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We use the phenomenological valon model to extract polarized parton
densities and polarized proton structure function. Since the analytical re-
sult at large values of x and low values of Q2 is not in good agreement
with available experimental data, we employ target mass correction to in-
crease the reliability of the calculations. New comparison confirms a better
agreement with the experimental data.
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1. Introduction

Lepton scattering off nucleon targets plays an essential role in the inves-
tigation of the proton as a composite particle which consists of quarks and
gluons. Experimental data which are obtained from deep inelastic scattering
(DIS) experiments are used to extract parton distributions. By increasing
the variety of data and also their precision, it is necessary to improve the
theoretical analysis. This can be done by adding some corrections to the
available analytical expressions. One of the most important effects is the
target mass correction (TMC). This correction is written in terms of powers
of M2/Q2. Here M is the mass of the target and Q is the energy which is
allocated to an intermediate particle probing the nucleon. The TMC has
an expansion in terms of the different order of twist operators. They arise
in the calculation when partonic correlations and gluon contributions are
important. The power corrections in M2/Q2 can be theoretically justified
using the operator product expansion (OPE) theorem [1].
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2. Theoretical framework

The TMC shows up in the hadronic matrix element of a product
jµ(x)jν(y) of two currents. Specifically we consider the amplitude of Comp-
ton scattering:

Tµν = i

∫
d4xeiqx〈PS|T (jµ(x)jν(0))|PS〉 . (1)

Calculating the jµ(x)jν(y) product at very short distances will lead to di-
vergences. In order to avoid them we need to employ the OPE. The TMC
is largest at low Q2 and large x values, where there is no good agreement
between the analytical result and the experimental data for the polarized
proton structure function. In DIS, the Bjorken variable, x, is defined as:

x =
Q2

2P · q
=
(
Q2

2Mν

)
rest

. (2)

Here P and q are the four momenta of the target particle and the pho-
ton propagator and ν is the difference between the energy of incoming and
outgoing particle. So far we have assumed the states in (1) to be massless
quarks. In order to take into account the mass of the target particle we will
use the Natchmann variable defined as:

ξ =
2x

1 +
√

1 + 4x2M2

Q2

, (3)

instead of the Bjorken variable x. It can be easily seen that the Natchmann
variable at large values of Q2 is approaching x. The mass correction to the
polarized structure function g1(x,Q2) [2], represented in terms of moments
of matrix elements, can be written as the second and third twist operators
in the following way [3]:

gTMC
1

(
n,Q2

)
= an +

M2

Q2

n(n+ 1)
(n+ 2)2

(nan+2 + 4dn+2)

+
(
M2

Q2

)2
n(n+ 1)(n+ 2)

2(n+ 4)2
(nan+4 + 8dn+4)

+
(
M2

Q2

)3
n(n+ 1)(n+ 2)(n+ 3)

6(n+ 6)2
(nan+6+12dn+6) , (4)

where we have kept terms up to the third order in the mass expansion. The
an and dn twist operators can been written as [4]:

an =

1∫
0

dx
ξn+1

x2

{[
x

ξ
− n2

(n+ 2)2
M2

Q2
xξ

]
g1
(
x,Q2

)
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−M
2

Q2
x2 4n
n+ 2

g2
(
x,Q2

)}
, (n = 3, 5, . . .) , (5)

dn =

1∫
0

dx
ξn+1

x2

{
x

ξ
g1
(
x,Q2

)
+
[

n

n− 1
x2

ξ2
− n

n+ 1
M2

Q2
x2

]
g2
(
x,Q2

)}
, (n = 3, 5, . . .) . (6)

The structure function g2(x,Q2) in the equations above can be calculated
in terms of g1(x,Q2) as follows:

g2
(
x,Q2

)
= −g1

(
x,Q2

)
+

1∫
x

g1
(
y,Q2

)
y

dy . (7)

3. Polarized structure function and TMC

To evaluate the TMC effect, we need first to calculate the polarized
structure function xg1(x,Q2). Within the MS factorization scheme, the
NLO contributions to g1(x,Q2) are given by [5]

gp1
(
x,Q2

)
=

1
2

∑
q

e2q

{
δq
(
x,Q2

)
+ δq̄

(
x,Q2

)
+
αs
(
Q2
)

2π
[δCq ⊗ (δq + δq̄) + 2δCg ⊗ δg]

}
. (8)

The convolution symbol ⊗ is defined as

(C ⊗ q)
(
x,Q2

)
=

1∫
x

dy

y
C

(
x

y

)
q
(
y,Q2

)
. (9)

The polarized structure function can be related to the Mellin moments using
the Jaccobi polynomials expansion [6]. In this case, the unknown parameters
of the phenomenological valon model [7] can be extracted and the polarized
proton structure function xg1 is calculable. The plot of xg1 in the NLO ap-
proximation at Q2 = 2 GeV2 has been depicted in Fig. 1. A comparison with
experimental data [8] has also been done. Eq. (7) will give us the structure
function g2(x,Q2). Then the coefficients an and dn can be calculated using
Eqs (5)–(6). In our constituent quark model, xg1(x,Q2) does not have a sim-
ple structure and we have not been able to calculate directly the integral∫ 1
0
g1(y,Q2)

y dy. To calculate this integral, we assign a polynomial function
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Fig. 1. The plot of xgp
1 at Q2 = 2 GeV2 in the NLO approximation. Comparison

with the experimental data has also been done.

of y to it which contains some unknown parameters. The parameters will
be obtained by fitting to the experimental data. To calculate the integral
in Eq. (5) and Eq. (6) we use the numerical solution of Newton–Cotes [9].
In Fig. 2, including the TMC effects, we have plotted the structure func-
tion xg1(x,Q2) at Q2 = 2 GeV2 in the NLO approximation. As it can be
seen, employing TMC shifts the xg1(x,Q2) plot upwards and we get better
agreement with the experimental data.

Fig. 2. Comparison between xg1 and xgTMC
1 (x,Q2) at Q2 = 2 GeV2 in the NLO

approximation. Experimental data have been adopted from [8].
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4. Conclusions

We have shown that the TMC effect is important at large values of x
and low values of Q2. But as it can be seen in Fig. 2, the area under
the curve of the xgTMC

1 (x,Q2) function (first moment of gTMC
1 (x,Q2)) is

larger than the area which is related to xg1(x,Q2). This will not satisfy
the required constraints. To obey the constraints, we need to extract the
unknown parameters from a structure function which involves the TMC
effect. This means that we should fit xgTMC

1 (x,Q2) to the experimental
data rather than xg1(x,Q2). Due to multiple integrals, the calculations will
not be easy and we should find a numerical solution. In this regard some
guide lines can be found in [10,11]. A full calculation will be done as a new
research job in future.
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