
Vol. 40 (2009) ACTA PHYSICA POLONICA B No 11

POTENTIAL AND LIMITATIONS
OF THE HBT METHOD∗ ∗∗

K. Zalewski†

The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences
Radzikowskiego 152, 31-342 Kraków, Poland

zalewski@th.if.uj.edu.pl

(Received October 13, 2009)
The HBT method is used to get information about the sizes, shapes

and sometimes also about the time evolution of the homogeneity regions in
hadroproduction processes. Homogeneity region K is the region, where the
hadrons with momentum K are produced. The shape and size of homo-
geneity region K is described by the Wigner function W (K,X) evaluated
in the interaction representation after all the hadrons had been produced.
Additional information about the evolution in time is contained in the
emission function S(K,X). A theorem is presented and discussed which
specifies which of the parameters characterizing the Wigner function can
and which cannot be measured using the HBT method. In order to ob-
tain the complete Wigner function additional assumptions are needed. For
instance, it is enough to know the distribution of the centers of the ho-
mogeneity regions 〈X〉K . In order to find the emission function further
assumptions are required. No systematic analysis is available, but some
instructive examples are discussed.

PACS numbers: 25.75.Gz, 13.65.+i

1. Introduction

The HBT method is a somewhat controversial [1] name for the use of
Bose–Einstein correlations to get information about the interaction regions,
defined below, in multiparticle production processes. For a recent review
see [2]. In spite of its long history since the seminal paper of the Goldhabers,
Lee and Pais [3], the method remains a field of active research. In the present
paper we discuss what can and what cannot be measured using the HBT
method. We also describe some open problems.
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The interaction region is interpreted as follows. Consider a high energy
collision of two heavy nuclei where many hadrons are produced. The tra-
jectory of each hadron begins somewhere — in the point where the hadron
got created. This is a classical picture. It can be improved by replacing
the points of creation by small regions in space. All these points, or re-
gions, averaged over many similar collisions, form the interaction region.
Thus, the interaction region is, in general, not the volume where the fluid
(strongly interacting quark–gluon plasma?) created in the collision evolves.
For instance, in some models it is a two-dimensional shell.

If we were not constrained by the laws of Nature, the best description of
the interaction region would be the time dependent probability distribution
in phase space, i.e. the probability density for a particle of momentum p
to be created at space-time point X. Since, however, according to quantum
mechanics it is not possible to measure simultaneously and precisely the po-
sition and the momentum of a particle, one must compromise. In ordinary
quantum mechanics, where the number of particles is conserved, the Wigner
function is considered to be the best replacement for the phase space prob-
ability distribution. In hadroproduction the situation is more complicated,
because the number of hadrons increases from zero to some final number.
The analogue of the Wigner function applicable in this case is known as
the emission function. It is implicit already in the work of Shuryak [4], but
has been first explicitly defined and used by Pratt [5]. For a fairly recent
discussion see [2].

2. Emission function

The emission function can be defined1 by the formula (cf. e.g. [2])

S(p,X) =
∫
d4Y

∑
R

T ∗R

(
X +

Y

2

)
TR

(
X − Y

2

)
e−ipY , (1)

where
X = 1

2(x1 + x2) , Y = x1 − x2 . (2)

TR(Z) is the probability amplitude for producing a hadron at space-time
point Z. This, of course, depends on the state of the surrounding, denoted
here by R, of Z . By analogy with thermodynamics, the averaging over R is
done on the product T ∗RTR and not on the single probability amplitudes TR.
The integrand depends on two moments of time: X0± 1

2Y
0. Sometimes (see

e.g. [5]) incoherence in time of the production process is assumed:

1 In order to make the emission function closer to the Wigner function, we have changed
the sign of the exponent with respect to the one given in [2].
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∑
R

T ∗R

(
X +

Y

2

)
TR

(
X − Y

2

)
= δ(Y 0) Σ (X,Y ) . (3)

Then there is only one time, occurring on both sides of equation (1), and
the emission function becomes closer to the Wigner function (see Section 4).

