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2. QCD radiative corrections

The object of our interest are the scalar functions F1 and F2 which
parametrize the vector current of an on-shell heavy-quark pair of momenta
k1 and k2 and of mass m. We denote the associated vertex function as Γµ
and for a photon of (space-like) virtuality Q2 = −q2 > 0, we can write

Γµ(k1, k2) =

i eq ψ̄(k1)
(
γµ F1

(
Q2,m2, αs

)
− i

2m
σµν q

ν F2

(
Q2,m2, αs

))
ψ(k2) . (1)

Here eq is the charge and F1 and F2 are the electric and magnetic space-like
quark form factors. They are gauge invariant, but in perturbative QCD at
higher orders in general divergent and their power expansion in the strong
coupling αs at the scale µ2 reads,

F(αs) =
∞∑
i=0

(
αs(µ2)

4π

)i
F (i) ≡

∞∑
i=0

(
as(µ2)

) i F (i) , (2)

where we have introduced the shorthand notation as ≡ αs/(4π).
Up to the two-loop level there is only a relatively small number of Feyn-

man diagrams to be computed. All divergences are regulated in D = 4− 2ε
dimensions and the results are given as a Laurent expansion in ε. Except for
additional diagrams from heavy-quark self-energy corrections on the external
lines, which contribute to the wave function renormalization, the diagrams
are in one-to-one correspondence to the calculation of the form factor of
massless quarks (see e.g. Ref. [6]).

The reduction of all Feynman integrals to so-called master integrals pro-
ceeds in a standard way. Since the computation of the QCD corrections in
Eq. (2) is a one-scale problem (dependent on the ratio Q2/m2) the master
integrals can be expressed in terms of harmonic polylogarithms (HPLs) [7].
For the two-loop corrections to O(ε) HPLs up to weight w = 5 are needed,
Hm1,...,mw(x), mj = 0,±1, which depend on the conformal variable x,

x =

√
Q2 + 4m2 −

√
Q2√

Q2 + 4m2 +
√
Q2

, (3)

with Q2 > 0 and 0 ≤ x ≤ 1. The analytic computation of the master
integrals has used the method of differential equations together with two
independent numerical checks at selected phase space points based either on
sector decomposition or the evaluation of a Mellin–Barnes representation.
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The ultraviolet divergences arising in the computation of the Feynman
diagrams do require renormalization of the strong coupling constant αs,
the external (heavy-quark) wave function ψ and the heavy-quark mass m
(typically taken to be the pole mass). The renormalized form factors F1 and
F2 are obtained by adding the appropriate counter-terms CT1 and CT2. The
renormalization of the bare quantities is performed multiplicatively with all
necessary constants in the MS-scheme (respectively in the on-shell scheme
for m) being known [1,8, 9].

The two-loop corrections to F1 and F2 to O(ε0) have been obtained in [1]
and all terms of O(ε) are new results of [10]. Up to order O(ε0) at two-loops
full agreement between [1] and the first independent check [10] has been
established.

For space-like kinematics the results for F1 and F2 are real whereas for
time-like kinematics above production threshold (Q2 > 4m2) both F1 and
F2 develop an imaginary part,

Fi = <Fi + i=Fi , (4)
which can be obtained by means of a suitable (complex) continuation of Q2,
giving rise to x→ −x in Eq. (3) and all arguments of HPLs.

3. Exponentiation

The exponentiation of the heavy-quark form factor is based on the uni-
versality of soft and collinear radiation and the respective singular terms in
the electric form factor F1, i.e. the (soft gluon) poles in ε and the loga-
rithms in the heavy-quark mass. The logarithms emerge in the (space-like)
high-energy limit, Q2 � m2, i.e. x→ 0 in Eq. (3), as

L = ln
(
Q2

m2

)
. (5)

The magnetic form factor F2 is power suppressed bym2/Q2 at high energies.
The large logarithms of Sudakov type [11] in Eq.(5) can be resummed. More
generally F1 fulfills the following evolution equation, see e.g. [4, 12],

−µ2 ∂

∂µ2
lnF1

(
Q2

µ2
,
m2

µ2
, αs, ε

)
=

1
2
K

(
m2

µ2
, αs, ε

)
+

1
2
G

(
Q2

µ2
, αs, ε

)
, (6)

where the dependence on the various scales has been made explicit. QCD
factorization at the scale µ allows to separate to logarithmic accuracy in
the limit Q2 � m2 the dependence on the hard scale Q (associated with
the function G) from that on the heavy-quark mass m (resting in the func-
tion K). Both functions, G and K, are subject to renormalization group
equations [12] governed by the same (well-known) cusp anomalous dimen-
sion A [13–15],
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− lim
m→0

µ2 d

dµ2
K

(
m2

µ2
, αs, ε

)
= µ2 d

dµ2
G

(
Q2

µ2
, αs, ε

)
= A(αs) . (7)

In dimensional regularization, the solution of the evolution equation (6)
proceeds analogous to the construction for the massless form factor [6,16–18].
However, in contrast to the massless case, whereK is a pure infrared counter
term (dependent on the cusp anomalous dimension A), the heavy-quark
mass in Eq. (6) acts as an additional regulator in the collinear limit. Hence
the infrared sector differs and K takes particular values in the perturbative
expansion, see [4, 10].

