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We argue that adding gauge-singlet real scalars to the Standard Model
can both ameliorate the little hierarchy problem and provide a realistic
source of Dark Matter. Masses of the scalars should be in the 1–3 TeV
range, while the lowest cutoff of the (unspecified) UV completion of the
model must be ∼> 5 TeV, depending on the Higgs boson mass and the num-
ber of singlets present. The scalars couple to the Majorana mass term
for right-handed neutrinos implying one massless neutrino. The resulting
mixing angles are consistent with the tri-bimaximal mixing scenario.

PACS numbers: 12.60.Fr, 13.15.+g, 95.30.Cq, 95.35.+d

1. Introduction

Our intention is to construct economic extension of the Standard Model
(SM) for which the little hierarchy problem is ameliorated while preserv-
ing all the successes of the SM. We will consider only those extensions that
interact with the SM through renormalizable interactions. Since quadratic
divergences of the Higgs boson mass are dominated by top-quark contribu-
tions, it is natural to consider extensions of the scalar sector, so that they
can reduce the top contribution (as they enter with an opposite sign). The
extensions we consider, although renormalizable, shall be treated as effec-
tive low-energy theories valid below a cutoff energy ∼ 5–10 TeV; we will not
discuss the UV completion of this model.
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2. The little hierarchy problem

The quadratically divergent 1-loop correction to the Higgs boson (h)
mass was first calculated by Veltman [1]

δ(SM)m2
h =

[
3m2

t /2−
(
6m2

W + 3m2
Z

)
/8− 3m2

h/8
]
Λ2/

(
π2v2

)
, (1)

where Λ is a UV cutoff, that we adopt as a regulator, and v ' 246 GeV
denotes the vacuum expectation value of the scalar doublet (SM logarithmic
corrections are small since we assume v � Λ∼< 10 TeV). The SM is considered
here as an effective theory valid up to the physical cutoff Λ, the scale at which
new physics enters.

Precision tests of the SM (mainly from the oblique Tobl parameter [2])
require a light Higgs boson, mh ∼ 120–170 GeV. The correction (1) can
then exceed the mass itself even for small values of Λ, e.g. δ(SM)m2

h ' m2
h

for mh = 130 GeV already for Λ ' 600 GeV. That suggests extensions of
the SM with a typical scale at 1 TeV, however no indication of such low
energy new physics have been observed. This difficulty is known as the little
hierarchy problem.

Here our modest goal is to construct a simple modification of the SM
within which δm2

h (the total correction to the SM Higgs boson mass squared)
is suppressed up to only Λ∼< 3–10 TeV. Since (1) is dominated by the
fermionic (top quark) terms, the most economic way of achieving this is
by introducing new scalars ϕi whose 1-loop contributions reduce the ones
derived from the SM. In order to retain SM predictions we assume that ϕi
are singlets under the SM gauge group. Then it is easy to observe that the
theoretical expectations for all existing experimental tests remain unchanged
if 〈ϕi〉 = 0 (which we assume hereafter), in particular the SM expectation
of a light Higgs is preserved.

The most general scalar potential implied by Z(i)
2 independent symme-

tries ϕi → −ϕi (imposed in order to prevent ϕi → hh decays) reads:

V (H,ϕi) = −µ2
H |H|2 + λH |H|4 +

Nϕ∑
i=1

(
µ(i)
ϕ

)2
ϕ2
i

+
1
24

Nϕ∑
i,j=1

λ(ij)
ϕ ϕ2

iϕ
2
j + |H|2

Nϕ∑
i=1

λ(i)
x ϕ

2
i . (2)

In the following numerical computations we assume for simplicity that µ(i)
ϕ =

µϕ, λ
(ij)
ϕ = λϕ and λ

(i)
x = λx, in which case (2) has an O(Nϕ) symmetry

(small deviations from this assumption do not change our results qualita-
tively). The minimum of V is at 〈H〉 = v/

√
2 and 〈ϕi〉 = 0 when µ2

ϕ > 0 and



Naïve Solution of the Little Hierarchy Problem . . . 3009

λx, λH > 0 which we now assume. The masses for the SM Higgs boson and
the new scalar singlets are m2

h = 2µ2
H and m2 = 2µ2

ϕ + λxv
2 (λHv2 = µ2

H),
respectively.