Note that in (1) there is neither integration nor differentiation with re-
spect to the components of p. Thus, momentum appears only as a parameter.
This is related to the fact, discussed in the following section, that it is not
possible to measure the whole interaction region. The most one can hope for
is to measure the homogeneity regions. Homogeneity region K is the region
where the hadrons with momentum K got created. Thus, the problem is to
find the profiles of the homogeneity regions2:

pK(x) ∼
+∞∫
−∞

dX0 S(K,X) . (4)

This limitation of the HBT method was noticed by Bowler [6]. The name
homogeneity region was introduced by Sinyukow [7].

The emission function is related to the single particle density matrix in
the momentum representation by the formula

ρ(K, q) ∼
∫
d4X S(K,X)eiqX , (5)

where
K = 1

2(p1 + p2) , q = p1 − p2 . (6)

The density matrix does not depend on time, because it refers to a time
when all the hadrons are already present and propagate freely (To some
extent one can include final state interactions see e.g. [2]). It is written in
the interaction picture.

Formula (5) rises two problems. How to measure ρ(K, q)? The diagonal
elements are given by the single particle momentum distribution, but the
textbook advice to look for distributions of other measurable quantities in
order to find the out of diagonal elements is inapplicable here, because mo-
menta are all we know how to measure. A brilliant partial solution to this
problem [3] is discussed in the following section. Since Wigner’s function
is the Fourier transform of the density matrix, knowing the density matrix

2 Here and in the following ∼ means: equal up to a known proportionality constant
irrelevant for our discussion.
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is enough to find the size and shape of a homogeneity region. The emis-
sion function, however, contains additional interesting information about
the time evolution of the hadronization process.

The second problem is, how to solve for S equation (5) for a given density
matrix? At first sight it might seem that it is enough to invert the Fourier
transformation, but in order to do that one would have to know ρ(K, q) for
all the four-vectors q and not only for all the three-vectors q as is the case.
Here not much is known. We discuss the problem in Section 4.

An important assumption concerning the emission function is the smooth-
ness assumption, see e.g. [2]. According to this assumption, the dependence
of S(K,X) on K is so weak that we can replace3 K by p1 or p2, or replace
K0, by

√
m2 + K2, without changing significantly the results. With this as-

sumption many objections can be explained away. For instance, two appar-
ently very different versions of the HBT method can be shown to be equiva-
lent [2], or the question can be answered: why the arguments of the emission
function, which are half sums just like the arguments of the Wigner function,
can be interpreted as particle momentum and position? The smoothness as-
sumption should hold for pairs of momenta p1, p2 important for the analysis.
For high energy collisions of heavy ions the relevant momentum differences
are small and the assumptions seems justified; for e+e− annihilations or pp
scattering they are much bigger and the assumption is doubtful [8]. One
of the outstanding open problems is, why the HBT method is applied with
comparable success to heavy ion, e+e− and pp collisions?

3. Measuring the density matrix

Much information about the single particle density matrices can be ob-
tained, under certain assumptions, by studying the distributions of momenta
for sets of n = 1, 2, . . . identical mesons, for instance π− mesons [3]. The for-
mulae used to relate the n-particle momentum distributions P (p1, . . . ,pn)
to the single particle density matrix elements are:

P1(p1) = N1ρ(p1; p1) ,
P2(p1,p2) = P (p1)P (p2) +N12|ρ(p1; p2)|2 ,

P3(p1,p2,p3) = P (p1)P (p2)P (p3)+P (p1,p2)P (p3)+P (p2,p3)P (p1)
+P (p3,p1)P (p2) +N123<[ρ(p1; p2)ρ(p2; p3)ρ(p3; p1)] (7)

and so on, where < stand for real part of andNα are normalization constants,
irrelevant for our discussion. The first formula follows from the definition
of the density matrix. The others are derived like the second one, which

