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HIGH PRECISION CALCULATIONS IN THE MSSM∗
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We review recent developments and results for performing high preci-
sion calculations in the Minimal Supersymmetric Extension of the Standard
Model (MSSM). As an example, the effects of the three-loop order radiative
corrections on the unification of the gauge couplings will be discussed in
some details.
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1. Introduction

One of the main purposes of the upcoming experiments to be conducted
at the Large Hadron Collider (LHC) and the International Linear Collider
(ILC) is to reveal the nature of electroweak symmetry breaking. The mech-
anism of spontaneous symmetry breaking in the Standard Model (SM) is
probably incomplete, and a theory with a higher symmetry is necessary to
solve the hierarchy problem. Supersymmetry (SUSY) provides a natural and
highly predictive solution. The most studied SUSY extension of the SM is
the Minimal Supersymmetric Standard Model (MSSM), which, in particular,
agrees with all precision data at least as well as the SM.

Another compelling argument in favour of SUSY is the particle content of
the MSSM, that leads in a natural way to the unification of the three gauge
couplings at a high energy scale µ ' 1016 GeV, in agreement with predic-
tions of Grand Unification Theories (GUT). It is often argued (for reviews see
e.g. Refs [1]) that, from the precise knowledge of the low-energy supersym-
metric parameters one can shed light on the origin and mechanism of super-
symmetry breaking and even on physics at much higher energies, like the
GUT scale. The extrapolation of the supersymmetric parameters measured
at the TeV energy scale to the GUT-scale raises inevitably the question of
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uncertainties involved. Currently, there are four publicly available spectrum
generating codes [2] based on two-loop order MSSM Renormalization Group
Equations (RGEs) [3] subjected to two types of boundary conditions. One
set of constraints accounts for the weak-scale matching between the MSSM
and SM parameters to one-loop order [4]. The second one allows for the
SUSY breaking at the high scale according to specific models like minimal
supergravity, gauge mediation and anomaly mediation. The approximations
within the codes differ by high-order corrections and by the treatment of the
low-energy threshold corrections. The typical spread of the results is within
few percents, which does not always meet the experimental accuracy. Recent
analyses [5] have proven that the three-loop order effects on the running of
the strong coupling constant αs and the bottom quark mass mb may exceed
those induced by the current experimental accuracy [6, 7].

2. Prediction of αs(µGUT)

The aim of this study is to compute αs at the high-energy scale µ '
O(µGUT), starting from the strong coupling constant at the mass of the
Z boson MZ . We denote this parameter αMS,(5)

s (MZ) to specify that the
underlying theory is QCD with five active flavours and MS is the renormal-
ization scheme. The value of αs(µGUT) is the strong coupling constant in the
MSSM renormalized in the DR-scheme, that we denote as αDR,(full)

s (µGUT).

For the evaluation of αDR,(full)
s from α

MS,(nf )
s we follow the “common scale

approach”, which requires a unique scale for the matching between QCD and
MSSM. More precisely, for mass independent renormalization schemes like
MS or DR, the decoupling of heavy particles has to be performed explicitly.
In practice, this means that the heavy degrees of freedom are integrated out
from the full theory. For SUSY models with roughly degenerate mass spec-
trum at the scale M̃ , one can consider the MSSM as the full theory valid
from the GUT scale µGUT down to M̃ , which we assume to be around 1TeV.
Below the scale M̃ the QCD is the effective theory describing the low-energy
physics.

For the running analysis of the strong coupling constant, we can distin-
guish four individual steps that we detail below.

1. Running of αMS,(nf )
s from µ = MZ to µ = µdec.

The energy dependence of the strong coupling constant is governed by
the RGEs. In QCD with nf quark flavours, the β function is known
through four loops both in the MS [8] and the DR-scheme [9].

2. Conversion αMS,(nf )
s (µdec)→ α

DR,(nf )
s (µdec).

For the three-loop running analysis we are focusing on, one needs to
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evaluate the dependence of αs values in the DR scheme from those
evaluated in MS scheme to two-loop accuracy [9]. This requires the
introduction of the so-called evanescent coupling constants due to the
application of DR to non supersymmetric theories (QCD in this case).
In particular, it describes the coupling of the 2ε-dimensional compo-
nents (so-called ε-scalars) of the gluon to a quark. It is an unphysical
parameter that must decouple from any prediction for physical ob-
servables. We also used this property as a consistency check for our
method.