Positivity of the potential at large field strengths requires λHλϕ > 6λ2
x

at the tree level. The high energy unitarity (known [3] for Nϕ = 1) implies
λH ≤ 4π/3 (the SM requirement) and λϕ ≤ 8π, λx < 4π. These conditions,
however, are derived from the behavior of the theory at energies E � m,
where we do not pretend our model to be valid, so that neither the stabil-
ity limit nor the unitarity constraints are applicable within our pragmatic
strategy, which aims at a modest increase of Λ to the 3–10 TeV range.

The existence of ϕi generates additional radiative corrections1 to m2
h.

Then the extra contribution to m2
h reads

δ(ϕ)m2
h = −

[
Nϕλx/

(
8π2
)] [

Λ2 −m2 ln
(
1 + Λ2/m2

)]
. (3)

Adopting the parameterization |δm2
h| = |δ(SM)m2

h+δ(ϕ)m2
h| = Dtm

2
h, we can

determine the value of λx needed to suppress δm2
h to a desired level (Dt) as

a function of m, for any choice of mh and Λ; examples are plotted in Fig. 1
for Nϕ = 6. It should be noted that (in contrast to SUSY) the logarithmic
terms in (3) can be relevant in canceling large contributions to δm2

h. It is
important to note that the required value of λx decreases as the number of
singlets Nϕ grows. When m � Λ, the λx needed for the amelioration of
the hierarchy problem is insensitive to m, Dt or Λ; as illustrated in Fig. 1;
analytically we find up to terms O

(
m4/Λ4

)
λx ' N−1

ϕ

{
4.8− 3(mh/v)2 + 2Dt[2π/(Λ/ TeV)]2

}
×
[
1−m2/Λ2 ln

(
m2/Λ2

)]
. (4)

1.0 1.5 2.0 2.5 3.0
0.2

0.4
0.6

0.8

1.0

m @TeVD

Λ
x

8 TeV

1.0 1.5 2.0 2.5 3.0
0.2

0.4
0.6

0.8

1.0

m @TeVD

Λ
x

12 TeV

Fig. 1. Plot of λx corresponding to Dt = 0 and Nϕ = 6 as a function of m
for Λ = 8 TeV and 12 TeV (as indicated above each panel). The various curves
correspond to mh = 130, 150, 170, 190, 210, 230 GeV (starting with the uppermost
curve).

1 The Λ2 corrections to m2 can also be tamed within the full model with additional
fine tuning, but we will not consider them here, see [4].
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Since we consider λx ∼ O(1) effects of higher order corrections [5] to (1)
should be considered as well (see also [6]). In general, the fine tunning
condition reads (mh was chosen as a renormalization scale):∣∣∣∣∣δ(SM)m2

h + δ(ϕ)m2
h + Λ2

∑
n=1

fn(λx, . . .) [ln(Λ/mh)]n
∣∣∣∣∣ = Dtm

2
h , (5)

where the coefficients fn(λx, . . .) can be determined recursively [5], with
the leading contributions being generated by loops containing powers of λx:
fn(λx, . . .) ∼ [λx/(16π2)]n+1. To estimate these effects we can consider the
case where δ(SM)m2

h+δ(ϕ)m2
h = 0 at one loop then, keeping only terms ∝ λ2

x,
we find (using [5]), at 2 loops, Dt ' (Λ/(4π2mh))2 ln(Λ/mh) (note that
Nϕλx ' 4). Requiring Dt∼< 1 implies Λ∼< 3–5 TeV for mh = 130–230 GeV.