3 Care is taken to minimize the error. E.g. the product S(K, x1)S(K, x2) is replaced
by S(p1, x1)S(p2, x2), so that the errors of the two substitutions partly cancel, see [2].
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was obtained, for a specific model and in a different notation, in [3]: For
two totaly uncorrelated particles, the probability distribution for their mo-
menta would be proportional to ρ(p1; p1)ρ(p2; p2); when the two particles
are identical and have spin zero, symmetrization introduces the correction
term ρ(p1; p2)ρ(p2; p1) = |ρ(p1; p2|2.

There is a problem with the consistency of equations (7). Suppose that
exactly two particles are produced. Then P2(p1,p2) integrated over p2

should give P1(p1). Actually, the integral of the first term on the right-
hand-side of the formula for P2 yields P1 and the second term supplies an
unwanted correction. The dependence of this correction on p1 is usually
different than that in P1(p1). Thus, it is not possible to compensate it by
a normalizing factor. The only way out is to make this correction negligibly
small. Since ρ(p1; p1) is known and fixed, one must assume that ρ(p1; p2)
decreases rapidly with increasing |q|.

The model described here has a number of other difficulties which, how-
ever, can be relieved by a suitable handling of the experimental data and/or
of the comparison between theory and experiment. We will describe them
very briefly. A much more detailed description with many references can be
found in the review [2]. The model assumes no correlations except the Bose–
Einstein correlations. The remedy is to construct a sample which contains
all the correlations except the Bose–Einstein correlations and compare it
with the full sample which contains all the correlations including the Bose–
Einstein correlations. The relative momentum q of two charged particles
with similar momenta is strongly affected by Coulomb, and in some situa-
tions also by strong, interactions. This is the famous problem of final state
interactions and is usually handled by introducing a suitable q-dependent
correction term. Many final hadrons are secondaries originating from decays
of resonances. The short-lived resonances are no problem, but the long-lived
ones mimic much bigger interaction regions. Actually, they produce in the
ratio P2(p1,p2)

P1(p1)P2(p2) a narrow peak at small |q| which is below experimental
resolution and is usually corrected for by changing the normalization fac-
tor N12. Finally, there are purely experimental problems like correcting for
momentum resolution, particle misidentification etc. We assume in the fol-
lowing that the consistency condition is satisfied and that the experimental
data have been fully corrected, so that relations (7) can be applied.

The obvious question is, can one solve equations (7) for the single particle
density matrix ρ(p1; p2)? The answer is negative. A simple calculation
[9], [10] shows that the predicted momentum distributions (for n = 1, 2, . . .)
do not change when ρ(p1; p2) changes as follows:

ρ(p1; p2) → ρ(p2; p1) and/or (8)
ρ(p1; p2) → eif(p1)ρ(p1; p2)e−if(p2) , (9)
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where f(p) is an arbitrary real function of a single momentum. This group
of transformations includes all the modifications of ρ(p1; p2) which affect
none of the momentum distributions. The first ambiguity is not much of
a problem. It corresponds to the space inversion of the homogeneity region.
If the homogeneity region is symmetric this has no effect. If it is not sym-
metric, one usually can find a physical argument to chose one of the two
possibilities. The second ambiguity, however, is much more serious. Let us
take an example. Choosing

f(p) =
1
2

∑
i=x,y,z

aip
2
i , (10)

where ai are arbitrary real numbers, one finds that this implies the modifi-
cation

S(K,X)→ S
(
K,X + a(K), X0

)
, (11)

where the components of a(K) are aiKi. Thus, every homogeneity region,
except the K = 0 one, gets shifted. Since the possible shifts are a class
of functions of K, the relative positions of the homogeneity regions can be
almost arbitrarily changed. This, incidentally, is a proof that at best one
can hope to measure the sizes and shapes of the individual homogeneity
regions. Putting all the homogeneity regions on top of each other, one could
get a lower bound for the size of the overall interaction region, but there is
no upper bound.

