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In this contribution, we summarize the results from an NLO compu-
tation of the production of tt̄bb̄ in hadronic collisions. The results are
obtained by combining two programs: Helac-1Loop, based on the OPP
method and the reduction code CutTools, for the virtual one-loop matrix
elements and Helac-Dipoles for the real-emission contributions. Selected
numerical results are presented for the LHC.

PACS numbers: 12.38.–t, 12.38.Bx, 14.65.Fy, 14.65.Ha

1. Introduction

The process pp → tt̄bb̄ represents a very important background reac-
tion to searches at the LHC, in particular to tt̄H production, where the
Higgs boson decays into a bb̄ pair. A successful analysis of this produc-
tion channel at the LHC requires the knowledge of direct tt̄bb̄ production
at NLO in QCD [1]. Moreover, the calculation of NLO QCD corrections to
2 → 4 processes at the LHC represents the current technical frontier. The
complexity of such calculations triggered the creation of prioritized experi-
menters wishlists where the tt̄bb̄ production ranges among the most wanted
candidates [2]. The NLO computation for this process has been completed
only very recently in [3] and then confirmed in [4] where we demonstrated
the power of our system based on Helac-Phegas1 [5–7], which has, on its
own, already been extensively used and tested in phenomenological studies
see e.g. [8–11], Helac-1Loop [12], which is not yet publicly available, Cut-
Tools2 [13] and Helac-Dipoles3 [14] in a realistic computation with six
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1 http://helac-phegas.web.cern.ch/helac-phegas/
2 http://www.ugr.es/∼pittau/CutTools/
3 http://helac-phegas.web.cern.ch/helac-phegas/
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external legs and massive partons. In the following we briefly summarize the
calculation of the virtual and real corrections and present numerical results
for the LHC.

2. Virtual corrections

A one-loop n-particle amplitude can be expressed in terms of a basis
of known 4-, 3-, 2- and 1-point scalar integrals: boxes, triangles, bubbles
and tadpoles. The coefficients depend in general on the dimension of space-
time, d, which, upon expansion around d = 4, generates a rational function
in the invariants (rational term). The concept behind modern methods of
evaluation, is the direct determination of the coefficients, without recurring
to a Passarino–Veltman reduction.

In our case, the coefficients and one part of the rational term (see [15]) are
extracted via the OPP reduction method at the integrand level [16], which
is implemented in CutTools. The second part of the rational term coming
from the epsilon-dimensional contributions in the numerator is computed
with the help of dedicated Feynman rules [17,18].

The OPP reduction is based on a representation of the numerator of
amplitudes, a polynomial in the integration momentum, in a basis of poly-
nomials given by products of the functions in the denominators. Clearly, the
cancellation of such terms with the actual denominators will lead to scalar
functions with a lower number of denominators. By virtue of the proof pro-
vided by the Passarino–Veltman reduction, we will end up with a tower of
four-point and lower functions, as mentioned before. The determination of
the decomposition in the new basis proceeds recursively, by setting chosen
denominators on-shell. This is where the OPP method resembles generalized
unitarity [19–25]. For most recent applications see e.g. [26–31].

It is important to stress, that working around four dimensions, allows
to compute the numerator function in four dimensions. The difference to
the complete result is of the order of ε, and can, therefore, be determined
a posteriori in a simplified manner. Since the calculation of the coefficients
of the reduction requires the evaluation of the numerator function for a given
value of the loop momentum, the corresponding diagrams can be thought
as tree level (all momenta are fixed) graphs. To complete the analogy, one
needs to chose a propagator and consider it as cut. At this point the original
amplitude for an n particle process becomes a tree level amplitude for an
n + 2 particle process. The advantage is that its value can be obtained
by a tree level automate such as Helac. The bookkeeping necessary for
a practical implementation is managed by a new software, Helac-1Loop.

To recapitulate, a complete calculation involves three building compo-
nents: (1) CutTools, for the reduction of integrals with a given numerator
to a basis of scalar functions; (2) Helac-1Loop for the evaluation of the
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numerator functions for given loop momentum (fixed by CutTools); (3)
OneLOop4 [12], a library of scalar functions, which provides the actual nu-
merical values of the integrals. At the end, the 1-loop result is given in the
form of real and imaginary parts of the finite term and of the coefficients of
the 1/ε and 1/ε2 poles.

The above procedure provides the bare 1-loop amplitude. Renormal-
ization is performed as usual, by evaluating tree level diagrams with coun-
terterms. For our process, we chose to renormalize the coupling in the MS
scheme, but the mass in the on-shell scheme (wave function renormalization
is done in the on-shell scheme as it must be). Notice, that also this part
is performed in four dimensions. This means, that the whole procedure is
equivalent to the ’t Hooft–Veltman version of dimensional regularization [32].

Let us emphasise that all parts are calculated fully numerically in a com-
pletely automatic manner.