It must be emphasized that in the model proposed here the hierarchy
problem is softened (by lifting the cutoff) only if λx, Λ and m are appro-
priately fine-tuned; this fine tuning, however, is significantly less dramatic
than in the SM. In order to illustrate the necessary amount of tunning, it is
useful to calculate the Barbieri–Giudice [7] parameter

∆λx ≡
(
λx/m

2
h

) (
∂m2

h/∂λx
)

=
∣∣∣δ(ϕ)m2

h

∣∣∣ /m2
h . (6)

It turns out that the minimal value of∆λx obtained while scanning over λx, Λ
and m (0.2 ≤ λx ≤ 6, 1 TeV ≤ m ≤ 10 TeV and 10 TeV ≤ Λ ≤ 20 TeV) is
substantial: ∆λx ∼> 200.

3. Dark Matter

The singlets ϕi also offer a natural source for Dark Matter (DM) (for
Nϕ = 1, see [8]). Using standard techniques for cold DM [9] we estimate its
present abundance ΩDM, assuming for simplicity that all the ϕi are equally
abundant (e.g. as in the O(Nϕ) limit). ΩDM is determined by the ther-
mally averaged cross-section for ϕi annihilation into SM final states ϕiϕi →
SM SM, which in the non-relativistic approximation, and form� mh, reads

〈σiv〉 ' λ2
x/(8πm

2) + λ2
xv

2Γh(2m)/
(
8m5

)
' [1.73/ (8π)] λ2

x/m
2 . (7)

The first contribution in (7) originates from the hh final state (keeping only
the s-channel Higgs exchange; the t and u channels can be neglected since
m� mh) while the second one comes from all other final states; Γh(2m) '
0.48 TeV (2m/1 TeV)3 is the Higgs boson width calculated for its mass
equal 2m.

From this the freeze-out temperature xf = m/Tf is given by

xf = ln
[
0.038 mPl m 〈σiv〉 /(g?xf)1/2

]
, (8)
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where g? is the number of relativistic degrees of freedom at annihilation and
mPl denotes the Planck mass. In the range of parameters relevant for our
purposes, xf ∼ 12–50 and m ∼ 1–2 TeV, so that this is indeed a case of
cold DM. Then the present density of ϕi is given by

Ω(i)
ϕ h2 = 1.06× 109xf/

(
g
1/2
? mPl〈σiv〉 GeV

)
. (9)

The condition that the ϕi’s account for the observed DM abundance,
ΩDMh

2 =
∑Nϕ

i=1Ω
(i)
ϕ h2 = 0.106 ± 0.008 [2], can be used to fix 〈σiv〉, which

implies a relation λx = λx(m) through (7). Using this in the condition
|δm2

h| = Dtm
2
h, we find a relation between m and Λ (for a given Dt), which

is plotted in Fig. 2 for Nϕ = 6. It should be emphasized that it turns out to
be possible to find Λ, λx and m such that both the hierarchy is ameliorated
to the desired level and such that Ωϕh2 agrees with the DM requirement
(we use a 3σ interval). It is also instructive to mention that the singlet mass
(as required by the DM) scales with their multiplicity as N−3/2

ϕ , therefore
growing Nϕ implies smaller scalar mass, e.g. changing Nϕ from 1 to 6 leads
to the reduction of mass by a factor ∼ 15.
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Fig. 2. The allowed region in the (m,Λ) plane for Dt = 0, Nϕ = 6 and∑Nϕ

i=1Ω
(i)
ϕ h2 = 0.106 ± 0.008 at the 3σ level for mh = 130 GeV and 170 GeV

(as indicated above each panel).

