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After a general introduction about the latest developments in the ap-
proach to multi-loop NLO calculations, we present a numerical evaluation
of the one-loop QED corrections to the hard-bremsstrahlung emission in
Bhabha scattering. The calculation is performed by employing the reduc-
tion method developed by Ossola, Papadopoulos and Pittau (OPP).
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1. A brief general introduction

Motivated by the upcoming LHC experiment, in the last few years we
observed tremendous progress in the calculation of one-loop multi-leg pro-
cesses. This involves several new results for cross-sections of interest for the
LHC, but also the developments of many new techniques and codes [1].

Important results have been obtained with traditional methods [2–4].
Meanwhile, unitarity-based approaches led to the development of advanced
tools [5,6] that proved to be very effective for processes such asW+3 jets [7]
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or multi-gluon [8] production. This last process was also the target of inde-
pendent implementations of d-dimensional unitarity [9] and recursive rela-
tions for tensor integrals [10].

Three years ago, a new method was proposed for the numerical evalua-
tion of one-loop amplitudes, now known as OPP reduction [11,12], in which
the reduction is performed at the integrand level [13]. With respect to other
existing methods, it presents several advantages: the information required in
order to perform the reduction is minimal, simply the numerical value of the
numerator of the integrand for a set of values of the integration momentum
is needed. Moreover, the method does not require any computer algebra and
it incorporates a solid way to compute rational terms.

The next frontier is the systematic automatization of the calculations.
In this process, important issues such as stability, precision and versatility
should be addressed.

In the variety of alternative options available to performing one-loop
multi-leg calculations, it is still too soon to decide which methods will prove
themselves efficient and versatile enough to have an impact in future calcula-
tions [14]. During the last year, the progress in the automated generation of
the numerators [15] and in the generation of dipole terms [16], coupled with
the OPP reduction engine, led to the construction of a very powerful tool
for multi-leg processes, that already proved its enormous potential [17,18].

2. NLO QED corrections to photon emission
in Bhabha scattering

Bhabha scattering is employed at e+e− colliders as a luminosity can-
dle. At high-energy colliders such as LEP, the luminosity was measured by
considering Bhabha scattering events at small scattering angles, while at
meson factories operating at lower center-of-mass energies, such as DAΦNE
or CESR, the luminosity is determined by analyzing large-angle Bhabha
scattering events.

It is, therefore, important to reduce the theoretical uncertainty which
affects the cross-section for this process, in order to achieve a better deter-
mination of the luminosity for the colliders [19].

Next-to-leading (NLO) corrections to e−e+ → e−e+ in the full Standard
Model were calculated long ago [20]. In order to proceed to the next or-
der in the perturbative expansion (NNLO), there are three different sets of
calculations that should be completed: two-loop corrections to the process
e−e+ → e−e+ [21,22]; one-loop corrections including a single hard photon in
addition to the outgoing electron–positron pair; tree-level corrections with
two hard photons or a hard electron–positron pair in addition to the e−e+
couple in the final state of Bhabha scattering.
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Very recently, we completed the calculation of the one-loop QED cor-
rections to the process e−e+ → e−e+γ [23], the last missing contribution
towards the completion of the full NNLO correction to Bhabha scattering.
The calculation has been carried out by employing the OPP method [11,12].
Partial results were already available for small-angle Bhabha scattering [24]
and s-channel annihilation processes at large angles [25]. The impact of the
full calculation for this class of corrections could be rather small in high-
energy regimes [26], while it is probably more important at small energies.
Further phenomenological studies are in progress and they will be presented
in future publications.

As a by-product, we have also computed the one-loop QED corrections
to e−e+ → µ−µ+γ1. This process is an important background for the de-
termination of the pion form factor and provides an independent calibration
for a measurement of the hadronic production cross-section. In addition, it
represents an interesting application of the reduction method in the presence
of two mass scales inside loop diagrams.

2.1. Virtual corrections

The one-loop QED corrections to the process e−e+ → e−e+γ involve
only 76 Feynman diagrams. Representative graphs are shown in Fig. 1.
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Fig. 1. Representative one-loop diagrams for e−e+ → e−e+γ.

The calculation of the complete one-loop corrections requires the eval-
uation of pentagon diagrams of class 2g, the most challenging and time
consuming part of this calculation. Note also that, due to Furry’s theo-
rem, diagrams of class 2c cancel in the sum. For further details about the
calculation, we refer the reader to the original paper [23].

1 This corrections have been also calculated independently by a different group [27].
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The one-loop amplitudes, generated through QGRAF [28], have been
processed with FORM [29] routines in order to produce a FORTRAN 95
output. The latter has then been used as an input for two computer imple-
mentations of the OPP technique which numerically evaluate the scattering
amplitudes at any given phase-space point.