3. Real corrections

The singularities from soft or collinear gluon emission are isolated via
dipole subtraction for NLO QCD calculations [33] using the formulation for
massive quarks [34] and for arbitrary polarizations [14]. After combining
virtual and real corrections, singularities connected to collinear configura-
tions in the final state as well as soft divergencies in the initial and final
states cancel for collinear-safe observables automatically after applying a jet
algorithm. Singularities connected to collinear initial-state splittings are re-
moved via factorization by PDF redefinitions. We do not use finite dipoles
regularizing the quasi-collinear divergence induced by both top quarks mov-
ing in the same direction. Due to the large top quark mass, they are not
needed to improve the numerical convergence.

Calculations are performed with the help of the Helac-Dipoles soft-
ware, which is a complete and publicly available automatic implementation
of Catani–Seymour dipole subtraction and consists of phase space integra-
tion of subtracted real radiation and integrated dipoles in both massless and
massive cases. Let us stress at this point, that a phase space restriction
on the contribution of the dipoles as originally proposed in [35, 36] is also
implemented. All results presented in the next section have been obtained
with αmax = 0.01 parameter. The phase-space integration is performed
with the multichannel Monte Carlo generator Phegas [6] and optimized via
Parni5 [37].

4 The package includes all divergent and finite scalar integrals, with massless and mas-
sive propagators, and with the UV as well as the IR divergencies dealt with within
dimensional regularization. It can be obtained fromhttp://annapurna.ifj.edu.pl/
∼hameren/

5 http://annapurna.ifj.edu.pl/∼hameren/
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4. Numerical results

We present predictions for pp → tt̄bb̄ + X at
√
s = 14 TeV. For the

top-quark mass we take mt = 172.6 GeV, while all other QCD partons, in-
cluding b quarks, are treated as massless. Final states involving collinear
gluons and b-quarks are recombined into collinear-safe jets by means of the
kT-algorithm [38–40]. Specifically we require two b-quark jets with sep-
aration

√
∆φ2 + ∆y2 > D = 0.8 in the rapidity azimuthal-angle plane.

Motivated by the search for a tt̄H(H → bb̄) signal at the LHC [1], we im-
pose the following additional cuts on the transverse momenta and rapidity
of the b-quark jets: pT > 20 GeV, |y| < 2.5. The outgoing (anti)top quarks
are neither affected by the jet algorithm nor by phase-space cuts. We use
CTEQ6 PDFs [41, 42]. Most precisely we use the CTEQ6M parton distri-
butions at NLO, and the CTEQ6L1 set at LO. The suppressed contribution
from b quarks in the initial state has been neglected.

We start with a presentation of the total cross-section at the central
value of the scale, µR = µF = mt at LO and NLO. At the central scale,
the full pp cross-section receives a very large NLO correction of the order
of 77%, which is mainly due to the gluonic initial states. The full LO and
NLO cross-sections are given by σLO = 1489.2 fb and σNLO = 2636 fb,
respectively. Varying the scale up and down by a factor 2 in a uniform way
changes the cross-section by 70% in the LO case, while in the NLO case we
have obtained a variation of the order 33%.

Subsequently, in Fig. 1 we show the result for the scale dependence graph-
ically.

Fig. 1. Scale dependence of the total cross-section for pp → tt̄bb̄ + X at the LHC
with µR = µF = ξmt. The blue dashed curve corresponds to the leading order,
whereas the red solid one to the next-to-leading order result.
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In the next step the differential distributions are depicted together with
their dynamical K-factors. Invariant mass and rapidity of the two-b-jet
system are presented in Fig. 2 and in Fig. 3, respectively. Clearly, the
distributions show the same large corrections, which turn out to be relatively
constant.

Fig. 2. Left panel: distribution of the invariant mass mbb̄ of the bb̄ pair for pp →
tt̄bb̄ + X at the LHC at LO (blue dashed line) and NLO (red solid line). Right
panel: ratio of the NLO and LO distributions.

Fig. 3. Left panel: distribution in the rapidity ybb̄ of the bb̄ pair for pp→ tt̄bb̄+X

at the LHC at LO (blue dashed line) and NLO (red solid line). Right panel: ratio
of the NLO and LO distributions.
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This large scale variation and the size of the corrections themselves,
imply that if a meaningful analysis were required in the present setup, ad-
ditional cuts on extra jets must be introduced in order to reduce the NLO
corrections.

5. Summary

A brief summary of the calculations of NLO QCD corrections to the
pp→ tt̄bb̄+X process at the LHC has been presented. The QCD corrections
to the integrated cross-sections are found to be very large, changing the
leading-order results by about 77%. The distributions show the same large
corrections. Moreover, the shapes of some kinematical distributions change
appreciably compared to leading order. The residual scale uncertainties of
the NLO predictions are at the 33% level.

Work supported in part by the Initiative and Networking Fund of the
Helmholtz Association, contract HA-101 (“Physics at the Terascale”) and
by the RTN European Programme MRTN-CT-2006-035505 HEPTOOLS —
Tools and Precision Calculations for physics Discoveries at Colliders.
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