The (ultraviolet) renormalized form factor lnF1 reads in space-like kine-
matics as a function of the renormalized coupling αs(µ2)

ln F1

(
Q2

µ2
,
m2

µ2
, as(µ2), ε

)
=

1
2

Q2/µ2∫
0

dξ

ξ

{
G
(
ā
(
ξµ2
))

+K
(
ā(ξµ2m2/Q2)

)
−

ξ∫
ξm2/Q2

dλ

λ
A
(
ā
(
λµ2

))}
.(8)

On the right-hand side all quantities are defined inD dimensions as functions
of the D-dimensional strong coupling ā (to be expanded in terms of the
ordinary coupling αs in four dimensions). The exponentiation needs an
additional integration constant C(ā(µ2, ε), ε), which is determined through
matching to fixed-order results in perturbation theory. The perturbative
coefficients of the function G agree completely with those of the form factor
for massless quarks. In the latter case the available three-loop information
[6,17,19] allows to make partial predictions of the high-energy expansion of
F1 based on Eq. (8) beyond the two-loop result of [1, 10].

4. QCD amplitudes

For on-shell amplitudes of n-parton processes the factorization ansatz
has to be extended in comparison to Eq. (6). In D-dimensions a generic
n-parton amplitude (massless and massive alike) can be expressed as a prod-
uct of functions Jp, Sp andHp each governing different regions of kinematics
(see [20–22]).

|Mp〉 = Jp

(
Q2

µ2
, αs(µ2), ε

)
Sp

(
{ki},

Q2

µ2
, αs(µ2), ε

)
|Hp〉 , (9)
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where the ket-notation |Mp〉 implies vectors (and matrices) in color space.
The jet function Jp collects all collinear contributions of the process p. It
is color-diagonal and given as the product of functions J[i] for each external
parton i. The functions J[i] are conventionally chosen to be the square root
of the respective (massless or massive) form factor F1. Soft radiation arising
from the overall color flow is summarized by the soft function Sp, which is a
matrix in color space and the short-distance dynamics of the hard scattering
are contained in the hard function Hp, which is to leading order proportional
to the Born amplitude.

Eq. (9) leads to a remarkably simple relation between n-parton ampli-
tudes with massless and massive external partons in the small-mass limit.
If m is small compared to all scales the entire non-trivial mass dependence
resides in the respective expression for the J[i] (i.e. the form factor) so that
QCD factorization gives [4, 5] (see for a review [23]),

M(m)
p =

∏
i∈ {all legs}

(
Z

(m|0)
[i]

) 1
2 × M(m=0)

p , (10)

where the upper index denotes (non-)zero parton masses. The universal
and manifestly process-independent multiplicative function Z(m|0)

[i] is directly
given in terms of ratios of the respective form factors,

Z
(m|0)
[i]

(
m2

µ2
, αs, ε

)
=F (m)

[i]

(
Q2

µ2
,
m2

µ2
, αs, ε

)(
F (m=0)

[i]

(
Q2

µ2
, αs, ε

))−1

, (11)

where the index i denotes the (massive) parton and αs = αs(µ2). Z(m|0)
[i] is

a function of the (process-independent) ratio of scales µ2/m2 as the (process-
dependent) scale Q cancels completely in the ratio. This definition however,
excludes terms with explicit dependence on the number of heavy quarks
in Eq. (11) (and, therefore in Eq. (10) as well), because at two-loops (and
beyond) additional process-dependent terms enter in their description [5].

Within QCD Eq. (10) has been applied in the computation of the (vir-
tual) two-loop QCD corrections to hadronic top-quark pair-production
[24,25] in the limit when all Mandelstam invariants are large, s, |t|, |u| � m2.
Recent advances beyond the small mass limit have been concerned with the
exact evaluation of Eq. (9) for all kinematics. To that end, in particular the
soft function Sp and the structure of its associated anomalous dimensions
Γp have been subject of intense investigation. For the latter quantity Γp

all-order expressions in the case of massless [26,27] and massive partons [28]
have been suggested and explicit results for the two-loop soft anomalous
dimension of massive partons appeared recently [29–31]. Based on Eq. (10)
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this knowledge has been applied to derive the singularity structure of the
two-loop virtual amplitude for top-quark hadro-production with complete
kinematics dependence [32] which was found to be in agreement with the
small mass limit [24,25].

5. Conclusions

We have provided a brief review of the known perturbative QCD correc-
tions to the heavy-quark form factor. Thanks to [1] both the electric and the
magnetic form factor F1 and F2 are known to two-loop order, an important
result which has been recently confirmed and extended to higher order in ε
by [10]. The heavy-quark form factor will also be part of future calculations
of QCD radiative corrections to n-parton scattering processes at two-loop
order.

It is a long known fact that the logarithms in the heavy-quark mass m
in the form factor do exponentiate. These logarithms emerge in the limit
of small masses upon neglecting all terms m2 � Q2 and within dimensional
regularization the exponentiation extends to the complete singularity struc-
ture, i.e. the soft poles in ε. The exponentiation is governed by the cusp
anomalous dimension A as well as the functions K and G. Strikingly, the
latter is identical for the case of massless and massive quarks, while the
infrared sector (K) of course differs.

The knowledge of the complete singularity structure of scattering ampli-
tudes and, in particular the factorization of amplitudes in soft and collinear
limits has numerous applications. The factorization property may even be
used as a tool in practical calculations, a prominent example being the com-
putation of the virtual corrections to heavy-quark hadro-production at two
loops in QCD.
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