The previous example is a very special case of a general theorem stating
what can and what cannot be measured using the HBT method [11]. The
formulation uses cumulants, so let us quote their definition. For the profile
of any homogeneity region pK(x) we can define its characteristic function
〈eit·x〉 which is, of course, a function of the vector t. Consider now the
power series expansion

log
〈
eit·x

〉
=

∑
nx,ny ,nz

K (nx, ny, nz)
(itx)nx

nx!
(ity)ny

ny!
(itz)nz

nz!
, (12)

where the summation is over three sets of all non-negative integers. The
coefficients K(nx, ny, nz) are the cumulants of the probability distribution
pK(x). The number nx+ny+nz is the order of the cumulant. The cumulant
is even (odd) when its order is even (odd).

The theorem consists of three points:

• Every even cumulant of pK(x) can be measured.

• No odd cumulant of pK(x) can be measured.
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• When the first order cumulants, i.e. 〈X〉K , are given, they fix the
phase f(p) up to an irrelevant constant and, for 〈X〉K 6= 0, eliminate
the freedom of inversion. Thus, the full pK(x) become measurable.

Let us consider a few applications of this theorem. The second order
cumulants are elements of the covariance matrix 〈(xi − 〈xi〉)(xj − 〈xj〉)〉K
where xi = x, y, z. Experimentalist routinely measure the HBT radii and
use them to calculate the elements of the covariance matrices of the homo-
geneity regions. The theorem shows that this interpretation is not affected
by the ambiguity (9). In the imaging method (see [12] and references given
there) one determines from the measured momentum distributions the prob-
ability distributions pK(x1 − x2) for pairs of points within a homogeneity
region. This is much less information than given by the profiles of the ho-
mogeneity regions. For instance, the distributions pK are not sensitive to
the averages 〈X〉K . However, one finds that the distribution pK depends
only on the even cumulants of the distribution pK and that it depends on
all of them. Therefore, it is reliably measurable and it gives much more
information than the measurements of the HBT radii.

On the other hand, the centers of the homogeneity regions 〈X〉K are first
order cumulants and cannot be reliably measured. This is a much shorter
derivation of the conclusion from example (10) that the relative positions of
the homogeneity regions are not measurable.

Of special interest is the third point. The collisions of heavy ions are usu-
ally described using rather simple-minded tools, like Euler’s hydrodynamics.
It is much easier to believe that such analyses give reasonably the centers of
the homogeneity regions than that they reproduce all the intricacies of their
shapes. According to the third point, however, once the distribution of the
centers is known, everything else can be unambiguously measured without
further model assumptions.

4. Emission function and Wigner function

Much less work has been done on the ambiguities in the solution of
equation (5) for ρ(K, q) known. Instead, one usually derives from a model,
or guesses, an emission function and checks whether it yields the momentum
distributions in agreement with experiment. Since a general analysis has not
yet been performed, we present here only some partial results.

Let us assume that in some reference frame all the hadrons got created
simultaneously at time t = 0. Then the emission function can be written in
the form

S(K,X) = δ(t)S(K,X) , (13)
where the function S(K,X) should be found from equation (5). Substituting
into (5), one finds, a unique solution
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S(K,X) ∼ δ(t)W (K,X) , (14)

where W denotes the Wigner function. Thus, in this case the emission
function is as good as the Wigner function. A solution of this type always
exists, assuming that the hadronization process is over at t = 0, but usually
it is not the realistic solution we are looking for.