3. Matching of αDR,(nf )
s and αDR,(full)

s at µdec.
Integrating out all SUSY particles at the common scale of SUSY mass
spectrum, one directly obtains the SM as the effective theory, valid at
low energies. The transition between the two theories can be done at
an arbitrary decoupling scale µ:

α
DR,(nf )
s (µ) = ζ

(nf )
s αDR,(full)

s (µ) , (1)

ζs depends logarithmically on the scale µ, which is why one generally
chooses µ ∼ M̃ . In Eq. (1), nf = 6 means that only the SUSY
particles are integrated out, while for nf = 5 at the same time the top
quark is integrated out. In a supersymmetric theory, SUSY requires
that the evanescent couplings are equal to the corresponding gauge
couplings. As a consequence, if we assume that QCD is obtained by
integrating out the heavy degrees of freedom (squarks and gluinos)
from SUSY–QCD, the evanescent couplings are uniquely determined
by matching conditions between the two theories, similar with those
given in Eq. (1).

4. Running of αDR,(full)
s from µ = µdec to µ = µGUT.

The energy dependence of the strong coupling constant is in this case
governed by the MSSM RGEs. In SUSY–QCD, the β function has
been evaluated in the DR-scheme through three loops [10].

Assembling the above mentioned steps, we can predict the value of αs(µGUT)
with up to three-loop accuracy.

2.1. Numerical results

The decoupling scale is not a physical parameter and cannot be predicted
by the theory. It is usually chosen to be of the order of the heavy particle
mass in order to circumvent the appearance of large logarithms. At fixed
order perturbation theory, it is expected that the relations between the run-
ning parameters evaluated at high-energy scales and their low-energy values
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become less sensitive to the choice of µdec, once higher order radiative correc-
tions are considered. The dependence on the precise value of the decoupling
scale is interpreted as a measure of the unknown higher order corrections.
We discuss the scale dependence of αs(µGUT) in Fig. 1.
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Fig. 1. αs(µGUT) as a function of µdec.

For the SM parameters we used αs(MZ) = 0.1189 [6], where MZ =
91.1876 GeV [11], mb(µb) = 4.164 GeV [7], with µb = mb(µb), and Mt =
172.4 GeV [12]. For the SQCD parameters, we implemented their values
for the SPS1a′ scenario [1]: mg̃ = 607.1 GeV, mt̃1

= 366.5 GeV, mt̃2
=

585.5 GeV,mb̃1
= 506.3 GeV,mb̃2

= 545.7 GeV, ADR
t (1 TeV) = −565.1 GeV,

ADR
b (1 TeV) = −943.4 GeV, µ = 396.0 GeV, and tanβ = 10.0.
The dotted, dashed and solid lines denote the one-, two-, and three-loop

running, where the corresponding exact results for the decoupling coefficients
have been implemented. One can see the improved stability of the three-loop
results w.r.t. the decoupling-scale variation. The uncertainty induced by the
current experimental accuracy on αs(MZ), δαs = 0.001 [6], is indicated by
the hatched band.

In order to get an idea of the effects induced by the SUSY mass pa-
rameters on αs(µGUT), we show through the dash-dotted line the three-
loop results, if the SUSY parameters corresponding to the Snowmass Point
SPS2 [13] are adopted. Their explicit values are: mg̃ = 784.4 GeV, mt̃1

=
1003.9 GeV, mt̃2

= 1307.4 GeV, mb̃1
= 1296.6 GeV, mb̃2

= 1520.1 GeV, and
tanβ = 10.0. The curves induced by the other benchmark points SPSi, with
i = 3, 4, . . . , 9 would lie between the two curves displayed here. One clearly
notices the great impact of the SUSY-mass pattern on the predicted value
of the strong coupling at high energies.
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In conclusion, the three-loop effects are phenomenologically significant
for the prediction of αDR

s (µGUT). The approach outlined here accounts for
the effects induced by the individual mass parameters, that turn out to
exceed the experimental uncertainty by more than a factor five.
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