The first implementation employs the routines of the publicly available
package CutTools [30] for the numerical determination of the coefficients
which multiply the basis integrals. These routines have been combined with
QCDLoop [31]. The second version of the calculation is used for cross-
checking our results and it makes use of an independent code [32] for the
reduction of the tensor integrals, which includes an optional optimization of
the OPP technique based on the Discrete Fourier Transform [33]. The basis
integrals are evaluated using the code OneLOop [34], written by A. van
Hameren.

The interference of the one-loop amplitude M1−loop with the complex-
conjugate tree-level amplitudeM?

tree is evaluated in dimensional regulariza-
tion and subdivided into four contributions:

IV
NLO =

1
4

∑
spins

2 Re (M1−loopM?
tree) = CC4 +R1 +R2 + UVct . (1)

We call CC4 the four-dimensional cut-constructible term, namely the
contribution proportional to scalar boxes, triangles, bubbles and tadpoles
[35,36]. The notation R1 +R2 defines the so-called rational part [37], while
UVct is the contribution induced by the ultraviolet counterterms.

We carried out the ultraviolet renormalization in the on-mass-shell
scheme. Throughout our computation we have retained the full dependence
on the fermion masses, introducing in particular the appropriate ultraviolet
and R2-type mass counterterm diagrams depicted in Fig. 2.

Fig. 2. Representative mass-counterterm diagrams for e−e+ → e−e+γ. Black dots
stand for mass-counterterm insertions, necessary for performing renormalization
and computing the rational term R2 in the massive case.

The rational part R1 is computed by using different strategies in the two
versions of the calculation: CutTools employs the mass-shift procedure in-
troduced in Ref. [11], while the second approach uses the counterterm-based
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method described in Ref. [12]. The results obtained with the two indepen-
dent implementations for the cut-constructible term and the component R1

are in very good agreement. The rational part R2 is calculated employing
ad hoc Feynman rules for QED described in Ref. [37], that have been recently
extended to QCD in Ref. [38].

2.2. Stability tests and results

In order to check the stability of our results, we have performed the so-
called N = N test, monitoring the agreement between the numerical values
of the numerator function N̄(q̄) before and after the decomposition in terms
of inverse propagators [30]. When the numerical agreement in the compar-
ison does not reach a given limit set by the user, the code automatically
triggers the use of the more time-consuming multi-precision routines [39].
We observe more than 9 digits of agreement between the results obtained
in double precision, requiring a 10−5 relative precision for the N = N test,
and those we got after forcing multi-precision in the reduction program for
reaching a 10−15 relative precision.

As a second test on our calculation, we check the cancellation of the
poles. In fact, after including the ultraviolet counterterm UVct and the
infrared pole coming from real emission, all poles cancel as they should.

Finally, as described above, we have performed the calculation of all
contributions by means of two independent codes.

As a further test of the stability of our results, we calculated the ampli-
tudes for phase-space configurations in which the electron, or the positron, is
(almost) parallel to the emitted photon [23]: while we observe the appearence
of collinear divergencies, the virtual corrections still follow a smooth curve,
thus suggesting a good stability of our results even in this particular kine-
matic configuration.

3. Conclusions

We recently evaluated the complete NLO virtual QED corrections to the
hard bremsstrahlung processes e−e+ → e−e+γ and e−e+ → µ−µ+γ, that
are relevant for the determination of the luminosity at low-energy electron–
positron colliders.

The result of our calculation, performed with the OPP method of re-
duction, is the implementation of hard-bremsstrahlung emission corrections,
both for Bhabha scattering and muon-pair production, into a FORTRAN 95
code which employs the publicly available packages CutTools for the ex-
traction of the coefficients of the scalar integrals and QCDLoop for evalu-
ating the needed scalar integrals.
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The numerical stability of our results has been tested in several ways:
we compared our results in double and multiple precision; we checked the
cancellation of infrared divergencies arising from virtual and real corrections;
finally we compared the results obtained by using two independent codes.
For LO calculations, we find an agreement of at least 12 digits; for NLO
results, we estimate 9 digits of accuracy.

The typical order of magnitude of the CPU time of the FORTRAN 95
code we have developed is O(10−1) seconds for each phase-space point.

The numerical code that we developed, supplemented with the finite part
for real-emission diagrams, will allow for a phenomenological study of the
two hard-bremsstrahlung processes e−e+ → e−e+γ and e−e+ → µ−µ+γ,
including the calculation of the cross-sections and the relevant distributions.
This work in currently in progress. In addition, our results can be compared
with the corrections already implemented in MC generators in order to assess
the associated theoretical uncertainty.
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fully acknowledge the hospitality of CERN at various stages of this work.
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