4. Neutrino masses and mixing angles

We now consider implications of the existence of ϕi for the leptonic
sector, which we assume consists of the SM fields and three right-handed
neutrino fields νiR (i = 1, 2, 3) that are also gauge singlets. For simplicity
here we limit ourself to the case of only one singlet. The relevant Lagrangian
is then

LY = −L̄YlHlR − L̄YνH̃νR − 1
2(νR)cMνR − ϕ(νR)cYϕνR + h.c. , (10)
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where L = (νL, lL)T is a SM lepton SU(2) doublet and lR a charged lepton
singlet (we omit family indices); we will assume that the see-saw mechanism
is responsible for smallness of three light neutrino masses, and therefore we
require M � MD ≡ Yνv/

√
2. Since the symmetry of the potential under

ϕ→ −ϕ should be extended to (10) we require

L→ SLL, lR → SlR lR, νR → SνRνR , (11)

where the unitary matrices SL,lR,νR
obey

S†LYlSlR = Yl , S†LYνSνR = Yν , STνR
MSνR =+M , STνR

YϕSνR =−Yϕ .
(12)

In the following we will adopt a basis in which M and Yl are real and
diagonal; for simplicity we will also assume thatM has no degenerate eigen-
values. Then the last two conditions in (12) imply that SνR is real and
diagonal (so ±1). It is easy to see that for 3 neutrino species there are
two possibilities (up to permutations of the basis vectors): we either have
SνR = ±1, Yϕ = 0, or, more interestingly,

SνR = ε diag(1, 1,−1) ; Yϕ =

 0 0 b1
0 0 b2
b1 b2 0

 , ε = ±1 , (13)

where b1,2 are, in general, complex. To satisfy the first conditions in (12)
one needs SlR = SL with

SL = diag(s1, s2, s3) , |si| = 1 . (14)

Diagonalizing (to leading order in M−1) the neutrino mass matrix in terms
of the light (n) and heavy (N) eigenstates leads to,

Lm = −(n̄Mnn+ N̄MN/2) with
Mn = µ∗PR + µPL, µ = −4MDM

−1MT
D , (15)

where n and N are related to νR and νL through νL = nL + (MDM
−1)NL

and νR = NR − (M−1MT
D)nR.

The remaining condition in (12) leads to ten inequivalent solutions for
Yν

2. Of those, assuming no more than one massless neutrino and the absence
of ϕ → ninj decays, only one is interesting; it corresponds to s1,2,3 = ε
(see (13)). Since detYν = 0, the symmetry implies one massless neutrino.

To compare our results with experimental constraints on the leptonic
mixing angles, we use the so-called tri-bimaximal [11] lepton mixing matrix
where θ13 = 0, θ23 = π/4 and θ12 = arcsin(1/

√
3). We find that the form of

Yν consistent with this (up to axes permutations) is
2 The conditions (12) where also discussed in [10].
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Yν =

 a b 0
−a/2 b 0
−a/2 b 0

 ,
m1 = −3v2a2/M1

m2 = −6v2b2/M2

m3 = 0
, (16)

where a and b are real (for simplicity) parameters. The resulting mass
spectrum agrees with the observed pattern of neutrino mass differences, see
e.g. [12]. If ϕ is a candidate for DM we should guarantee its stability. For
the solution (13) only N3 and ϕ are odd under the Z2 symmetry hence the
ϕ will be absolutely stable if m < M3.

It is worth noticing that in the presence of Yϕ there exist three sources
of 1-loop contributions to the quadratic divergence in corrections to the ϕ
mass: (1) those generated by |H|2

∑Nϕ

i=1 λ
(i)
x ϕ2

i , (2) those from the quartic ϕ
coupling and (3) the additional one from the Yukawa coupling ϕ(νR)cYϕνR.
The presence of νR can be used [4] to ameliorate the little hierarchy prob-
lem associated with m thereby “closing” the solution to the little hierarchy
problem in a spirit analogous to supersymmetry.

5. Conclusions

We have shown that the addition of real scalar singlets ϕi to the SM
may soften the little hierarchy problem (by lifting the cutoff Λ to multi TeV
range). This scenario also offers realistic candidates for DM. In the presence
of right-handed neutrinos this model allows for a light neutrino mass matrix
texture that is consistent with experimental data, in which case there should
be one massless neutrino.
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