Assuming (in some reference frame) no coherence in time, one can relate
the emission function to the Wigner function by the formula [13]

S(K,X) ∼ W dt(K, X)
dt

. (15)

W dt is the Wigner function for the particles produced in the time interval
dt around t = X0. This Wigner function is normalized to the number of
particles produced in the time interval dt and not to one as is usual for
Wigner functions. To mark this difference we introduced the overline. With
this normalization W dt tends to zero with dt → 0 and it has to be divided
by dt to give a finite result. Note that this solution for S(K,X) does not
depend on K0. The equation for S(K,X) can by obtained by integrating
both sides of (15) over time. The result is

W (K, X) ∼
∫
dt S(K,X) . (16)

Solution (15) is one among the infinity of solutions of (16) and the HBT
method gives no hint how to find it.

However, (16) can be used as a sum rule for S(K,X). If assumptions
are made about the time dependence of S(K,X), it is possible to get one
parameter of the assumed time distribution from experiment. An example
is contained in [14]. This paper proposed a once very famous formula to
measure both the size and the life-time of the interaction region by the HBT
method. The formula was used for years by many experimental groups. The
authors assumed that all the particle sources are produced simultaneously
at t = 0, that there is no coherence in time and that each source decays
exponentially with the same life time. Then, in agreement with our analysis,
they were able to determine this life time of the sources.

Let us consider a generalization of the previous case. Suppose that
S(K,X) does not depend on q2. This is more general than the previous
assumption that is does not depend on K0. For instance, it is enough to
assume that, in the spirit of the smoothness assumption, K0 in S(K,X) can
be replaced by

√
m2 + K2. Applying the Fourier transformation to both
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sides of equation (5) we convert the density matrix into the Wigner function
and using the identity

Kq = 0 = K0q0 −K · q , (17)

to eliminate q0, we find after trivial integrations

W (K,X) ∼
∫
dt S

(
K,X +

K

K0
t, t

)
. (18)

In the K = 0 frame one recovers formula (16). Actually, the use of this
frame has a number of advantages (see e.g. [2]) and should be strongly
recommended.

5. Conclusions

It is not possible to measure the size and/or shape of the full interaction
region using the HBT method. Therefore, efforts concentrate on measure-
ments of the homogeneity regions. From the classical point of view, the best
description of the size and shape would be a probability distribution for
producing a particle with momentum K at space-time point X. As known
from quantum mechanics, however, this is not possible. The usual trans-
lation into quantum physics is to look for the Wigner function W (K,X).
When written in the interaction picture and after all the hadrons have been
produced, this Wigner function does not depend on time. Its interpretation
as a probability distribution pK(X) = W (K,X) is only an approximation,
e.g. because Wigner functions can be negative in certain regions. It seems,
however, that at least for high-energy heavy ion scattering this approxima-
tion is reasonable (for a recent discussion see [15]).

The theorem presented and discussed in Section 3 states that: The even
cumulants of pK(X) can be measured using the HBT method. This, in
particular, justifies the measurements of the HBT radii and the imaging
method. The odd cumulants cannot be measured, which explains, in partic-
ular, why one has to study the separate homogeneity regions instead of the
whole interaction region. The theorem also shows that when the distribution
〈X〉K is known, it is possible to measure the full Wigner functions for all
the homogeneity regions and consequently also the full interaction region.

In order to learn about the time evolution of the homogeneity regions
one uses emission functions. Even when the Wigner function is known, the
evaluation of the emission function requires additional assumptions. When
these assumptions are too strong, one obtains no more than the input. This
is illustrated by the example leading to formula (14). With a judicious choice
of assumptions, however, one can obtain additional information. An example
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is the model of Kopylov and Podgoretskii [14], where the life time of the
hadron sources can be measured. Of course, such results are no more credible
than the assumptions used to derive them.

Nowadays people usually propose full models of hadronization, which
among other things predict also the results of the HBT measurements. The
comparison with these experimental measurements is used to test the model
and sometimes also to fix some of its parameters. The credibility of the
model, and consequently of the description of the interaction region that it
offers, is based on a comparison of its prediction with a variety of experi-
mental data and not just on the study of the HBT results. The question how
much one can learn about the interaction region in a (as nearly as possible)
model-independent way remains, however, interesting.
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